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Abstract— This paper presents a new feature point
detector that is accurate, efficient and fast. A detailed
qualitative evaluation of the proposed feature point
detector for grayscale images is also done. Experi-
ments have proved that this feature point detector is
robust to affine transformations, noise and perspec-
tive deformations. More over the proposed detector
requires only 22 additions per pixel to evaluate the
interest point and its strength, making it one of the
fastest detectors. The accuracy and speed of this al-
gorithm makes it a strong contender for ASIC and
hardware implementations and applications requiring
real time feature point abstraction.
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1 Introduction

Point Correspondence between two or more images is cru-
cial component for many computer vision and image anal-
ysis tasks. Most methods for 3D reconstruction, object
detection and recognition, image alignment and match-
ing and camera calibration techniques assume that fea-
ture points were extracted and put to reliable correspon-
dence. In general, all possible pairs of points should be
examined to solve this correspondence problem, and this
is computationally very expensive. If two images have n
pixels each, the complexity is O(n2). This process might
be simplified if the correspondence is examined among a
much smaller number of points, called interest points.
Interest points are locations in the image where the sig-
nal changes two-dimensionally. Examples include corners
and T -junctions as well as locations where the texture
varies significantly. Of the most intuitive type of features,
corners are very critical because they are invariant to ro-
tation and little changes can be observed under different
lighting. Corners also minimize the amount of data to be
processed without losing the most important information
of the gray level image. Corner detection is used as the
first step of many vision tasks such as tracking, simulta-
neous localization and mapping and recognition. Corners
in images can be located using local detectors; input to
the corner detector is the gray-level image, and output
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is the image f(i, j) in which values are proportional to
the likelihood that the pixel is a corner. A large number
of corner detectors exist in the literature. They can be
divided mainly into two categories: template based and
geometry based corner detectors. Template based corner
detection is to build a set of corner templates and de-
termine the similarity between the templates and all the
sub windows of the gray level image.The earliest geom-
etry based corner detectors, first extract the boundary
as a chain code, and then search for significant turnings
at boundary. These kind of corner detectors also suf-
fer from high algorithm complexity, as multiple steps are
needed. Additionally any errors in the segmentation step
will lead to different corner results. Afterwords, many
geometry based corner detectors, which directly operate
on the gray level image were introduced. The corner de-
tector proposed in this work belongs t this last category.
Also the terms interest points and feature points refer to
the same concept and hence would be used interchange-
ably.

2 Literature Survey of Corner Detectors

The majority of grayscale feature detection algorithms
work by computing a corner response function (C) across
the image. Pixels which exceed a threshold(locally max-
imal) are then chosen. The simplest corner detector is
the Moravec detector [9] which computes the sum-of-
squared-difference (SSD) between a patch around a can-
didate corner and patches shifted a small distance in a
number of directions. The Moravec operator’s SSD is
given by

SSD(i, j) =
1
8

i+1∑

k=i−1

j+1∑

l=j−1

|f(k, l)− f(i, j)| (1)

C is then the smallest SSD, thus ensuring that extracted
corners are those locations which change maximally un-
der translations(on corners and sharp edges). Harris [5]
builds on this by computing an approximation to the sec-
ond derivative of SAD with respect to the shift. They
modified the Moravec method to the famous Plessey cor-
ner detector by estimating the auto correlation from the
first order derivatives.
Brown and Lowe [6, 2] obtained the scale invariance by
convolving the image with a Difference of Gaussian(DoG)
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kernel at multiple scales, retaining locations which are op-
timal in scale as well as space. DoG is used because it is
good approximation for the Laplacian of Gaussian(LoG)
and much faster to compute. An approximation to
DoG has been proposed which, provided that scales are√

