
 
 

 

  
Abstract—The security requirements in Wireless Sensor 

Networks (WSNs) and the mechanisms to support the 
requirements, demand a critical examination.  Therefore, the 
security protocols employed in WSNs should be so designed, as 
to yield the optimum performance. The efficiency of the block 
cipher is, one of the important factors in leveraging the 
performance of any security protocol.  

In this paper, therefore, we focus on the issue of optimizing 
the security vs. performance tradeoff in the security protocols 
in WSNs. As part of the exercise,  we evaluate the storage 
requirements of the block ciphers viz. the Advanced Encryption 
Standard (AES) cipher  Rijndael,  the Corrected Block Tiny 
Encryption Algorithm (XXTEA) using the Output Codebook 
Block (OCB) mode. We compare our results with the Skipjack 
cipher in Cipher Block Chaining (CBC) mode.  

Our results clearly show the light-weight cipher XXTEA, as 
the optimal cipher and the Output Codebook Mode as the 
optimal mode of operation for the link layer security protocols. 
To the best of our knowledge, ours is the first experimental 
evaluation of the AES cipher Rijndael, the corrected block Tiny 
Encryption Algorithm (XXTEA) and the OCB mode in the link 
layer security architecture for WSNs.  
 

Index Terms—authentication, block ciphers, encryption, link 
layer security, wireless sensor networks   

I. INTRODUCTION 
 ypical wireless sensor networks comprise of the 
wireless sensor nodes logically interconnected to each 
other, to realize some vital functionality. Wireless 

sensor nodes are characterized by severe constraints in 
power, computational resources, memory, and bandwidth 
and have small physical size with low power consumption 
[1].  

The communication paradigm in WSNs is data-centric 
multi-hop communication, instead of route-centric multi-hop 
communication, as in case of conventional networks. The 
data-centric multi-hop communication is characterized by the 
in-network processing. In-network processing involves 
aggregation, summarization or duplicate elimination in the 
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data collected from different sensor nodes. Since the 
processing of the data is done on-the-fly, while being 
transmitted to the base station; the overall communication 
costs are reduced [2]. Due to the multi-hop communication 
and the in-network processing demanding applications, the 
conventional end-to-end security mechanisms are not 
feasible for the WSN [3]. Hence, the use of the standard 
end-to-end security protocols like SSH, SSL [4] or IPSec [5] 
in WSN environment is rejected. Instead, appropriate link 
layer security architecture, with low associated overhead is 
required.  

There are a number of research attempts that aim to do so. 
The notable ones are TinySec [3], SenSec[6] and MiniSec[7]. 
These link layer security protocols have an open-ended 
design so as to enable the use of any block ciphers with 
appropriate mode of operation.  

Also, the range of applications for which the WSNs can be 
used is very wide. Hence, in order to optimize the security- 
levels-desired vs. resource-consumption trade-off, the link 
layer security protocol employed must be configurable with 
respect to (a) the actual cipher and the mode of operation to 
be employed and, (b) the security attributes desired i.e. 
encryption, message authentication or replay protection.  

We believe that the efficiency of the block cipher is one of 
the important factors in leveraging the performance of the 
link layer protocol. Even though the Skipjack (80-bit cipher 
key with 64-bit block size) [8] is the default block cipher used 
by TinySec, Sensec and MiniSec; we have attempted to 
carefully investigate the applicability of 
� the Advanced Encryption Standard (AES) block cipher 

Rijndael (128-bit cipher key with 128-bit block size) [9] 
and  

� the light-weight cipher Corrected Block Tiny Encryption 
Algorithm (XXTEA) (128-bit cipher key with 64-bit 
block size) [10] 

� the Offset Codebook Mode (OCB) [11] as against the 
Cipher Block Chaining (CBC) [12] mode as the desired 
block cipher mode of operation.  

In this paper, therefore, we present our experimental 
results in implementation of the XXTEA cipher in the OCB 
mode and that of the AES cipher. We use the Skipjack cipher 
wired in CBC mode, as the baseline, for comparing our 
evaluation.  

To the best of our knowledge, ours is the first attempt in 
implementing and benchmarking the storage requirements of 
the XXTEA and the AES ciphers in the CBC and the OCB 
mode, in the TinySec link layer security protocol.  
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We believe that the actual cipher to use and the specific 
mode of operation to be employed, must be arrived at only 
after looking at the specific security demands of the 
application under consideration – rather than by following 
any abstract model.  

