

Abstract— Message Sequence Charts (MSCs) can be used

effectively to specify the communicating threads in the way

where high-level transition systems is used to capture the control

flow of the system components. This specification is amenable to

formal verification. Here, we present the way how we can

specify the communicating threads using MSCs and how we can

verify the correctness of the concurrent wavelet transform used

for the purpose of image compression. We have used Symbolic

Model Verifier (SMV) for the use of formal verification. The

introduction of wavelet transform for image compression

followed by the MSC based specification for concurrent wavelet

transform is presented. The concurrency in the threads for

concurrent wavelet transform along with the grammar of the

syntax formulated is accessed. At the end, the verification result

of the concurrent wavelet transform using the SMV program is

presented.

Index Terms— Image Compression, Wavelet Transform,

Message Sequence Charts, Symbolic Model Verifier (SMV),

Formal Verification.

I. INTRODUCTION

 The display, storage and transportation of digital images

have moved from obscurity to the commonplace in the last

few decades. Now-a-days, many people interact with digital

imagery, in one form or another, on a daily basis. The amount

of data to be transported demands the development and

improvement of the compression approaches. A certain

amount of compression is possible without loss of information

using lossless methods. However, many applications call for

an order of magnitude more reduction of size than is possible

to meet using such methods. Once the realm of lossy

compression is entered, a trade-off in size vs. distortion must

be made. The fundamental problem is to meet the competing

goals of accurate approximation and reduction in storage

requirements.

 Compressing an image is significantly different from

compressing raw binary data. Of course, general purpose

compression programs can be used to compress images, but

Manuscript received February 12, 2008.

Kamrul Hasan Talukder is a PhD student in the Department of

Information Engineering of Graduate School of Engineering, Hiroshima

University, Japan. E-mail: khtalukder@hiroshima-u.ac.jp.

Koichi Harada is a Professor in the Department of Information

Engineering of Graduate School of Engineering, Hiroshima University,

Japan. E-mail: harada@cedar.mis.hiroshima-u.ac.jp.

the result is less than optimal. This is because images have

certain statistical properties which can be exploited by

encoders specifically designed for them. Also, some of the

finer details in the image can be sacrificed for the sake of

saving a little more bandwidth or storage space.

 The initial breakthrough in the compression of

one-dimensional signals [1] was easily extended to the image

domain by concatenating image rows or columns into a single

stream. Some techniques such as Shannon Fano coding [2]

and Huffman coding [3] [4] [5] [6] [7] [8] use

redundancy-reduction mechanisms which result in shorter

codes for more frequently appearing samples. It is necessary

to scan the data samples in order to calculate their

probabilities of occurrence and create an exact code.

Adaptive variations of these techniques initially assume equal

probability for all samples and calculate subsequent

probability measures based on a fixed window length prior to

the sample of interest. This allows local changes in

probability measurements and achieves higher global

compression. Run-length coding [9] is another

redundancy-reduction coding method where in a scan-line

each run of symbols is coded as a pair that specifies the

symbol and the length of the run. While most

redundancy-reduction methods are lossless, other arbitrarily

lossy coding methods have achieved higher levels of

compression. Transform coding [10], subband coding [11]

[12] [13] [14], vector quantization [15] [16] [17] and

predictive coding [18] [19] [20] [21] [22] [23] [24] [25] [26]

[27] are among the ones that have achieved high levels of

lossy compression. The major transform coding techniques

include cosine/sine [28], Fourier [29], Hadamard [30], Haar

[30] [10], slant [10] and principal-component

(Karhunen-Loeve) transforms [31]. All transform coding

based compression algorithms are pixel-based approaches

which decompose a signal unto an orthonormal basis to

achieve energy compaction. Lossy compression is then

achieved by coding the high energy components and leaving

out the low energy ones. While some transformations such as

the Hadamard and Haar transforms can be performed

relatively quickly, other transforms are computationally

intensive and either require dedicated hardware or restrictions

such as limiting the size of the transform to a power of two.

Recently, second-generation compression algorithms based

on human visual behavior [32] have been proposed which

have the potential for much higher compression ratios.

 In the recent years, the wavelet transform has emerged as a

cutting edge technology within the field of image analysis.

