

Abstract - The change in physical structures of computing

facilities into small and portable devices or even wearable
computers has enhanced ubiquitous information processing.
The basic paradigm of such pervasive computing is the
combination of strongly decentralized and distributed
computing with the help of diversified devices allowing for
spontaneous connectivity via the Internet. In general,
pervasive computing strives to simplify day-to-day life by
providing mobile users with the means to carry out personal
and business tasks via mobile and portable devices. This
paper examines the security challenges that are barriers to
mainstream pervasive computing and proposes some
countermeasures. In particular, the paper focuses more on
challenges associated with ARP poisoning where IPv4
network is used.

Index Terms - Pervasive Computing, ARP
poisoning, Mac Spoofing, Wireless and Mobile
Security, Hacking, Flooding and Spoofing Attacks.

I. INTRODUCTION
Today, mobile phones, PDA and similar devices are

arguably the dominant computer form factor consumers’
purchase. These devices have become powerful and
sophisticated, many are even more powerful than desktop
computers of the late 1990s [1] They are capable of
receiving TV and cable network services, radio station
services and other audio-visual services in addition to
communication services. Technologies like Bluetooth and
Wi-Fi make it possible to embed networking capabilities
into any small devices without hassle [2] In effect, these
technologies help make networking much more
general and achievable even on elementary devices,
like toasters and paperclips. In such computing
environments, these services will increase both the
complexity of information infrastructures and the
networks which support them. However, Information
stored, processed, and transmitted by the various devices
is one of the most critical resources. Threats exploiting
vulnerabilities of new kinds of user interfaces, displays,
operating systems, networks, and wireless
communications will cause new risks of losing
confidentiality, integrity, and availability.

In this paper we organize and present various security
challenges associated with the pervasive computing and
also proposed some countermeasures. In particular, we
look at both ARP poisoning and Mac spoofing attacks.

Manuscript received March 21, 2008.This work was supported in part

by King Fahd University of Petroleum and Minerals, Saudi Arabia.
L. A. Mohammed is with Computer Science and Engineering

Technology Unit, ,King Fahd University of Petroleum and Minerals,
HBCC Campus, King Faisal Street, Hafr Al Batin 31991, Saudi Arabia,
(e-mails: gumel@hbcc.edu.sa)

Other issues such as virus and malware were also
briefly discussed. The rest of the paper is organized as
follows: Section II describes some generic security
challenges in pervasive computing environment.
Description of ARP and DHCP protocols were given in
section III. Section IV briefly explains the ARP poisoning
attack. Section V explains the proposed countermeasure
protocol. Finally, section VI concludes the paper.

II. SECURITY CHALLENGES IN PERVASIVE
COMPUTING ENVIRONMENT

Pervasive computing environment or PCE share most
of the security issues of traditional networked
applications. However, the pervasive computing
environment adds some unique issues to the already
complex security arena. Physical security is important as
the devices can be easily misplaced or stolen. Information
that is usually confined behind a corporate firewall is now
winging its way through the air, possibly spending some
time on hosted servers or wireless gateways.

The techniques of hacking mobile devices such as
laptops, cell phones, PDAs etc is already spreading. In
view of these, adding security to such environment
presents challenges at different levels. Authenticating the
identity certificate of a previously unknown user doesn’t
provide any access control information. Simple
authentication and access control are only effective if the
system knows in advance which users are going to access
a particular subject or stored information and what their
access rights are. Table 1 below describes some hacking
tools for mobile and wireless devices.

In addition to hacking, malicious codes such as viruses,
trojans, worms, and spyware can load themselves onto
wireless devices and run without user knowledge or
action. The successful installation and operation of a
simple malware program can effectively use all available
memory and halt device performance. A more dangerous
malicious program can transmit itself across the wireless
network, bypassing some of the corporate network
security systems, and potentially damaging other
components of the corporate network.

