
 

 

 

  

Abstract— Message Sequence Charts (MSCs) can be used 

effectively to specify the communicating threads in the way 

where high-level transition systems is used to capture the control 

flow of the system components. This specification is amenable to 

formal verification. Here, we present the way how we can 

specify the communicating threads using MSCs and how we can 

verify the correctness of the concurrent wavelet transform used 

for the purpose of image compression. We have used Symbolic 

Model Verifier (SMV) for the use of formal verification. The 

introduction of wavelet transform for image compression 

followed by the MSC based specification for concurrent wavelet 

transform is presented. The concurrency in the threads for 

concurrent wavelet transform along with the grammar of the 

syntax formulated is accessed. At the end, the verification result 

of the concurrent wavelet transform using the SMV program is 

presented.  

 
Index Terms— Image Compression, Wavelet Transform, 

Message Sequence Charts, Symbolic Model Verifier (SMV), 

Formal Verification. 

 

I. INTRODUCTION 

   The display, storage and transportation of digital images 

have moved from obscurity to the commonplace in the last 

few decades. Now-a-days, many people interact with digital 

imagery, in one form or another, on a daily basis. The amount 

of data to be transported demands the development and 

improvement of the compression approaches. A certain 

amount of compression is possible without loss of information 

using lossless methods. However, many applications call for 

an order of magnitude more reduction of size than is possible 

to meet using such methods. Once the realm of lossy 

compression is entered, a trade-off in size vs. distortion must 

be made. The fundamental problem is to meet the competing 

goals of accurate approximation and reduction in storage 

requirements. 

   Compressing an image is significantly different from 

compressing raw binary data. Of course, general purpose 

compression programs can be used to compress images, but 
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the result is less than optimal. This is because images have 

certain statistical properties which can be exploited by 

encoders specifically designed for them. Also, some of the 

finer details in the image can be sacrificed for the sake of 

saving a little more bandwidth or storage space.  

   The initial breakthrough in the compression of 

one-dimensional signals [1] was easily extended to the image 

domain by concatenating image rows or columns into a single 

stream. Some techniques such as Shannon Fano coding [2] 

and Huffman coding [3] [4] [5] [6] [7] [8] use 

redundancy-reduction mechanisms which result in shorter 

codes for more frequently appearing samples. It is necessary 

to scan the data samples in order to calculate their 

probabilities of occurrence and create an exact code. 

Adaptive variations of these techniques initially assume equal 

probability for all samples and calculate subsequent 

probability measures based on a fixed window length prior to 

the sample of interest. This allows local changes in 

probability measurements and achieves higher global 

compression. Run-length coding [9] is another 

redundancy-reduction coding method where in a scan-line 

each run of symbols is coded as a pair that specifies the 

symbol and the length of the run. While most 

redundancy-reduction methods are lossless, other arbitrarily 

lossy coding methods have achieved higher levels of 

compression. Transform coding [10], subband coding [11] 

[12] [13] [14], vector quantization [15] [16] [17] and 

predictive coding [18] [19] [20] [21] [22] [23] [24] [25] [26] 

[27] are among the ones that have achieved high levels of 

lossy compression. The major transform coding techniques 

include cosine/sine [28], Fourier [29], Hadamard [30], Haar 

[30] [10], slant [10] and principal-component 

(Karhunen-Loeve) transforms [31]. All transform coding 

based compression algorithms are pixel-based approaches 

which decompose a signal unto an orthonormal basis to 

achieve energy compaction. Lossy compression is then 

achieved by coding the high energy components and leaving 

out the low energy ones. While some transformations such as 

the Hadamard and Haar transforms can be performed 

relatively quickly, other transforms are computationally 

intensive and either require dedicated hardware or restrictions 

such as limiting the size of the transform to a power of two. 

Recently, second-generation compression algorithms based 

on human visual behavior [32] have been proposed which 

have the potential for much higher compression ratios. 

   In the recent years, the wavelet transform has emerged as a 

cutting edge technology within the field of image analysis. 
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The wavelet transformations have a wide variety of different 

applications in computer graphics including radiosity [33], 

multiresolution painting [34], curve design [35], mesh 

optimization [36], volume visualization [37], image searching 

[38] and one of the first applications in computer graphics, 

image compression. The Discrete Wavelet Transformation 

(DWT) provides adaptive spatial frequency resolution (better 

spatial resolution at high frequencies and better frequency 

resolution at low frequencies) that is well matched to the 

properties of an HVS. 