Therefore, for the resource constrained WSN 
environment, we believe this implementation and evaluation 
exercise will be useful in arriving at the choice of the block 
cipher, in tune with the available resources and the type of the 
security desired.  

The rest of the paper is organized as follows: in section II, 
we present the necessary background on link layer protocols 
and an overview of the related work in the area. In section III, 
we briefly describe the characteristics of the Skipjack, AES, 
XXTEA ciphers, and the OCB mode of operation used by us. 
In section IV, we describe our methodology of evaluation 
and the experimental setup used. In section V, we present the 
significance of the results obtained, whereas we conclude in 
section VI with the future work aimed. 

II. BACKGROUND AND RELATED WORK  

A. Existing Link Layer Security Architectures 
In this section, we briefly discuss the characteristics of the 

existing link layer security architectures. 
TinySec proposed in [3] is designed for the Berkeley Mica 

Motes. TinySec employs link layer encryption with Skipjack 
as the default cipher with Cipher Block Chaining (CBC) 
mode and CBC-MAC (Message Authentication Code) [13] 
as the authentication mechanism. In TinySec, the authors also 
optionally evaluate the performance of the block cipher RC5 
[14]. The performance overhead with security enabled 
therein is within 10% of the same without security attributes 
enabled [3].  

The authors of TinySec exploit the advantage of 
implementing link layer security in software by providing 
minimal configurable security attributes. The configurable 
security allows different modes of operation viz. (a) support 
for encryption and authentication, both (b) support for only 
message authentication (provided by default) or, (c) disabling 
the security support altogether.  

Tieyan Li et al, [6] propose an alternate link layer security 
architecture viz. SenSec that draws upon its basic design 
from TinySec, but offers encryption as well as authentication 
by default. Thus, it does not support the configurable link 
layer security. 

Neither TinySec nor SenSec offer replay protection, 
relegating it to be handled at the application level.  

Luk Mark et al [7] propose another alternate architecture 
viz. MiniSec that is designed for the Telos motes [15]. 
MiniSec uses a different approach in that it offers two 
operating modes, one tailored for single source 
communication, whereas the other, for multi-source 
broadcast communication. It offers all the basic desired link 
layer security properties viz. data encryption, message 
integrity and replay protection. 

The IEEE 802.15.4 specification specifies a new class of 
wireless radios and protocols targeted at low power devices, 
wireless personal area networks (WPANs), and sensor nodes 
[16]. Unlike wireless local area networks (WLANs), 

connections effected via WPANs involve little or no 
infrastructure. This feature allows small, power-efficient, 
inexpensive solutions to be implemented for a wide range of 
devices. One of the protocols confirming to the IEEE 
802.15.4 standard, is the ZigBee protocol [17]. ZigBee is a 
specification, targeted at RF applications that require a low 
data rate, long battery life, and secure networking. But, the 
use of ZigBee protocol involves appropriate licensing and 
membership of the ZigBee Consortium.  

B. Existing Evaluations of the block ciphers & modes 
In this section, we discuss other attempts at evaluating the 

block ciphers and their modes of operation and emphasize the 
distinction of our work, here.  

In general, the block ciphers used for evaluation in WSN 
environment are viz. RC5 [14], Skipjack [8], Rijndael [9], 
Twofish [18], KASUMI [19], Camellia [20] TEA [21].  

There have been many benchmarks and evaluation of the 
block ciphers for the WSNs as surveyed here. But none of 
them focus specifically on the security at the link layer 
framework.  

Law et al in [22], presents a detailed evaluation of the 
block ciphers viz. Skipjack, RC5, RC6, MISTY1, Rijndael, 
Twofish, KASUMI, and Camellia. The evaluation is based 
on security properties, storage and energy efficiency of the 
ciphers. The results prescribe Skipjack (low security at low 
memory), MISTY1 (higher security at low memory) and 
Rijndael (highest speed but higher memory) as the most 
suitable ciphers depending upon the availability of memory 
and the required level of security.  

However, (a) this work does not consider the OCB block 
cipher mode of operation (b) as against the recommendation 
of these results, RC5 has been reported to be having higher 
speed than AES in [23] (c) the evaluation of the ciphers in 
[22] is not done within any link layer architecture and (d) no 
attempt has been made to optimize the cipher code – instead, 
simply the openSSL [24] versions of the ciphers are 
employed. 