Message Sequence Charts Based Specification

of the Communicating Threads to the Verified

Image Compression Technique using Concurrent

Wavelet Transform

Kamrul Hasan Talukder and Koichi Harada

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

The wavelet transformations have a wide variety of different

applications in computer graphics including radiosity [33],

multiresolution painting [34], curve design [35], mesh

optimization [36], volume visualization [37], image searching

[38] and one of the first applications in computer graphics,

image compression. The Discrete Wavelet Transformation

(DWT) provides adaptive spatial frequency resolution (better

spatial resolution at high frequencies and better frequency

resolution at low frequencies) that is well matched to the

properties of an HVS.

 However, the DWT is very computationally intensive

process which requires innovative and computationally

efficient method to obtain the image compression. The

concurrent transformation might be a useful solution to this

problem. In this paper, we investigate the concurrency in

wavelet transformation for the compression of image. A

verification of the system is also done.

 Simulation and testing [39] are some of the traditional

approaches for verifying the systems. Simulation and testing

both involve making experiments before deploying the system

in the field. While simulation is performed on an abstraction

or a model of the system, testing is performed on the actual

product. In both cases, these methods typically inject signals

at certain points in the system and observe the resulting

signals at other points. Checking all the possible interactions

and finding potential pitfalls using simulation and testing

techniques is not always possible. Formal verification [40], an

appealing alternative to simulation and testing, conducts an

exhaustive exploration of all possible behaviors of the system.

Thus, when a design is marked correct by the formal method,

it implies that all behaviors have been explored and the

question of adequate coverage or a missed behavior becomes

irrelevant. There are some robust tools for formal verification

such as SMV, SPIN, COSPAN, VIS etc [40]. The method has

been modeled in SMV and the properties of the system have

been verified formally.

II. IMAGE COMPRESSION AND WAVELET TRANSFORMATION

 Wavelet transform (WT) represents an image as a sum of

wavelet functions (wavelets) with different locations and

scales [41]. Any decomposition of an image into wavelets

involves a pair of waveforms: one to characterize the high

frequencies corresponding to the detailed parts of an image

(wavelet function) and one for the low frequencies or smooth

parts of an image (scaling function). Fig. 1 shows two

waveforms of a family discovered in 1980 by Daubechies: the

left one can be used to represent smooth parts of the image

and the right one to represent detailed parts of the image. The

two waveforms are translated and scaled on the time axis to

generate a set of wavelet functions at different locations and

on diverse scales. Each wavelet possesses the same number of

cycles, such that, the wavelet gets longer while frequency

reduces. Low frequencies are transformed with long functions

(high scale). High frequencies are transformed with short

functions (low scale). The analyzing wavelet is shifted over

the full domain of the analyzed function. The result of WT is a

set of wavelet coefficients, which measure the contribution of

the wavelets at these locations and scales.

 WT performs multiresolution image analysis [42]. The

result of multiresolution analysis is simultaneous image

representation on different resolution levels [43]. The

resolution is determined by the specified threshold below

which all details are overlooked. The difference between two

neighboring resolutions represents details. Therefore, an

image can be represented by a low-resolution image

(approximation or average part) and the details on each higher

resolution level. Let us consider a one dimensional

function)(tf . The approximation of the function)(tf at the

resolution level j is defined as)(tf j . At the one level upper

resolution 1+j , the approximation of the function)(tf is

represented by)(1 tf j+ . The details denoted by)(td j are

included in)()()(:)(11 tdtftftf jjjj +=++ . This procedure

is repetitive for several times and the function can be written

as-

∑
=

+=

n

jk

kj tdtftf)()()(

In the same way, the space of square integrable functions

)(
2

RL can be treated as a composition of scaling subspaces

jV and wavelet subspaces jW such that the approximation of

)(tf at resolution))((tfj j is contained in jV and the details

)(td j are in jW . jV and jW are defined in terms of dilates

and translates of scaling function Φ and wavelet function

})2({: ZkkxV
j

j ∈−Φ=Ψ and })2({ ZkkxW
j

j ∈−Ψ= .

jV and jW are localized in scaled frequency octaves by the

scale or resolution parameter j2 and localized spatially by

translation k . The scaling subspace jV must be contained in

all subspaces on higher resolutions (1+⊂ jj VV). The wavelet

subspaces jW fill the gaps between successive

scales: jjj WVV ⊕=+1 . We can start with an approximation

on some scale 0V and then use wavelets to fill in the missing

details on finer scales. The finest resolution level includes all

square integrable functions-

j
j

WVRL
∞

=
⊕+=

0
0

2)(

Since 10 VV ⊂∈Φ , it follows that the scaling function for

multiresolution approximation can be found out as the

solution to a two-scale dilational equation-

Wavelet function psi

Scaling function phi

Fig. 1. Scaling and wavelet function.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