   However, the DWT is very computationally intensive 

process which requires innovative and computationally 

efficient method to obtain the image compression. The 

concurrent transformation might be a useful solution to this 

problem. In this paper, we investigate the concurrency in 

wavelet transformation for the compression of image. A 

verification of the system is also done. 

   Simulation and testing [39] are some of the traditional 

approaches for verifying the systems. Simulation and testing 

both involve making experiments before deploying the system 

in the field. While simulation is performed on an abstraction 

or a model of the system, testing is performed on the actual 

product. In both cases, these methods typically inject signals 

at certain points in the system and observe the resulting 

signals at other points. Checking all the possible interactions 

and finding potential pitfalls using simulation and testing 

techniques is not always possible. Formal verification [40], an 

appealing alternative to simulation and testing, conducts an 

exhaustive exploration of all possible behaviors of the system. 

Thus, when a design is marked correct by the formal method, 

it implies that all behaviors have been explored and the 

question of adequate coverage or a missed behavior becomes 

irrelevant. There are some robust tools for formal verification 

such as SMV, SPIN, COSPAN, VIS etc [40]. The method has 

been modeled in SMV and the properties of the system have 

been verified formally. 

II. IMAGE COMPRESSION AND WAVELET TRANSFORMATION  

   Wavelet transform (WT) represents an image as a sum of 

wavelet functions (wavelets) with different locations and 

scales [41]. Any decomposition of an image into wavelets 

involves a pair of waveforms: one to characterize the high 

frequencies corresponding to the detailed parts of an image 

(wavelet function) and one for the low frequencies or smooth 

parts of an image (scaling function ). Fig. 1 shows two 

waveforms of a family discovered in 1980 by Daubechies: the 

left one can be used to represent smooth parts of the image 

and the right one to represent detailed parts of the image. The 

two waveforms are translated and scaled on the time axis to 

generate a set of wavelet functions at different locations and 

on diverse scales. Each wavelet possesses the same number of 

cycles, such that, the wavelet gets longer while frequency 

reduces. Low frequencies are transformed with long functions 

(high scale). High frequencies are transformed with short 

functions (low scale). The analyzing wavelet is shifted over 

the full domain of the analyzed function. The result of WT is a 

set of wavelet coefficients, which measure the contribution of 

the wavelets at these locations and scales. 

 

 

 

 

 

 

 

 

 

   WT performs multiresolution image analysis [42]. The  

result of multiresolution analysis is simultaneous image 

representation on different resolution levels [43]. The 

resolution is determined by the specified threshold below 

which all details are overlooked. The difference between two 

neighboring resolutions represents details. Therefore, an 

image can be represented by a low-resolution image 

(approximation or average part) and the details on each higher 

resolution level. Let us consider a one dimensional  

function )(tf . The approximation of the function )(tf at the 

resolution level j is defined as )(tf j . At the one level upper 

resolution 1+j , the approximation of the function )(tf  is 

represented by )(1 tf j+ . The details denoted by )(td j  are 

included in )()()(:)( 11 tdtftftf jjjj +=++ . This procedure 

is repetitive for several times and the function can be written 

as- 

∑
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In the same way, the space of square integrable functions 

)(
2

RL can be treated as a composition of scaling subspaces 

jV and wavelet subspaces jW such that the approximation of 

)(tf at resolution ))(( tfj j  is contained in jV  and the details 

)(td j  are in jW . jV  and jW  are defined in terms of dilates 

and translates of scaling function Φ and wavelet function 
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jV  and jW  are localized in scaled frequency octaves by the 

scale or resolution parameter j2  and localized spatially by 

translation k . The scaling subspace jV  must be contained in 

all subspaces on higher resolutions ( 1+⊂ jj VV ). The wavelet 

subspaces jW  fill the gaps between successive 

scales: jjj WVV ⊕=+1 . We can start with an approximation 

on some scale 0V  and then use wavelets to fill in the missing 

details on finer scales. The finest resolution level includes all 

square integrable functions- 
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Since 10 VV ⊂∈Φ  , it follows that the scaling function for 

multiresolution approximation can be found out as the 

solution to a two-scale dilational equation- 

 

 

Wavelet function psi 
 

Scaling function phi 
 

Fig. 1. Scaling and wavelet function. 