2 apart, speeds up computation by a factor of about
two, compared to the straightforward implementation of
Gaussian convolution.
Smith and Brady proposed a method called SUSAN [11]
for feature point detection based on simple masking oper-
ations instead of gradient convolution. It uses a circular
window consisting of 37 pixels to obtain the USAN area
whose centroid is estimated to enhance the localization
of the corner. The results showed a very good localiza-
tion and noise robustness but they involved high com-
putational cost due to a large window size for obtaining
the USAN area and centroid. Trajkovic and Hedley used
a similar idea in [13]: a patch is not self-similar if pix-
els generally look different from the center of the patch.
This is measured by considering a circle and then com-
paring the local intensity changes in all directions with
respect to the center. Although the method is fast and
efficient, it is highly sensitive to noise and straight lines
sometimes. Rosten and Drummond [10] proposed a cri-
terion which operates by considering that an edge is a
boundary between two regions and a corner occurs where
the edge changes directly suddenly. A point is a corner
if enough of the pixels around the point are in a different
region from the point. It implements this by considering
a circle around the candidate point, p. It looks for the
largest arc where the intensities of all the points on the
arc are above the intensity of p(Ip) by some threhold, t,
or the intensity of all points on the arc are below Ip bt
t. The point is a corner if θ ≥ θt, where θ is the angle
of the arc and θt is some threshold. Although this fea-
ture point detector is extremely fast it is not robust to
high level noise and is also susceptible to 1-pixel thick
straight lines. Mokhtarian and Suomela [8] described a
method for image corner detection based on the curvature
scale space(CSS) representation. This technique ECSS
is suitable for recovering invariant geometric features also
called curvature zero crossing points or extrema of a pla-
nar curve at multiple scales. This algorithm is highly
accurate and robust to noise but has a very high time
complexity. In [12] two oriented cross operators called
COP(Crosses as Oriented Pairs) were used to detect cor-
ners and feature points. This technique is extremely fast
and accurate but is unable to handle noise and image
deformity.

3 Feature Point Detection Model

The proposed feature point detector is based on the fact
that feature points are nothing but the sudden changes
in 2 dimensions. The aim of the proposed technique is
to enable detection of corners and all other points of in-
terest in an image whose information content is greater

than the desired threshold. With the aim of satisfying
the universal criterion of localization, consistency, accu-
racy and noise immunity in a real time environment we
propose a short but effective five step algorithm. The
algorithm has been designed to be a ready contender for
hardware implementation in fields of Robotic vision and
other image processing ASICs involved in feature detec-
tion and matching. For each pixel of the image under
consideration:

1. Apply the Difference Mask with threshold parameter
P1.

2. Apply the Partial Averaged Gaussian Mask to the
points satisfying 1.

3. Once again calculate the Difference Mask with
threshold parameter P2.

4. Eliminate False Positives.

5. Determine Localization of the Remaining feature
points.

3.1 Apply the Difference Mask with thresh-
old parameter P1

Unlike the usual convolution masks of sizes varying from
3x3 to 7x7, we propose the use of very simple 2x2 mask.
Moreover we replace the convolution with simple differ-
ences between the pixel intensity values and then com-
paring these differences with the threshold P1. The use

Figure 1: The 2x2 convolution kernal

of the masks as shown in figure 1 gives rise to four or-
thogonal difference values. The 4 orthogonal difference
values of H1, H2, V1 and V2 as shown in Figure 2 are
the four critical gradient values that responds positively
to corners and diagonal edges. Each of this is defined as
follows:

Figure 2: The 2x2 Operator

H1 = | I(i,j) − I(i,j+1) | (2)
H2 = | I(i+1,j) − I(i+1,j+1) | (3)
V1 = | I(i,j) − I(i+1,j) | (4)
V2 = | I(i,j+1) − I(i+1,j+1) | (5)
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Here (i, j) is the current pixel under consideration. Fur-
ther the standard responses of this operator on a set of
standard edges and corner is shown in Figure 3, 4, 5 and 6.
Further the response of this 2x2 operator can be grouped
into three categories:

Figure 3: Figure showing the response of the Difference
mask on a typical vertical edge.H1=H2=90− 40=50 and
V1=V2=0

Figure 4: Figure showing the response of the Differ-
ence mask on a typical horizontal edge.H1=H2=0 and
V1=V2=90− 40=50

1. A vertical edge.(H1 and H2 both greater than zero)

2. A horizontal edge.(V1 and V2 both greater than zero)

3. Diagonal edges and interest point candi-
dates.(Atleast one of the horizontal differences
and vertical differences are non zero).

Since, for feature point detection we are only interested
in the 3rd category of responses we will henceforth con-
centrate on these responses only. We also considered the
responses of our mask on some blurred or gradual diag-
onal edges as shown in figure 5. A single response was
generated when the threshold parameter is chosen suit-
ably. Each pixel satisfying the third criteria is considered
for further processing. The absolute sum of H1, H2, V1

and V2 gives the strength of cornerity at that pixel.