∑ −Φ=Φ
k

L kxkax)2()()(

for some suitable sequence of coefficients)(kaL . Once it

has been found, an associated mother wavelet is given by a

similar looking formula-

∑ −Φ=Ψ
k

H kxkax)2()()(

 One of the big discoveries for wavelet analysis was that

perfect reconstruction filter banks could be formed using the

coefficient sequences)(kaL and)(kaH as shown in Fig. 2.

The input sequence x is convolved with high-pass (HPF) and

low-pass (LPF) filters)(kaH and)(kaL and each result is

downsampled by two, yielding the transform signals Hx and

Lx . The signal is reconstructed through upsampling and

convolution with high and low synthesis filters)(ksH and

)(ksL . For properly designed filters, the signal x is

reconstructed exactly (xy =).

 The choice of filter not only decides if the perfect

reconstruction is possible or not, it also determines the shape

of wavelet to be used to perform the analysis. By cascading

the analysis filter bank with itself several times, a digital

signal decomposition with dyadic frequency scaling known as

DWT can be formed. An efficient way to implement this

scheme using filters was developed by Mallat [43]. The new

twist that wavelets bring to filter banks is connection between

multiresolution analysis and digital signal processing

performed on discrete, sampled signals.

III. CONCURRENCY IN WT FOR IMAGE COMPRESSION

 We know that wavelet transformation entails transformation

of image data horizontally first and then vertically. Here we

divide the image plane into n horizontal sections which are

horizontally transformed concurrently. After then the image

is divided into n vertical sections which are then vertically

transformed concurrently. It is not a must that the number of

horizontal sections is equal to the number of vertical sections.

 But the problem lies in the concurrency. The system just

proposed lets the possibility for vertical transformation to

begin on some vertical sections before horizontal

transformation in all sections is completed. Vertical sections

that are already horizontally transformed can be vertically

transformed. That allows the possibility for threads that

completed horizontal transformation to go on to vertical

transformation without having to wait on other threads to

complete horizontal transformation. Before a vertical section

is available for transformation, one condition that must be met

is that all horizontal sections transform n size data

horizontally such that an n wide vertical section is available

with all data points already horizontally transformed. The

following figure 3 shows the control flow of a single thread.

 The assertion for the verification is that at any time, the

vertical transformation does not start on a vertical section that

is not horizontally transformed.

A. Communication among threads

 A message passing library providing two levels of

abstraction namely channel and topology has been developed,

for the communication that occurs among threads. These

message passing classes can be the part of a larger system that

provides a class library for threads, thread synchronization,

and message passing. We have used the Message Sequence

Charts (MSCs) to visualize the interactions among the

threads.

B. Message Sequence Charts (MSCs)

 Message Sequence Charts (MSCs) are an attractive visual

formalism that is often used in the early stage of system design

to specify the system requirements. A main advantage of an

MSC is its clear graphical layout which immediately gives an

intuitive understanding of the described system behavior [44].

MSCs are particularly suited to describe the distributed

telecommunication software [45] [46]. The wide ranges of

use of MSCs are usually in the distributed systems and in a

number of software methodologies [46] [47] [48]. In a

distributed system, MSCs mainly concentrate on the exchange

of messages among various processes and their environments

as well as some internal actions in these processes. MSCs are

LS

HS
Ha

La 2↓

2↓ 2↑

2↑
LX

HX

⊕ y
x

 Fig. 2. Two-channel Filter Bank

Fig. 3. Control flow of a single thread

Yes

No

Horizontal

Transform

No

Yes

Vertical
Section

Available

Vertical

Transform

All Vert.
Trans.

Complete

Horizont

al Trans.
Complete

Yes

No

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

also known as object interaction diagrams, timing sequence

diagrams and message flow diagrams.

C. Modeling the Communications

 In order to establish the communication between multiple

threads, we require some work to set up and maintain the

communication channels. There are several ways to

communicate between threads, with some being more

efficient than others.