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



 

 

 

∑ −Φ=Φ
k

L kxkax )2()()(  

for  some suitable sequence of coefficients )(kaL . Once it 

has been found, an associated mother wavelet is given by a 

similar looking formula- 
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   One of the big discoveries for wavelet analysis was that 

perfect reconstruction filter banks could be formed using the 

coefficient sequences )(kaL  and )(kaH as shown in Fig. 2. 

The input sequence x is convolved with high-pass (HPF) and 

low-pass (LPF) filters )(kaH and )(kaL  and each result is 

downsampled by two, yielding the transform signals Hx  and 

Lx . The signal is reconstructed through upsampling and 

convolution with high and low synthesis filters )(ksH  and 

)(ksL . For properly designed filters, the signal x is 

reconstructed exactly ( xy =  ). 

 

 

 

 

 

   The choice of filter not only decides if the perfect 

reconstruction is possible or not, it also determines the shape 

of wavelet to be used to perform the analysis. By cascading 

the analysis filter bank with itself several times, a digital 

signal decomposition with dyadic frequency scaling known as 

DWT can be formed. An efficient way to implement this 

scheme using filters was developed by Mallat [43]. The new 

twist that wavelets bring to filter banks is connection between 

multiresolution analysis and digital signal processing 

performed on discrete, sampled signals. 

III. CONCURRENCY IN WT FOR IMAGE COMPRESSION 

   We know that wavelet transformation entails transformation 

of image data horizontally first and then vertically. Here we 

divide the image plane into n horizontal sections which are 

horizontally transformed concurrently. After then the image 

is divided into n vertical sections which are then vertically 

transformed concurrently. It is not a must that the number of 

horizontal sections is equal to the number of vertical sections.  

   But the problem lies in the concurrency. The system just 

proposed lets the possibility for vertical transformation to 

begin on some vertical sections before horizontal 

transformation in all sections is completed. Vertical sections 

that are already horizontally transformed can be vertically 

transformed. That allows the possibility for threads that 

completed horizontal transformation to go on to vertical 

transformation without having to wait on other threads to 

complete horizontal transformation. Before a vertical section 

is available for transformation, one condition that must be met 

is that all horizontal sections transform n size data 

horizontally such that an n wide vertical section is available 

with all data points already horizontally transformed. The 

following figure 3 shows the control flow of a single thread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

     The assertion for the verification is that at any time, the 

vertical transformation does not start on a vertical section that 

is not horizontally transformed.  

A. Communication among threads 

   A message passing library providing two levels of 

abstraction namely channel and topology has been developed, 

for the communication that occurs among threads. These 

message passing classes can be the part of a larger system that 

provides a class library for threads, thread synchronization, 

and message passing. We have used the Message Sequence 

Charts (MSCs) to visualize the interactions among the 

threads.  

 

B. Message Sequence Charts (MSCs)  

   Message Sequence Charts (MSCs) are an attractive visual 

formalism that is often used in the early stage of system design 

to specify the system requirements. A main advantage of an 

MSC is its clear graphical layout which immediately gives an 

intuitive understanding of the described system behavior [44]. 

MSCs are particularly suited to describe the distributed 

telecommunication software [45] [46]. The wide ranges of 

use of MSCs are usually in the distributed systems and in a 

number of software methodologies [46] [47] [48]. In a 

distributed system, MSCs mainly concentrate on the exchange 

of messages among various processes and their environments 

as well as some internal actions in these processes. MSCs are 
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             Fig. 2. Two-channel Filter Bank 

Fig. 3. Control flow of a single thread 
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also known as object interaction diagrams, timing sequence 

diagrams and message flow diagrams.   

 

C. Modeling the Communications 

   In order to establish the communication between multiple 

threads, we require some work to set up and maintain the 

communication channels. There are several ways to 

communicate between threads, with some being more 

efficient than others.  

   One of the simplest ways to communicate state information 

between threads is to use a shared object or shared block of 

memory. A shared object requires very little setup—all we 

have to do is make sure each thread has a pointer to the object. 

The object contains whatever custom information we need to 

communicate between threads, so it should be very efficient.  

   The second option is the port-based communication. Ports 

offer a fast and reliable way to communicate between threads 

and processes on the same or different computers. Ports are 

also a fairly standard form of communication on many 

different platforms and their use is well established. In Mac 

OS X, a port implementation is provided by the Mach kernel. 

These Mach ports can be used to pass data between processes 

on the same computer.  