In [25], Großshädl Johann et al attempt at energy 
evaluation of the software implementations of the block 
ciphers. The authors have considered the ciphers RC6 [26], 
Rijndael, Serpent [27], Twofish [18] and XTEA [28]. The 
have used the simulation for the StrongARM SA-1100 
processor that is used principally in embedded systems like 
cell phones and PDAs. The authors also claim to use the 
optimized “lightweight” implementations of the ciphers that 
restrict the runtime memory usage to 1 KB.  

However, this evaluation does not consider (a) the 
overhead due to the operating system support or due to the 
link layer security protocol used (b) the actual deployment of 
the code on the sensor nodes or any typical WSN platform 
[29].   

In [30] Guimarães Germano et al discuss another attempt 
at evaluating the security mechanisms in WSNs. The authors 
carry out a number of measurements like (a) the impact of 
packet overhead on energy consumption (b) the impact of 
different ciphers on the CPU and memory usage (c) the 
impact of security layer (including cipher) on the 
message/network throughput, on the network latency and on 
the energy consumption (using the PowerTOSSIM 
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simulator).  
The authors evaluate the ciphers viz. TEA, Skipjack and 

RC5.  They use the TinySec platform with the Mica2 motes 
using Atemega128L processor at 7.3728 MHz with 128 KB 
flash (program memory) and 4 KB of system RAM (Data 
memory) and Chipcon CC1000 radio. But, in this evaluation, 
(a) neither a specific cipher is prescribed as a winner (b) nor 
various other important ciphers like the AES Rijndael and 
XXTEA are considered for evaluation.  

In [31], Luo Xiaohua et al evaluate the performance of 
ciphers viz. SEAL [32], RC4 [33], RC5, TEA by 
implementation on the Mica2 motes. The evaluation makes 
the a surprising claim that RC5 is not suited for the WSNs. 

In [34], Ganesan Prasanth et al attempt on analyzing and 
modeling the encryption overhead by estimating the 
execution time and memory occupancy for the encryption as 
well as message digest algorithms viz. RC4, IDEA[35], RC5, 
MD5[36], and SHA1[37] on various hardware platforms viz. 
Atmega 103, Atmega 128, Mitsubishi M16C/10, Intel 
StrongARM SA-110, Intel XScale PXA250 and SUN 
UltraSPARC II processors. Thus, the algorithms like the AES 
Rijndael, XXTEA, Skipjack are not considered.  

Thus, none of these evaluations consider the evaluation of  
(a) OCB block cipher mode of operation (b) the corrected 
Block TEA cipher and (c) the AES Rijndael cipher on link 
layer architecture, as we attempted to do, here. 

III. THE BLOCK CIPHERS AND THE MODES EXAMINED  
We have selected the AES Rijndael and XXTEA ciphers  

for evaluating their performance against the TinySec default 
cipher Skipjack [8].  

Skipjack cipher uses 80-bit key with a 64-bit block size 
and 32 rounds of an unbalanced Feistel network. It was a 
classified cipher designed to be used in the Clipper chip and 
implemented in hardware. But, the cipher was declassified in 
1998 with an aim to replace then standard cipher viz. the 
DES. The best cryptanalytic attack against the cipher was 
carried out on 31 of the 32 rounds of the cipher, employing 
differential cryptanalysis [38].  We are using Skipjack for 
evaluation as a baseline, since it is the cipher of choice, in all 
existing software based link layer security architectures.  

We believe that the size of the cipher key is an indicative 
measure of the strength of the computational security of the 
cipher. At the minimum, the cipher key size must be enough, 
so as to prevent the brute force attack against the cipher. With 
the rapid advancement in technology, the conventional key 
size of 80-bits is longer sufficient. As per the claims of RSA 
Security Labs, 80-bit keys would become crackable by 2010 
[39]. Hence, it is essential to move towards ciphers with 
128-bit cipher key sizes.  

Our selection of the Corrected Block Tiny Encryption 
Algorithm is based on using a 128-bit key size cipher. 
XXTEA is a simple lightweight cipher, proposed by David 
Wheeler and Roger Needham of Cambridge University in 
1998 [10]. The cipher was proposed to improve upon its 
predecessor cipher XTEA [28]. XXTEA is an unbalanced 
Feistel network cipher with 128-bit cipher key with at least 
64-bit block size, employing 32 cycles. Because of its 
simplicity in design, we believe XXTEA is appropriate 
cipher for the resource constrained WSN environments.  

