

Abstract—The security requirements in Wireless Sensor

Networks (WSNs) and the mechanisms to support the
requirements, demand a critical examination. Therefore, the
security protocols employed in WSNs should be so designed, as
to yield the optimum performance. The efficiency of the block
cipher is, one of the important factors in leveraging the
performance of any security protocol.

In this paper, therefore, we focus on the issue of optimizing
the security vs. performance tradeoff in the security protocols
in WSNs. As part of the exercise, we evaluate the storage
requirements of the block ciphers viz. the Advanced Encryption
Standard (AES) cipher Rijndael, the Corrected Block Tiny
Encryption Algorithm (XXTEA) using the Output Codebook
Block (OCB) mode. We compare our results with the Skipjack
cipher in Cipher Block Chaining (CBC) mode.

Our results clearly show the light-weight cipher XXTEA, as
the optimal cipher and the Output Codebook Mode as the
optimal mode of operation for the link layer security protocols.
To the best of our knowledge, ours is the first experimental
evaluation of the AES cipher Rijndael, the corrected block Tiny
Encryption Algorithm (XXTEA) and the OCB mode in the link
layer security architecture for WSNs.

Index Terms—authentication, block ciphers, encryption, link
layer security, wireless sensor networks

I. INTRODUCTION
 ypical wireless sensor networks comprise of the
wireless sensor nodes logically interconnected to each
other, to realize some vital functionality. Wireless

sensor nodes are characterized by severe constraints in
power, computational resources, memory, and bandwidth
and have small physical size with low power consumption
[1].

The communication paradigm in WSNs is data-centric
multi-hop communication, instead of route-centric multi-hop
communication, as in case of conventional networks. The
data-centric multi-hop communication is characterized by the
in-network processing. In-network processing involves
aggregation, summarization or duplicate elimination in the

Manuscript received April 12, 2008. This work was supported in part by

the Ministry of Human Resource Department, Govt of India Grants.
 Devesh C. Jinwala is with the National Institute of Technology,

Ichchhanath, Surat, Gujarat, India, 395007. Phone: 91-261-2259765, fax:
91-261-2228394; e-mail: dcjinwala@gmail.com).

Dhiren R. Patel is with the National Institute of Technology, Ichchhanath,
Surat, Gujarat, India, 395007. Phone: 91-261-2201595, fax:
91-261-2228394; e-mail: dhiren29p@gmail.com)

Kankar S. Dasgupta is with the Space Applications Centre, Indian Space
Research Organization, Ambavadi, Ahmedabad (e-mail:
ksdasgupta@yahoo.com)

data collected from different sensor nodes. Since the
processing of the data is done on-the-fly, while being
transmitted to the base station; the overall communication
costs are reduced [2]. Due to the multi-hop communication
and the in-network processing demanding applications, the
conventional end-to-end security mechanisms are not
feasible for the WSN [3]. Hence, the use of the standard
end-to-end security protocols like SSH, SSL [4] or IPSec [5]
in WSN environment is rejected. Instead, appropriate link
layer security architecture, with low associated overhead is
required.

There are a number of research attempts that aim to do so.
The notable ones are TinySec [3], SenSec[6] and MiniSec[7].
These link layer security protocols have an open-ended
design so as to enable the use of any block ciphers with
appropriate mode of operation.

Also, the range of applications for which the WSNs can be
used is very wide. Hence, in order to optimize the security-
levels-desired vs. resource-consumption trade-off, the link
layer security protocol employed must be configurable with
respect to (a) the actual cipher and the mode of operation to
be employed and, (b) the security attributes desired i.e.
encryption, message authentication or replay protection.

We believe that the efficiency of the block cipher is one of
the important factors in leveraging the performance of the
link layer protocol. Even though the Skipjack (80-bit cipher
key with 64-bit block size) [8] is the default block cipher used
by TinySec, Sensec and MiniSec; we have attempted to
carefully investigate the applicability of
� the Advanced Encryption Standard (AES) block cipher

Rijndael (128-bit cipher key with 128-bit block size) [9]
and

� the light-weight cipher Corrected Block Tiny Encryption
Algorithm (XXTEA) (128-bit cipher key with 64-bit
block size) [10]

� the Offset Codebook Mode (OCB) [11] as against the
Cipher Block Chaining (CBC) [12] mode as the desired
block cipher mode of operation.