   The third way is the use of the message queues. The 

message queues offer an easy-to-use abstraction for thread 

communication. A message queue is a first-in, first-out 

(FIFO) queue that manages incoming and outgoing data for 

the thread. A thread can have both an input and an output 

queue. The input queue contains work the thread needs to 

perform, while the output queue contains the results of that 

work.  

   To establish communication between the threads, we model 

it as a queue of message, which is the integral part of the 

threads. The following Fig. 4 shows the modeling of the 

channel as a queue of message from thread i to thread i+1. The 

message is pushed through the tail of the queue from the 

thread i side and the message is received from the head of the 

queue at the thread i+1 side. Fig. 5 shows the modeling of the 

communication channel as a queue for the message from 

thread i+1 to thread i. The message is sent from the thread i+1 

side and it is received at the head of the queue at the thread i 

side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The communication among threads for a communication 

system where different threads take part in can be specified by 

a grammar. The syntax for it is formulated and is tabulated in 

Table 1 in the appendix. 

 

D. Verification  

   We use the SMV [49] as the verification tool. Here the 

number of threads is defined as SIZE = 8.  Using the loop 

from 0 to 7 we verify if any of the threads starts vertical 

transformation while some other thread(s) is/are still on the 

transformation of the horizontal part of the same section 

(unsafe). It is found that each of the threads is in the safe state 

(desired) all the time.  It means that in all states of the 

transition system it is true that no vertical transformation gets 

started until the all the horizontal section is completed. This 

specification is the most important one that we must get true. 

The part of the SMV code is shown in Fig. 6 and the snapshot 

of the verification result is shown in Fig. 7.  

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

The way to specify the communicating threads using MSCs 

and the verification of the correctness of the concurrent 

wavelet transform used for image compression are presented. 

We have used Symbolic Model Verifier (SMV)) for the use of 

formal verification. The concurrency in the threads for 

concurrent wavelet transform along with the grammar of the 

syntax formulated is discussed and presented here. We find 

that all the communicating threads are in the safe states all the 

time. One of the problems associated in the current version of 

the work is, in SMV, the smaller size of the queue shared by 

different threads. Another bottleneck is the smaller number of 

participating threads.  
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APPENDIX 

 

The syntax 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 S   → THREAD thread-name { thr-dec-part   trans-

sch-dec-part } 

thr-dec-part  → thr-dec-part  thr-dec | thr-dec 

thr-dec   → PROCESS process-name {var-dec-part    

equation-part   } 

type   → basic-type | enum-type | array-type 

basic-type  → range-type | BOOLEAN 

enum-type  → { id-list } 

id-list   → identifier (, identifier)+ 

array-type  → ARRAY range-type OF basic-type 

range-type  → interger-const .. interger-const 

var-dec-part  → var-dec-part var-dec; | ε 

var-dec   → type-id : id-list 

equation-part  → EQUATION id-list; 

trans-sch-dec-part  → trans-sch-dec trans-sch-dec-part | trans-sch-dec 

trans-sch-dec  → SCHEME trans-schm-name { trans-list } 

trans-list   → trans-dec trans-list | trans-dec 

trans-dec   → TRANSACTION trans-name { 

         AGENTS { agent-list } condition-section ; } 

   | TRANSACTION trans-name { AGENTS { agent-list }  

condition-section  → CONDITION condition ; 

agent-list   → agent-list agent | agent 

agent   → process-name : event-list 

event-list   → event , event-list | event ; 

event   → send(mesg-id, var) | send(mesg-id, const, type) 

| recv(process-name.mesg-id) | {action} 

action-atom  → simple-stmt ; | if-stmt 

action   → action action-atom | action-atom 

simple-stmt  → var := expr | var :=DIN 

expr   → expr [* | / | &] F | F 

F   → F + G | F - G | F | G 

G   → G mod H | H 

H   → H RelOp I | I 

I   → ~I | -I | (expr) | var | const 

const   → integer-const | boolean-const 

condition   → condition & condition-atom | condition-atom | 

(condition-atom) 

condition-atom  → ~prop | prop 

prop   → prop or prop-atom | prop-atom 

prop-atom  → scoped-var relop const | scoped-var relop 

scoped-var | scoped-var 

relop   → = | < | > | ≤ | ≥ | != 

if-stmt   → IF expr { action } | IF expr action-atom | IF expr 

{action}ELSE {action}      

var   → identifier | identifier[identifier] | identifier 

[integer-const] 

scoped-var  → process-name.var 

thread-name  → identifier 

process-name  → identifier 

trans-name  → identifier 

mesg-id   → identifier 
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