3.2 Apply the Partial Averaged Gaussian
Mask to the Points Satisfying Step 1

In real case scenario we will never come across images
with well defined edges or corners. Not only the feature
points will be blurred but the image itself will consist
of several types of noises. All this makes the Difference
mask in the previous subsection respond to every noisy
pixel. In order to overcome this and increase the noise
immunity of our algorithm we propose the application of

Figure 5: Figure showing a typical diagonal edge. The
bold line across the image shows the position of diagonal
edge when P1=20

Figure 6: Figure showing a typical corner candidate.
Here H1=0, H2=90− 40=50, V1 = 0 and V2 = 90− 40 =
50

a pseudo-gaussian kernel.
Usually A gaussian kernel requires the convolution of the
image with a complex matrix generated by (Standard
Gaussian Function) and a varying σ. In view of con-
strained time and performance intensive application sce-
nario of real time feature point detection we propose to
use a partial averaging kernel. This kernal was derived
from a 5x5 gaussian kernel having σ=1.3. This was fur-
ther modified and normalized so as to have all factors
some exponent of 2. This results in just a shift of the
bits during calculations and no expensive operations like
multiplication or division are avoided.
Further we take advantage of our difference kernel and
apply only a partial of the entire gaussian kernel. Then
similar to a rotating averaging mask, this is rotated by
90◦ and applied to each pixel of the difference mask. This
partial implementation as shown in figure 7 reduces the
gaussian averaging overhead by 75% but produces the de-
sired results on the set of 2x2 pixels under consideration.

3.3 Calculate the Difference Mask with
threshold parameter P2

Once the new gaussian averaged values of the four pixels
under consideration are calculated, we once again apply
the difference mask. But this time we use a different
threshold P2. The use of this second thresholding pa-
rameter is encouraged so as to avoid missing weak fea-
ture points in presence of noise. One can look at this in a
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Figure 7: Figure showing the pseudo-gaussian mask.
Each of the four central pixel(weight=64) is averaged
with the neighboring similar colored pixels with their re-
spective weights(in top right corner). Note the weights
are all a power of 2 and that the total weight of the partial
mask is also 64+2*16+16+(2*8)=128 (a power of 2).

way that a low P1 will detect most of the interest points
and a higher P2 will give the user a control over the noise
interference with the desired feature points.

3.4 Eliminate False Positives

As discussed in 3.1 it is very clear that the orthogonal dif-
ference masks will respond strongly to all diagonal edges.
In order to avoid this we eliminate all the candidate pix-
els that are part of the diagonals and are only 2-pixel
connected in the direction of the diagonal. If a candidate
pixel is eliminated, we reduce its cornerity strength by
half. This strength reduction plays a very important role
in determining the locality of the still existing candidate
points. This step is depicted in the figure 8.

Figure 8: Figure showing the false positive candidates
and marking the ones that are true feature points. The
figures are just junctions where such elimination are
prominent. The values denote the grayscale value of the
image at the junction.

3.5 Determine Localization of the Desired
Feature Points

This is the final step of the proposed algorithm and is
similar to non-maxima suppression. Here we refer the
cornerity strength of each of the four pixels of the 2x2

pixel patch and compare it with each other. Only the
pixel having the highest cornerity value will be identified
as the true position of the feature point. This gives our
algorithm a localization accuracy of 1-pixel. Figure 9

Figure 9: (a) Original Grayscale Image, (b) Output of
the Algorithm after step 3.3 and (c) Final output of the
algorithm after step 3.4 and 3.5

shows the output of the algorithm at intermediate stages.
Invariably the entire algorithm has 3 major steps viz. the
difference mask, elimination of false positives and then
determining the localized points in the last step. Step 1
has an inbuilt gaussian kernel to handle noise and other
deformities unlike other algorithms which user noise filter
as an external process.

4 Qualitative Analysis of the Proposed
Algorithm

Although a wide number of corner detection techniques
are reported in literature, there is very less on the sub-
ject of comparing detectors.Mohanna and Mokhtarian [7]
evaluated performance by wrapping test images in an
affine manner by a known amount. They define two ma-
trices: Consistency and Accuracy. Where consistency is
defined as:

CCN = 100 ∗ 1.1−|nw−no| (6)

where nw is the number of features in the wrapped image
and no is the number of features in the original image.
The accuracy is defined as:

ACU = 100 ∗
nm

no
+ nm

ng

2
(7)