In this paper, therefore, we present our experimental
results in implementation of the XXTEA cipher in the OCB
mode and that of the AES cipher. We use the Skipjack cipher
wired in CBC mode, as the baseline, for comparing our
evaluation.

To the best of our knowledge, ours is the first attempt in
implementing and benchmarking the storage requirements of
the XXTEA and the AES ciphers in the CBC and the OCB
mode, in the TinySec link layer security protocol.

Optimizing the Block Cipher Resource
Overhead at the Link Layer Security Framework

in the Wireless Sensor Networks
Devesh C. Jinwala, Dhiren R. Patel and Kankar S. Dasgupta,

 T

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

We believe that the actual cipher to use and the specific
mode of operation to be employed, must be arrived at only
after looking at the specific security demands of the
application under consideration – rather than by following
any abstract model.

Therefore, for the resource constrained WSN
environment, we believe this implementation and evaluation
exercise will be useful in arriving at the choice of the block
cipher, in tune with the available resources and the type of the
security desired.

The rest of the paper is organized as follows: in section II,
we present the necessary background on link layer protocols
and an overview of the related work in the area. In section III,
we briefly describe the characteristics of the Skipjack, AES,
XXTEA ciphers, and the OCB mode of operation used by us.
In section IV, we describe our methodology of evaluation
and the experimental setup used. In section V, we present the
significance of the results obtained, whereas we conclude in
section VI with the future work aimed.

II. BACKGROUND AND RELATED WORK

A. Existing Link Layer Security Architectures
In this section, we briefly discuss the characteristics of the

existing link layer security architectures.
TinySec proposed in [3] is designed for the Berkeley Mica

Motes. TinySec employs link layer encryption with Skipjack
as the default cipher with Cipher Block Chaining (CBC)
mode and CBC-MAC (Message Authentication Code) [13]
as the authentication mechanism. In TinySec, the authors also
optionally evaluate the performance of the block cipher RC5
[14]. The performance overhead with security enabled
therein is within 10% of the same without security attributes
enabled [3].

The authors of TinySec exploit the advantage of
implementing link layer security in software by providing
minimal configurable security attributes. The configurable
security allows different modes of operation viz. (a) support
for encryption and authentication, both (b) support for only
message authentication (provided by default) or, (c) disabling
the security support altogether.

Tieyan Li et al, [6] propose an alternate link layer security
architecture viz. SenSec that draws upon its basic design
from TinySec, but offers encryption as well as authentication
by default. Thus, it does not support the configurable link
layer security.

Neither TinySec nor SenSec offer replay protection,
relegating it to be handled at the application level.

Luk Mark et al [7] propose another alternate architecture
viz. MiniSec that is designed for the Telos motes [15].
MiniSec uses a different approach in that it offers two
operating modes, one tailored for single source
communication, whereas the other, for multi-source
broadcast communication. It offers all the basic desired link
layer security properties viz. data encryption, message
integrity and replay protection.

The IEEE 802.15.4 specification specifies a new class of
wireless radios and protocols targeted at low power devices,
wireless personal area networks (WPANs), and sensor nodes
[16]. Unlike wireless local area networks (WLANs),

connections effected via WPANs involve little or no
infrastructure. This feature allows small, power-efficient,
inexpensive solutions to be implemented for a wide range of
devices. One of the protocols confirming to the IEEE
802.15.4 standard, is the ZigBee protocol [17]. ZigBee is a
specification, targeted at RF applications that require a low
data rate, long battery life, and secure networking. But, the
use of ZigBee protocol involves appropriate licensing and
membership of the ZigBee Consortium.

B. Existing Evaluations of the block ciphers & modes
In this section, we discuss other attempts at evaluating the

block ciphers and their modes of operation and emphasize the
distinction of our work, here.

In general, the block ciphers used for evaluation in WSN
environment are viz. RC5 [14], Skipjack [8], Rijndael [9],
Twofish [18], KASUMI [19], Camellia [20] TEA [21].

There have been many benchmarks and evaluation of the
block ciphers for the WSNs as surveyed here. But none of
them focus specifically on the security at the link layer
framework.