 One of the simplest ways to communicate state information

between threads is to use a shared object or shared block of

memory. A shared object requires very little setup—all we

have to do is make sure each thread has a pointer to the object.

The object contains whatever custom information we need to

communicate between threads, so it should be very efficient.

 The second option is the port-based communication. Ports

offer a fast and reliable way to communicate between threads

and processes on the same or different computers. Ports are

also a fairly standard form of communication on many

different platforms and their use is well established. In Mac

OS X, a port implementation is provided by the Mach kernel.

These Mach ports can be used to pass data between processes

on the same computer.

 The third way is the use of the message queues. The

message queues offer an easy-to-use abstraction for thread

communication. A message queue is a first-in, first-out

(FIFO) queue that manages incoming and outgoing data for

the thread. A thread can have both an input and an output

queue. The input queue contains work the thread needs to

perform, while the output queue contains the results of that

work.

 To establish communication between the threads, we model

it as a queue of message, which is the integral part of the

threads. The following Fig. 4 shows the modeling of the

channel as a queue of message from thread i to thread i+1. The

message is pushed through the tail of the queue from the

thread i side and the message is received from the head of the

queue at the thread i+1 side. Fig. 5 shows the modeling of the

communication channel as a queue for the message from

thread i+1 to thread i. The message is sent from the thread i+1

side and it is received at the head of the queue at the thread i

side.

 The communication among threads for a communication

system where different threads take part in can be specified by

a grammar. The syntax for it is formulated and is tabulated in

Table 1 in the appendix.

D. Verification

 We use the SMV [49] as the verification tool. Here the

number of threads is defined as SIZE = 8. Using the loop

from 0 to 7 we verify if any of the threads starts vertical

transformation while some other thread(s) is/are still on the

transformation of the horizontal part of the same section

(unsafe). It is found that each of the threads is in the safe state

(desired) all the time. It means that in all states of the

transition system it is true that no vertical transformation gets

started until the all the horizontal section is completed. This

specification is the most important one that we must get true.

The part of the SMV code is shown in Fig. 6 and the snapshot

of the verification result is shown in Fig. 7.

IV. CONCLUSION

The way to specify the communicating threads using MSCs

and the verification of the correctness of the concurrent

wavelet transform used for image compression are presented.

We have used Symbolic Model Verifier (SMV)) for the use of

formal verification. The concurrency in the threads for

concurrent wavelet transform along with the grammar of the

syntax formulated is discussed and presented here. We find

that all the communicating threads are in the safe states all the

time. One of the problems associated in the current version of

the work is, in SMV, the smaller size of the queue shared by

different threads. Another bottleneck is the smaller number of

participating threads.

REFERENCES

[1] R. Williams. Adaptive Data Compression. Kluwer Academic

Publishers, 1991.

[2] C. Shannon. A mathematical theory of communication. Bell

thri_tail

Thread i (thri) Side

 thri_tail+1
+1

 thri+1_head+1

Thread i+1 (thri+1) Side

thri+1_head

message sent at

this point

 message recei

 ved here

thri_head

message

received

at this point

Thread i (thri) Side

 thri_head+1

thri+1_tail+1

Thread i+1(thri+1) Side

thri+1_tail

 message sent here

Fig. 5 Channel for reply from thread i+1 to thread i

 Fig. 4 Channel for message from thread i to thread i+1

 for (index=0;index<SIZE;index=index+1){
 loc[index],idle[index]:boolean;

 idle[index]:=free & freed=index;

 loc[index]:=alloc & pos_ack & allocd=index;

 safe[index]:SPEC AG(A(~idle[index] U loc[index]));

}

Fig.6 Part of the SMV Code

 Fig. 7 Verification Results

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Systems Technical Journal, 27:623-656, 1948.

[3] N. Faller. An adaptive system for data compression. In

Proceedings of the Asilomar Conference on Circuits, Systems

and Computers, pages 593-597, 1973.

[4] R. Gallager. Variations on a theme by Huffman. IEEE

Transactions on Information Theory, 24:668-674, 1978.

[5] D. Knuth. Optimal binary search trees. Acta Informatica,

1:14-25, 1971.

[6] J. Vitter. Design and analysis of dynamic Huffman codes.

Journal of the Association for Computing Machinary,

34:825-845, 1987.

[7] J. Ziv and A. Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on Information Theory,

23:337-343, 1977.