where ng are the number of ’ground truth’ corners
marked by humans and nm is the number of matched
corners compared to ground truth. This unfortunately
relies on subjectively made decisions. [13] defines sta-
bility to be the number of ’strong’ matches (detected
over various frames in matching problems) divided by
the total number of corners. This measurement is clearly
dependent on both the tracking and matching methods
used. When measuring reliability, what is important is if
the same real-world features are detected from multiple
views. This is the definition which will be used here. For
an image pair, a feature is ’detected’ if it is extracted in
one image and appears in the second. It is ’repeated’ if
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it is extracted nearby in the second run. Schmid [3] pro-
poses repeatability and information content as the two
criteria for qualitative evaluation. The repeatability is
the ratio of repeated features and detected features. Re-
peatability signifies that we obtain the same points in an
image even after changes in the imaging condition. That
is, a 3D point should be detected in both images if it
is detected in one of them. The second criteria, infor-
mation content, measures the distinctiveness of the local
gray-level pattern at an interest point. repeatability and
information content are the key criteria for image match-
ing. In this context, at least a subset of the points have
to be detected at the same relative position to allow fea-
ture correspondence. Additionally interest points should
have distinctive patterns to be distinguishable. A point
p1 detected in image I1 is repeated in image Ii if the cor-
responding point pi is detected in image Ii, where I1, Ii

are two projections of the same imageI. According to [7]
it is clear that repeatability and information content are
nothing but consistency and accuracy combined. So we
tested algorithm for consistency and accuracy on the fol-
lowing experimental cases under various transformations:

1. Rotation variations: We rotated the test image
house.gif to 45◦ in increments of 5◦ each. Algorithm
was run on each rotated image and CCN and ACU
numbers were calculated.

2. Scaling variations: Both uniform and nonuniform
scaling is done. We skewed the image, scaled it hor-
izontally and also uniformly scaled it to 125% its
original size in 5% increments.

3. Blurring: We applied gaussian blurring and motion
blurring on the test image to test our algorithm
against diffused image boundaries. This was done to
analyze the localization capability of the proposed
algorithm.

4. 3-D projection: We projected our test image on a
sphere and then calculated the CCN and ACU num-
bers. This test is a sure indication that our algo-
rithm performs well from any viewpoint and in the
presence of any perspective deformities.

5. Artificial Noise: We added artificial noise like
poisson, gaussian noise(variance = 0.004), salt
& pepper noise(density = 0.004) and speckle
noise(variance = 0.004). This test will evaluate our
corner detector for robustness to real world noise and
variations.

5 Performance Evaluation and Discus-
sion

We used Matlab to perform all our tests. Figure 10 and
Figure 11 depict the test results. Table 1 and Table 2
summarizes the mean CCN and ACU numbers for the

various transformations discussed in section 4. In most
cases the CCN and ACU numbers are high, infact it gives
very good results in case of noise and perspective defor-
mation. Also from [12] and [14] we compare the algorithm
complexity of our algorithm with some of the most pop-
ular existing feature point detectors. Our algorithm will
incur at most 28 subtractions(or additions) at any pixel,
but assuming that even in the scenario of highest noise
content in the images only 80% of all the pixels will be
candidate points that pass the first step of our algorithm,
this gives an upper limit of average subtractions per pixel
to 22. We involve no multiplication or division operations
in our algorithm making it one of the most suitable con-
tender for real time implementations as shown in Table 3.

Plessy Susan ECSS Our
Algorithm

Rotation 32 24 74 72
Uniform
Scaling 35 28 42 89
Non

Uniform
Deformation 28 31 68 82

Noise 14 9 33 41

Table 1: Shows the Consistency of the proposed Algo-
rithm, CCN numbers(out of 100) of 3 other feature de-
tectors are included for comparison.

Criteria Plessy Susan ECSS Our
Algorithm

Accuracy 49.6 53.4 77.2 71.8

Table 2: Shows the Accuracy Factor of our Algorithm
with respect to other popular feature detection algo-
rithms. ACU number is listed as a percentage out of
100.

Algorithm Additions Multi- Operations
plications /Pixel

SCD 26 0 26
Wang-Brady 24.5 7.25 32

Plessy 95 22 117
Susan 32.25 0.75 33
Our

Algorithm 22 0 22

Table 3: Algorithm complexity

6 Conclusions

We proposed a true real time feature point detector and
successfully evaluated its performance over varying pa-
rameters such as noise, affine transformations, deforma-
tions speed and accuracy. It is based on the fact that any
feature point is a variation in 2-dimension. Further ro-
bustness to noise and transformations is provided by the
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Figure 10: Feature Point detection on test image with
various transformations(a) Original Image, (b) Image
Skewed by 15◦(Non-uniform scaling), (c) Image pro-
jected on a Sphere(Perspective Deformity), (d) Uniformly
Scaled to 125%, and (e) Affine Transformation(Rotated
by 30◦ and scaled horizontally by 50%

use of a pseudo-gaussian kernel. The entire algorithm is
simple but effective. This Noise and Affine transforma-
tion invariant feature Point detector is a true contender
for Hardware implementations in the areas of Robotic
Vision and real time image matching and object recogni-
tion.
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