Law et al in [22], presents a detailed evaluation of the
block ciphers viz. Skipjack, RC5, RC6, MISTY1, Rijndael,
Twofish, KASUMI, and Camellia. The evaluation is based
on security properties, storage and energy efficiency of the
ciphers. The results prescribe Skipjack (low security at low
memory), MISTY1 (higher security at low memory) and
Rijndael (highest speed but higher memory) as the most
suitable ciphers depending upon the availability of memory
and the required level of security.

However, (a) this work does not consider the OCB block
cipher mode of operation (b) as against the recommendation
of these results, RC5 has been reported to be having higher
speed than AES in [23] (c) the evaluation of the ciphers in
[22] is not done within any link layer architecture and (d) no
attempt has been made to optimize the cipher code – instead,
simply the openSSL [24] versions of the ciphers are
employed.

In [25], Großshädl Johann et al attempt at energy
evaluation of the software implementations of the block
ciphers. The authors have considered the ciphers RC6 [26],
Rijndael, Serpent [27], Twofish [18] and XTEA [28]. The
have used the simulation for the StrongARM SA-1100
processor that is used principally in embedded systems like
cell phones and PDAs. The authors also claim to use the
optimized “lightweight” implementations of the ciphers that
restrict the runtime memory usage to 1 KB.

However, this evaluation does not consider (a) the
overhead due to the operating system support or due to the
link layer security protocol used (b) the actual deployment of
the code on the sensor nodes or any typical WSN platform
[29].

In [30] Guimarães Germano et al discuss another attempt
at evaluating the security mechanisms in WSNs. The authors
carry out a number of measurements like (a) the impact of
packet overhead on energy consumption (b) the impact of
different ciphers on the CPU and memory usage (c) the
impact of security layer (including cipher) on the
message/network throughput, on the network latency and on
the energy consumption (using the PowerTOSSIM

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

simulator).
The authors evaluate the ciphers viz. TEA, Skipjack and

RC5. They use the TinySec platform with the Mica2 motes
using Atemega128L processor at 7.3728 MHz with 128 KB
flash (program memory) and 4 KB of system RAM (Data
memory) and Chipcon CC1000 radio. But, in this evaluation,
(a) neither a specific cipher is prescribed as a winner (b) nor
various other important ciphers like the AES Rijndael and
XXTEA are considered for evaluation.

In [31], Luo Xiaohua et al evaluate the performance of
ciphers viz. SEAL [32], RC4 [33], RC5, TEA by
implementation on the Mica2 motes. The evaluation makes
the a surprising claim that RC5 is not suited for the WSNs.

In [34], Ganesan Prasanth et al attempt on analyzing and
modeling the encryption overhead by estimating the
execution time and memory occupancy for the encryption as
well as message digest algorithms viz. RC4, IDEA[35], RC5,
MD5[36], and SHA1[37] on various hardware platforms viz.
Atmega 103, Atmega 128, Mitsubishi M16C/10, Intel
StrongARM SA-110, Intel XScale PXA250 and SUN
UltraSPARC II processors. Thus, the algorithms like the AES
Rijndael, XXTEA, Skipjack are not considered.

Thus, none of these evaluations consider the evaluation of
(a) OCB block cipher mode of operation (b) the corrected
Block TEA cipher and (c) the AES Rijndael cipher on link
layer architecture, as we attempted to do, here.

III. THE BLOCK CIPHERS AND THE MODES EXAMINED
We have selected the AES Rijndael and XXTEA ciphers

for evaluating their performance against the TinySec default
cipher Skipjack [8].

Skipjack cipher uses 80-bit key with a 64-bit block size
and 32 rounds of an unbalanced Feistel network. It was a
classified cipher designed to be used in the Clipper chip and
implemented in hardware. But, the cipher was declassified in
1998 with an aim to replace then standard cipher viz. the
DES. The best cryptanalytic attack against the cipher was
carried out on 31 of the 32 rounds of the cipher, employing
differential cryptanalysis [38]. We are using Skipjack for
evaluation as a baseline, since it is the cipher of choice, in all
existing software based link layer security architectures.

We believe that the size of the cipher key is an indicative
measure of the strength of the computational security of the
cipher. At the minimum, the cipher key size must be enough,
so as to prevent the brute force attack against the cipher. With
the rapid advancement in technology, the conventional key
size of 80-bits is longer sufficient. As per the claims of RSA
Security Labs, 80-bit keys would become crackable by 2010
[39]. Hence, it is essential to move towards ciphers with
128-bit cipher key sizes.