Rijndael, in accordance with the requirements for the 
Advanced Encryption Standard, is a block cipher with 
variable 128/192/256-bit key size, the variable 
128/192/256-bit block size and variable 10, 12 or 14 rounds. 
We have selected the AES Rijndael cipher in the 
configuration of 128/128/10 i.e. using 128-bi cipher key, 
128-bit block size and 10 rounds. The Rijndael cipher 
follows the substitution permutation network structure. We 
have considered Rijndael for our evaluation because it is the 
current symmetric key cipher standard.  

Finally, we have selected the Output Codebook Mode 
(OCB) because it combines encryption as well as message 
authentication in a single pass.  The OCB mode was first 
proposed by Phillip Rogaway, Mihir Bellare, John Black, and 
Ted Krovetz, in [12].  

OCB scheme integrates the message authentication code 
(MAC) into the operation of a block cipher. The principal 
advantage of OCB is overall lower computational and storage 
costs because it avoids the need to use two different systems 
viz. a computation of MAC for authentication and a block 
cipher encryption for privacy.  

IV. EXPERIMENTAL SETUP & METHODOLOGY OF 
EVALUATION  

We employ a two-step process in the methodology for the 
evaluation  

(a) first, we simulated the performance of the ciphers and 
modes in the link layer architecture TinySec in TinyOS [40] 
environment. TinySec is tightly coupled with the TinyOS 
execution environment with the nesC language [41] as the 
language of implementation. We have used TOSSIM [42] as 
the WSN simulator.  

(b) next, we deployed the application under consideration 
on the Mica2 motes with the configuration viz. 
Atemega128L processor at 7.3728 MHz with 128 KB flash 
(program memory) and 4 KB of system RAM (Data memory) 
and Chipcon CC1000 radio.  

As compared to Mica2 motes, the next generation motes 
like Intel iMote  [43] and Crossbow Iris motes [44] are indeed 
having higher computational and storage power. But we 
believe that our evaluation that is carried out on more 
stringent environment of Mica2 motes, can always be true in 
more resource-rich environments.  

 
Fig. 4.1 TestTinySec application in TinySec 

The basic components of this graph are (a) nodes 
representing the nesC components (b) the labeled arrows 
representing the interfaces. The outgoing arrow from a 
component denotes that the component is using the interface 
labeled on the flow, whereas an incoming arrow into a 
component denotes that the component implements the 
labeled interface. All the components have a .nc extension 
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but we do not use it for simplicity. 
As shown in the Fig. 4.1, the TestTinySecM module is the 

main component implementing the application. It uses the 
TinyOS interfaces SendMsg and ReceiveMsg. These 
interfaces are implemented by the component 
SecureGenericComm that is responsible for sending and 
receiving the secure messages over the radio. 

TestTinySecM implements a counter that is incremented 
on firing of the timer.  The counter value modified by the 
component Counter, is further passed by TesTinySecM 
through the SendMsg interface for onward transmission over 
the radio, to the component SecureGenericComm. Also, 
when the message is sent, the Leds interface is used to toggle 
the LED on the mote. When the message is transmitted by a 
mote, the LED is turned green whereas, when the message is 
received by a mote, the LED is turned red.  

The entire communication takes place with the security 
attributes enabled in TinySec. In Fig. 4.2, we show the partial 
call-graph showing the security components of the TinySec 
that come into play, during the execution.  

TinySec has been designed to be modular with respect to 
the selection of the block cipher and the modes of operation. 
But, as shown in Fig. 4.2, the component SkipJackM that 
implements the Skipjack cipher and the component 
CBCModeM that wires Skipjack cipher in CBC mode; are 
the default cipher and mode of operation. The authentication 
support is implemented by the TinySec designers in the 
component CBCMAC. Thus, SkipJackM, CBCMAC and 
CBCModeM components are not implemented by us. We use 
them for comparing our components XXTEAM, AESM and 
OCBM. 

We modify the configuration files of TinySec to use the 
ciphers Rijndael and XXTEA and the OCB as the mode of 
operation.  In Fig. 4.3, we show the partial snapshot of the 
TestTinySec call-graph with XXTEA cipher in OCB mode.  

For implementation we have used the size-optimized 
C-versions of AES in [45] and the XXTEA version in [10] 
and converted these versions into the nesC language.  

 

 
Fig 4.2 TinySec with Skipjack in CBC Mode 

 
 

Fig 4.3 TinySec with XXTEA in OCB Mode 
 
We subsequently modified the TinySec configuration files 

to execute the TestTinySec application using all the 
combinations of cipher and their modes of operation viz. 
Skipjack-CBC, Skipjack-OCB, XXTEA-CBC, 
XXTEA-OCB and AES-CBC. 