[8] J. Ziv and A. Lempel. Compression of individual sequences

via variable-rate coding. IEEE Transactions on Information

Theory, 24:530-536, 1978.

[9] T. Huang. Run length coding and its extensions. In T. Huang

and O. Tretiak, editors, Picture Bandwidth Compression,

pages 231-264. Gordon and Breach, 1972.

[10] A. Jain. Fundamentals of Digital Image Processing.

Prentice-Hall, 1989.

[11] J. Lim. Two-Dimensional Signal and Image Processing.

Prentice-Hall, 1990.

[12] D. O'Shaughnessy. Speech Communication: Human and

Machine. Addison-Wesley, 1987.

[13] M. Vetterli. Multi-dimensional sub-band coding: Some theory

and algorithms. Signal Processing, 6:97-112, 1984.

[14] J. Woods and S. O'Niel. Subband coding of images. IEEE

Transactions on Acoustics, Speech and Signal Processing,

34:1278-1288, 1986.

[15] J. Lim. Two-Dimensional Signal and Image Processing.

Prentice-Hall, 1990.

[16] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector

quantizer design. IEEE Transactions on Communications,

28:84-95, 1980.

[17] J. Makhoul, S. Roucos, and H. Gish. Vector quantization in

speech coding. Proceedings of the IEEE, 73:1551-1558, 1985.

[18] J. Abate. Linear adaptive delta modulation. Proceedings of the

IEEE, 55:298-308, 1967.

[19] S. Alexander and S. Rajala. Image compression results using

LMS adaptive algorithm. IEEE Transactions on Acoustics,

Speech and Signal Processing, 33:712-717, 1985.

[20] C. Cutler. Differential quantization of communication signals.

U.S. Patent 2 605 361, 1952.

[21] A. Habibi. Survey of adaptive image coding techniques. IEEE

Transactions on Communications, 25:1275-1284, 1977.

[22] N. Jayant. Adaptive delta modulation with a one-bit memory.

Bell Systems Technical Journal, 49:321-343, 1970.

[23] A. Kolmogorov. Interpolation and extrapolation of stationary

random series. Journal of the Soviet Academy of Science, pages

3-14, 1941.

[24] T. Lei, N. Scheinberg, and D. Schilling. Adaptive delta

modulation system for video encoding. IEEE Transactions on

Communications, 25:1302-1314, 1977.

[25] J. O'Neal. Predictive quantization system (differential pulse

code modulation) for the transmission of television signals.

Bell Systems Technical Journal, 45:689-721, 1966.

[26] P. Pirsch. Adaptive intra/interframe DPCM coder. Bell

Systems Technical Journal, 61:747-764, 1982.

[27] C. Song, J. Garondick, and D. Schilling. A variable-step-size

robust delta modulator. IEEE Transactions on

Communications, 19:1033-1044, 1971.

[28] N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine

transform. IEEE Transactions on Computers, 23:90-93, 1974.

[29] G. Anderson and T. Huang. Piecewise Fourier transformation

for picture bandwidth compression. IEEE Transactions on

Communications, 19:133-140, 1971.

[30] B. Fino. Relations between Haar and Walsh/Hadamard

transforms. Proceedings of the IEEE, 60:647-648, 1972.

[31] H. Andrews. Computer Techniques in Image Processing.

Academic Press, 1970.

[32] A. Mazzarri and R. Leonardi. Perceptual embedded image

coding using wavelet transforms. In Proceedings of the

International Conference on Image Processing, volume I,

pages 586-587, 1995.

[33] Gortler. S., Schröder, P., Cohen, M., and Hanrahan, P.,

"Wavelet Radiosity", in Proc. SIGGRAPH, 1993, pp. 221-230.

[34] Berman, D., Bartell, J. and Salesin, D., "Multiresolution

Painting and Compositing", in Proc. SIGGRAPH, 1994, pp.

85-90.

[35] Finkelstein. A. and Salesin, D., "Multiresolution Curves", in

Proc. SIGGRAPH, 1994, pp. 261-268.

[36] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsberry,

M. and Stuetzle, W., "Multiresolution Analysis of Arbitrary

Meshes", in Proc. SIGGRAPH, 1995, pp. 173-182.