Our selection of the Corrected Block Tiny Encryption
Algorithm is based on using a 128-bit key size cipher.
XXTEA is a simple lightweight cipher, proposed by David
Wheeler and Roger Needham of Cambridge University in
1998 [10]. The cipher was proposed to improve upon its
predecessor cipher XTEA [28]. XXTEA is an unbalanced
Feistel network cipher with 128-bit cipher key with at least
64-bit block size, employing 32 cycles. Because of its
simplicity in design, we believe XXTEA is appropriate
cipher for the resource constrained WSN environments.

Rijndael, in accordance with the requirements for the
Advanced Encryption Standard, is a block cipher with
variable 128/192/256-bit key size, the variable
128/192/256-bit block size and variable 10, 12 or 14 rounds.
We have selected the AES Rijndael cipher in the
configuration of 128/128/10 i.e. using 128-bi cipher key,
128-bit block size and 10 rounds. The Rijndael cipher
follows the substitution permutation network structure. We
have considered Rijndael for our evaluation because it is the
current symmetric key cipher standard.

Finally, we have selected the Output Codebook Mode
(OCB) because it combines encryption as well as message
authentication in a single pass. The OCB mode was first
proposed by Phillip Rogaway, Mihir Bellare, John Black, and
Ted Krovetz, in [12].

OCB scheme integrates the message authentication code
(MAC) into the operation of a block cipher. The principal
advantage of OCB is overall lower computational and storage
costs because it avoids the need to use two different systems
viz. a computation of MAC for authentication and a block
cipher encryption for privacy.

IV. EXPERIMENTAL SETUP & METHODOLOGY OF
EVALUATION

We employ a two-step process in the methodology for the
evaluation

(a) first, we simulated the performance of the ciphers and
modes in the link layer architecture TinySec in TinyOS [40]
environment. TinySec is tightly coupled with the TinyOS
execution environment with the nesC language [41] as the
language of implementation. We have used TOSSIM [42] as
the WSN simulator.

(b) next, we deployed the application under consideration
on the Mica2 motes with the configuration viz.
Atemega128L processor at 7.3728 MHz with 128 KB flash
(program memory) and 4 KB of system RAM (Data memory)
and Chipcon CC1000 radio.

As compared to Mica2 motes, the next generation motes
like Intel iMote [43] and Crossbow Iris motes [44] are indeed
having higher computational and storage power. But we
believe that our evaluation that is carried out on more
stringent environment of Mica2 motes, can always be true in
more resource-rich environments.

Fig. 4.1 TestTinySec application in TinySec

The basic components of this graph are (a) nodes
representing the nesC components (b) the labeled arrows
representing the interfaces. The outgoing arrow from a
component denotes that the component is using the interface
labeled on the flow, whereas an incoming arrow into a
component denotes that the component implements the
labeled interface. All the components have a .nc extension

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

but we do not use it for simplicity.
As shown in the Fig. 4.1, the TestTinySecM module is the

main component implementing the application. It uses the
TinyOS interfaces SendMsg and ReceiveMsg. These
interfaces are implemented by the component
SecureGenericComm that is responsible for sending and
receiving the secure messages over the radio.

TestTinySecM implements a counter that is incremented
on firing of the timer. The counter value modified by the
component Counter, is further passed by TesTinySecM
through the SendMsg interface for onward transmission over
the radio, to the component SecureGenericComm. Also,
when the message is sent, the Leds interface is used to toggle
the LED on the mote. When the message is transmitted by a
mote, the LED is turned green whereas, when the message is
received by a mote, the LED is turned red.

The entire communication takes place with the security
attributes enabled in TinySec. In Fig. 4.2, we show the partial
call-graph showing the security components of the TinySec
that come into play, during the execution.

TinySec has been designed to be modular with respect to
the selection of the block cipher and the modes of operation.
But, as shown in Fig. 4.2, the component SkipJackM that
implements the Skipjack cipher and the component
CBCModeM that wires Skipjack cipher in CBC mode; are
the default cipher and mode of operation. The authentication
support is implemented by the TinySec designers in the
component CBCMAC. Thus, SkipJackM, CBCMAC and
CBCModeM components are not implemented by us. We use
them for comparing our components XXTEAM, AESM and
OCBM.