We compared the openSSL version of AES with the 
version described in [45]. The openSSL version uses one 
8-bit 256 entries S-box and four 32-bit 256 entries forward 
and reverse tables each, thus consuming a total static storage 
of 8.448 KB.  

As compared to openSSL version, our nesC version of 
AES is size-optimized. The AES version in [45] uses 
dynamic computation of tables using only one 8-bit 256 
entries S-box and one 32-bit 256 entries forward and reverse 
tables each, thus consuming a total static storage of 2.304 
KB. The reduction is storage is 72% over the openSSL 
version. 

Also, since AES is a 128-bit cipher as compared to the 
64-bit Skipjack and XXTEA, we made appropriate logical 
changes in the TinySec files, for obtaining this support.  For 
XXTEA and AES, we also changed the default tinyos-keyfile 
to enable the support for 128-bit cipher keys.  

V. PERFORMANCE RESULTS  
We present the results – evaluating only the storage 

requirements in all the tested configurations for the 
application - in the Table I and Table II. We show the 
simulation results in Table I while the storage requirements 
for the actual deployments on Mica2 motes, as we evaluated, 
are shown in Table II.  

As we can observe from Table III, when using OCB mode 
with 64-bit ciphers, significant saving in storage is obtained. 
The Mica2 motes have 128 KB of program memory while 4 
KB of data memory. Hence, approximately 16% 
conservation in storage, using OCB mode is definitely an 
advantage over the CBC mode.  

TABLE I  – TOSSIM SIMULATION 

Sr 
No 

Name of the Cipher and its 
configuration 

ROM 
occupied in 

bytes 

RAM 
occupied in 

bytes 
1 Skipjack 64/80/32 – CBC 88064 1280880 
2 Skipjack 64/80/32 – OCB 78336 1129888 
3 XXTEA 64/128/32 – CBC 88064 1284880 
4 XXTEA 64/128/32 – OCB 77824 1137888 
5 AES 128/128/10 – CBC 94270 4070880 
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TABLE II – MICA2 IMPLEMENTATION 

Sr 
No 

Name of the Cipher and its 
configuration 

ROM 
occupied in 

bytes 

RAM 
occupied in 

bytes 
1 Skipjack 64/80/32 – CBC 16754 840 
2 Skipjack 64/80/32 – OCB 16650 704 
3 XXTEA 64/128/32 – CBC 18142 856 
4 XXTEA 64/128/32 – OCB 18038 704 
5 AES 128/128/10 – CBC 25562 1332 

TABLE III – IMPROVEMENT IN MEMORY UTILIZATION WITH OCB MODE OVER 
CBC MODE 

Sr 
No 

Details  Percentage in 
ROM  

Percentage in 
RAM 

1 Skipjack: MICA2 
Implementation 

0.62 % 16.19 % 

2 XXTEA: MICA2 
Implementation 

0.57 % 17.75 % 

TABLE IV – PENALTY IN MEMORY UTILIZATION USING AES CIPHER 

Sr 
No 

Increased Memory 
Requirement as compared 

to Cipher  

Percentage in 
ROM  

Percentage in 
RAM 

1 Skipjack in CBC mode:  
MICA2 Implementation 

52.57 % 58.57 % 

2 XXTEA in CBC mode: 
MICA2 Implementation 

40.89 % 55.60 % 

 
From table IV, we state that using the AES cipher required 

approximately 50% of increased memory resources. The 
performance penalty incurred in higher storage requirements 
should be evaluated against the higher gain in the confidence 
in security levels, with the use of the current standard cipher. 

VI. CONCLUSION AND FUTURE WORK 
From the experimental observations, we conclude that (a) 

using the 128-bit key-sized XXTEA cipher is an attractive 
option as compared to the 80-bit Skipjack cipher because the 
increase in storage cost is negligible as compared to the 
increase in the  level of security due to the application of 
128-bit key (b) using the OCB mode of operation indeed 
provides considerable less overhead in storage (c) it is indeed 
possible to use the AES Rijndael as a block cipher in the link 
layer architecture implemented in software, too. Although the 
memory requirements in the AES implementation are still 
higher than those in the XXTEA and SkipJack, but with the 
gain in terms of the increased and proven security of a 
standard cipher with higher key size, it is indeed an attractive 
option.  

We further intend to expand the horizon of this evaluation 
by doing energy and speed analysis of the same and 
anticipate that the results derived then, can further strengthen 
our claims here.  
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