[37] Lippert, L. and Gross, M., "Fast Wavelet Based Volume

Rendering by Accumulation of Transparent Texture Maps", in

Proc. EUROGRAPHICS, 1995, pp. 431-443.

[38] Jacobs, C., Finkelstein, A. and Salesin, D., "Fast

Multiresolution Image Querying", in Proc. SIGGRAPH, 1995,

pp. 277-286.

[39] Myers, Glenford J. “The Art of Software Testing”, John Wiley

and Sons. ISBN 0-471-04328-1, 1979.

[40] Edmund M. Clakre, Jr. Oma FrumBerg and Doron A. Paled,

“Model Checking”, The MIT Press, Second Printing, 2000.

[41] Eric J. Stollnitz, Tony D. Derose and David H. Salesin,

“Wavelets for Computer Graphics”, Morgan Kaufmann

Publishers, Inc., San Francisco.

[42] S. Mallat, “A theory of multiresolution signal decomposition:

The wavelet representation,” IEEE Trans. Pattern Anal.

Machine Intell., vol. 11, pp. 674–693, July 1989.

[43] S. Mallat, “Multifrequency channel decomposition of images

and wavelet models,” IEEE Trans. Acoust., Speech, Signal

Processing, vol. 37, pp. 2091-2110, 1989.

[44] Ekkart Rudolph, Peter Graubmann and Jens Grabowski:

Tutorial on Message Sequence Charts. MSC Tutorial of the

7th SDL Forum, September 1995, Norway.

[45] ITU-TS Recommendation Z.120: Message Sequence Chart

(MSC). ITU-TS, Geneva (1997).

[46] Rudolph, E., Graubmann, P. and Grabowski, J.: Tutorial on

Message Sequence Charts. In Computer Networks and ISDN

Systems-SDL and MSC, Volume 28 (1996).

[47] Booch, G., Jacobson, I. and Rumbaugh, J.,: Unified Modeling

Language User Guide. Addison-Wesley (1997).

[48] Harel, D. and Gery, E.: Executable object modeling with state

charts. IEEE Computers, July 1997, pp. 31-42.

[49] Cadence Berkeley Laboratories, Free download from the

website: http://www.kenmcmil.com/smv.html, California,

USA. SMV Model Checker, 1999.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

APPENDIX

The syntax

 S → THREAD thread-name { thr-dec-part trans-

sch-dec-part }

thr-dec-part → thr-dec-part thr-dec | thr-dec

thr-dec → PROCESS process-name {var-dec-part

equation-part }

type → basic-type | enum-type | array-type

basic-type → range-type | BOOLEAN

enum-type → { id-list }

id-list → identifier (, identifier)+

array-type → ARRAY range-type OF basic-type

range-type → interger-const .. interger-const

var-dec-part → var-dec-part var-dec; | ε

var-dec → type-id : id-list

equation-part → EQUATION id-list;

trans-sch-dec-part → trans-sch-dec trans-sch-dec-part | trans-sch-dec

trans-sch-dec → SCHEME trans-schm-name { trans-list }

trans-list → trans-dec trans-list | trans-dec

trans-dec → TRANSACTION trans-name {

 AGENTS { agent-list } condition-section ; }

 | TRANSACTION trans-name { AGENTS { agent-list }

condition-section → CONDITION condition ;

agent-list → agent-list agent | agent

agent → process-name : event-list

event-list → event , event-list | event ;

event → send(mesg-id, var) | send(mesg-id, const, type)

| recv(process-name.mesg-id) | {action}

action-atom → simple-stmt ; | if-stmt

action → action action-atom | action-atom

simple-stmt → var := expr | var :=DIN

expr → expr [* | / | &] F | F

F → F + G | F - G | F | G

G → G mod H | H

H → H RelOp I | I

I → ~I | -I | (expr) | var | const

const → integer-const | boolean-const

condition → condition & condition-atom | condition-atom |

(condition-atom)

condition-atom → ~prop | prop

prop → prop or prop-atom | prop-atom

prop-atom → scoped-var relop const | scoped-var relop

scoped-var | scoped-var

relop → = | < | > | ≤ | ≥ | !=

if-stmt → IF expr { action } | IF expr action-atom | IF expr

{action}ELSE {action}

var → identifier | identifier[identifier] | identifier

[integer-const]

scoped-var → process-name.var

thread-name → identifier

process-name → identifier

trans-name → identifier

mesg-id → identifier

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