We modify the configuration files of TinySec to use the
ciphers Rijndael and XXTEA and the OCB as the mode of
operation. In Fig. 4.3, we show the partial snapshot of the
TestTinySec call-graph with XXTEA cipher in OCB mode.

For implementation we have used the size-optimized
C-versions of AES in [45] and the XXTEA version in [10]
and converted these versions into the nesC language.

Fig 4.2 TinySec with Skipjack in CBC Mode

Fig 4.3 TinySec with XXTEA in OCB Mode

We subsequently modified the TinySec configuration files

to execute the TestTinySec application using all the
combinations of cipher and their modes of operation viz.
Skipjack-CBC, Skipjack-OCB, XXTEA-CBC,
XXTEA-OCB and AES-CBC.

We compared the openSSL version of AES with the
version described in [45]. The openSSL version uses one
8-bit 256 entries S-box and four 32-bit 256 entries forward
and reverse tables each, thus consuming a total static storage
of 8.448 KB.

As compared to openSSL version, our nesC version of
AES is size-optimized. The AES version in [45] uses
dynamic computation of tables using only one 8-bit 256
entries S-box and one 32-bit 256 entries forward and reverse
tables each, thus consuming a total static storage of 2.304
KB. The reduction is storage is 72% over the openSSL
version.

Also, since AES is a 128-bit cipher as compared to the
64-bit Skipjack and XXTEA, we made appropriate logical
changes in the TinySec files, for obtaining this support. For
XXTEA and AES, we also changed the default tinyos-keyfile
to enable the support for 128-bit cipher keys.

V. PERFORMANCE RESULTS
We present the results – evaluating only the storage

requirements in all the tested configurations for the
application - in the Table I and Table II. We show the
simulation results in Table I while the storage requirements
for the actual deployments on Mica2 motes, as we evaluated,
are shown in Table II.

As we can observe from Table III, when using OCB mode
with 64-bit ciphers, significant saving in storage is obtained.
The Mica2 motes have 128 KB of program memory while 4
KB of data memory. Hence, approximately 16%
conservation in storage, using OCB mode is definitely an
advantage over the CBC mode.

TABLE I – TOSSIM SIMULATION

Sr
No

Name of the Cipher and its
configuration

ROM
occupied in

bytes

RAM
occupied in

bytes
1 Skipjack 64/80/32 – CBC 88064 1280880
2 Skipjack 64/80/32 – OCB 78336 1129888
3 XXTEA 64/128/32 – CBC 88064 1284880
4 XXTEA 64/128/32 – OCB 77824 1137888
5 AES 128/128/10 – CBC 94270 4070880

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

TABLE II – MICA2 IMPLEMENTATION

Sr
No

Name of the Cipher and its
configuration

ROM
occupied in

bytes

RAM
occupied in

bytes
1 Skipjack 64/80/32 – CBC 16754 840
2 Skipjack 64/80/32 – OCB 16650 704
3 XXTEA 64/128/32 – CBC 18142 856
4 XXTEA 64/128/32 – OCB 18038 704
5 AES 128/128/10 – CBC 25562 1332

TABLE III – IMPROVEMENT IN MEMORY UTILIZATION WITH OCB MODE OVER
CBC MODE

Sr
No

Details Percentage in
ROM

Percentage in
RAM

1 Skipjack: MICA2
Implementation

0.62 % 16.19 %

2 XXTEA: MICA2
Implementation

0.57 % 17.75 %

TABLE IV – PENALTY IN MEMORY UTILIZATION USING AES CIPHER

Sr
No

Increased Memory
Requirement as compared

to Cipher

Percentage in
ROM

Percentage in
RAM

1 Skipjack in CBC mode:
MICA2 Implementation

52.57 % 58.57 %

2 XXTEA in CBC mode:
MICA2 Implementation

40.89 % 55.60 %

From table IV, we state that using the AES cipher required

approximately 50% of increased memory resources. The
performance penalty incurred in higher storage requirements
should be evaluated against the higher gain in the confidence
in security levels, with the use of the current standard cipher.

VI. CONCLUSION AND FUTURE WORK
From the experimental observations, we conclude that (a)

using the 128-bit key-sized XXTEA cipher is an attractive
option as compared to the 80-bit Skipjack cipher because the
increase in storage cost is negligible as compared to the
increase in the level of security due to the application of
128-bit key (b) using the OCB mode of operation indeed
provides considerable less overhead in storage (c) it is indeed
possible to use the AES Rijndael as a block cipher in the link
layer architecture implemented in software, too. Although the
memory requirements in the AES implementation are still
higher than those in the XXTEA and SkipJack, but with the
gain in terms of the increased and proven security of a
standard cipher with higher key size, it is indeed an attractive
option.

We further intend to expand the horizon of this evaluation
by doing energy and speed analysis of the same and
anticipate that the results derived then, can further strengthen
our claims here.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers

for giving suggestions to refine the contents of this paper.

REFERENCES
[1] Wireless Sensor Networks: Getting Started Guide: Crossbow

Technology Incorporated – http://www.crossbow.com
[2] Jeffery Undercoffer, Sasikanth Avancha, Anupam Joshi, John

Pinkston, “Security in Wireless Sensor Networks”, Security Research
Symposium, CADIP, 2002

[3] Chris Karlof, Naveen Sastry, David Wagner, “TinySec: Link Layer
Encryption for Tiny Devices”, ACM Conference on Embedded
Networked Sensor Systems, 2004.

[4] Secure Socket Layer - http://www.openssl.org
[5] IPSec: Requests for Comments viz. RFC 2401, RFC 2402, RFC 2406,

RFC 2408 http://www.ietf.org/rfc/rfc240n.txt
[6] Tieyan Li, Hongjun Wu, Xinkai Wang, Feng Bao, “SenSec Design,

I2R Sensor Network Flagship Project”; Technical Report TR v1.0
[7] Mark Luk, GhitaMezzour, Adrian Perrig, Virgil Gligor, “MiniSec: A

Secure Sensor Network Communication Architecture”, ACM
International Conference on Information Processing in Sensor
Networks, April 2007

[8] Skipjack - a representative of a family of encryption algorithms as part
of the NSA suite of algorithms; http://csrc.nist.gov/cryptval/des.htm

[9] J.Daemen, V.Rijmen, “AES Proposal: Rijndael”,
http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/rijndaeldocV2.zip

[10] David J. Wheeler and Roger M. Needham, “XXTEA: Correction to
XTEA” – http://www.cl.cam.ac.uk/ftp/users/djw3/xxtea.ps

[11] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption: Analysis of the DES modes of
operation” Proceedings of 38th Annual Symposium on Foundations of
Computer Science (FOCS 97), 1997.

[12] Phillip Rogaway, Mihir Bellare, John Black, “OCB: A block-cipher
mode of operation for efficient authenticated encryption”, ACM
Transactions on Information and System Security (TISSEC), Volume 6,
Issue 3, pp.365-403, August 2003

[13] Mihir Bellare, Joe Kilian, Phillip Rogaway, “The security of the cipher
block chaining message authentication code”, Journal of Computer
and System Sciences, Vol 61 Isssue 3, pp.:362-399, December 2000.

[14] Rivest R; “The RC5 Encryption Algorithm”, Proceedings of the
Second International Workshop on Fast Software Encryption, 1994.

[15] Telos motes – http://www.moteiv.com
[16] IEEE 802.15.4: IEEE Standard for Information technology,

Telecommunications and information, exchange between systems,
Local and metropolitan area networks specific requirements, IEEE
Computer Society, September 2006

[17] ZigBee Alliance. ZigBee specification, Technical Report Document
053474r06, Version 1.0, ZigBee Alliance, June 2005.

[18] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris
Hall, and Niels Ferguson, “Twofish: A 128-Bit Block Cipher”,
http://www.schneier.com/paper-twofish-paper.pdf, June 1998

[19] Specification of the 3GPP Confidentiality and Integrity Algorithms
Document 2: KASUMI Specification. ETSI/SAGE Spécification
Version: 1.0, Dec 1999. URL
http://downloads.securityfocus.com/library/3GTS35.202.pdf

[20] M. Matsui and T. Tokita; “MISTY, KASUMI and Camellia Cipher
Algorithm. Mitsubishi Electric ADVANCE (Cryptography Edition)”,
Dec 2000. URL
http://global.mitsubishielectric.com/pdf/advance/vol100/vol100_comp
lete.pdf

[21] David Wheeler, Roger Needham, “TEA, a tiny encryption algorithm”,
Fast Software Encryption: Second International Workshop, volume
1008 of Lecture Notes in Computer Science, Leuven, Belgium, 1994.

[22] Law, Y.W., Doumen, J., Hartel, P, “Survey and benchmark block
ciphers for wireless sensor networks”; ACM Transactions on Sensor
Networks, 2006

[23] J Deng, R Han, S. Mishra, “A performance evaluation of intrusion
tolerant routing in wireless sensor networks”, Proceedings of the 2nd
International Workshop on Information Processing in Sensor
Networks; (IPSN 03), 2003.

[24] openSSL – http://www.openSSL.org
[25] Johann Großshädl, Stefan Tillich, Christian Rechberger, Michael

Hofman, Marcel Medwed, “Energy Evaluation of Software
Implementations of Block Ciphers under Memory Constriants”,
Proceedings of the 10th Conference to Desgin, Automation and Test in
Europe, (DATE) 2007.

[26] RC6 cipher - http://people.csail.mit.edu/rivest/Rc6.pdf
[27] Serpent page - http://www.cl.cam.ac.uk/~rja14/serpent.html Technical

report, Computer Laboratory, University of Cambridge, October 1998

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

[28] Roger Needham and David Wheeler; Tea extensions; Technical
report, Computer Laboratory, University of Cambridge, 1997

[29] Jason Hill, Mike Horton, Raplh Kling, L Krishnamurthy, “The
Platforms Enabling Wireless Sensor Networks”, Communications of
ACM; June 04.

[30] Germano Guimarães, Eduardo Souto, Dajamel Sadok, Judith Kelner,
“Evaluation of Security Mechanisms in Wireless Sensor Networks”,
Proceedings of the 2005 Systems Communications (ICW’05), 2005

[31] Xiaohua Luo, Kougen Zheng, Yunhe Pan, Zhaohui Wu, “Encryption
algorithms comparison for wireless networked sensors”, Proceedings
of the IEEE International Conference on Systems, Man and
Cybernetics, 2004

[32] Phillip Rogaway, Don Coppersmith, “SEAL Software-Optimized
Encryption Algorithm”; Journal of Cryptology, 1997

[33] RC4 page http://www.wisdom.weizmann.ac.il/~itsik/RC4/rc4.html
[34] Prasanth Ganesan, Ramnath Venugopalan, Pushkin Peddabachagari,

Alexander Dean, Frank Mueller, Mihail Sichitiu, “Analyzing and
Modeling Encryption Overhead for Sensor Network Nodes”, WSNA,
2003

[35] Lai, Xuejia, and James Massey, "A Proposal for a New Block
Encryption Standard" Proceedings of the Advances in
Cryptology-EUROCRYPT '90, 1992

[36] R. L. Rivest, “The MD5 Message-Digest Algorithm”, RFC 1321; 1992
[37] RFC 3174 on SHA1 - http://tools.ietf.org/html/rfc3174
[38] Biham, E., Biryukov, A., Shamir, A., “Cryptanalysis of Skipjack

reduced to 31 rounds using impossible differentials”, EUROCRYPT,
1999

[39] RSA Laboratories – http://www.rsa.com/rsalabs
[40] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,

Kristofer Pister, “System Architecture Directions for Networked
Sensors” ASPLOS, 2000

[41] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
David Culler, “The nesC Language: A Holistic Approach to
Networked Embedded Systems”, Proceedings of the ACM SIGPLAN:
The Conference on Programming Language Design &
Implementation, 2003.

[42] Philip Levis and Nelson Lee and Matt Welsh and David Culler, “
TOSSIM: accurate and scalable simulation of entire TinyOS
applications”, Proceedings of the 1st international conference on
Embedded networked sensor systems; SenSys’03, 2003

[43] Intel’s Imote - http://www.xbow.com/Products
[44] IRIS motes - http://www.xbow.com/Products/wproductsoverview.aspx
[45] AES smaller version;

http://hostap.epitest.fi/wpa_supplicant/devel/aes_8c.html

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