Examples of mobile devices malicious codes that can
be transmitted include the following [3]:

1. Phage (a virus)- when executed it will
overwrites third-party Palm OS application
programs which will then no longer function as
designed.

2. Vapor (Trojan horse) – as the name implies, this
can hide itself and also other applications from
the user so that they appear to have been deleted.

3. Spammed message (such as Compact HTML for
NTT DoCoMo phones) – this message disguises
in the form of paging asking the user to select an
option, which will then run a particular script.

Towards Pervasive Computing Security
L. A. Mohammed

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

4. Timofonica (worm) – this worm spread from PCs
to PCs via e-mail attachment, the e-mail message
can be received by a mobile device via
Telefomica’s (Spain’s Telecommunication) GSM
gateway. It can erase system information and
leave the machine unable to boot!

5. Liberty Crack – This is a Trojan horse that
removes third-party programs from the target
device. Initially, the Trojan crack appeared in
Internet Relay Chat groups, then spread to the
Web and newsgroups, from which users could
download the program.

Table 1: Hacking tools for wireless devices
Tools Description

Airjack - DoS tool that sends spoofed authentication frames to an AP
with inappropriate authentication algorithm and status codes.
AirSnort - A tool which recovers encryption keys. It operates by
passively monitoring transmissions and computing the encryption key
Bloover II - It is a J2ME-based auditing tool. It is intended to serve as
an auditing tool to check whether a mobile phone is vulnerable.
BlueBugger - This exploits the BlueBug vulnerability. One can gain
an unauthorized access to the phone-book, calls lists and other private
information.
Bluediving - It is a Bluetooth penetration testing suite. It implements
attacks like Bluebug, BlueSnarf, BlueSnarf++, BlueSmack
Bluesnarfer - This tool can be used to download phone-book of any
mobile device vulnerable to Bluesnarfing.
BlueSniff - A GUI-based utility for finding discoverable and hidden
Bluetooth-enabled devices.
BlueTest - A Perl script designed to do data extraction from vulnerable
Bluetooth-enabled devices.
BTAudit – This is a set of programs and scripts for auditing Bluetooth-
enabled devices.
BTBrower – An application that can browse and explore the technical
specification of surrounding Bluetooth-enabled devices.
BTCrack 1.1- This is a Pass Phrase (PIN) cracking tool. The tool
would let an attacker that grabs the PIN to decrypt the victim's traffic
and gain full access to each of the connected Bluetooth devices.
BTCrawler - This is a scanner for Windows Mobile based devices. It
can be used to implements BlueJacking and BlueSnarfing attacks.
Ettercap - Suite for Man-in-the-Middle attacks. It features sniffing of
live connections and content filtering on the fly.
Hidattack - It let attackers hijack a Bluetooth keyboard, and the other
similar devices. It basically attacks the Bluetooth human interface
driver (HID) protocol.
IRPAS - A Routing Protocol Attack Suite designed to attack common
routing protocols including CDP, DHCP, IGRP and HSRP.
MeetingPoint - A tool use to search for bluetooth devices. It can be
combine it with any bluejacking tools to perform more serious attack.
Ministumbler - A tool for finding open wireless access points fro
wardrivin. This is a WinCE version of Netstumber for PDAs
T-BEAR - This is a security-auditing platform for Bluetooth-enabled
devices. The platform consists of Bluetooth discovery tools, sniffing
tools and various cracking tools.
WiFiDEnum - Tool use to scan Windows hosts over the network,
extracts registry information to identify wireless drivers that are
installed and the associated version information.
Recently, several antivirus companies have begun to

release products for handhelds. Examples include F-
Secure Antivirus for WAP Gateways product which
checks for malicious code at the gateway between the IP
network and the WAP mobile network, then keeps it from
reaching a handheld device. Similarly, McAfee's
VirusScan for Handheld Devices product prevents the
transmission of known PDA viruses and catches any that
may already reside on the PDA. The product, which

supports a number of mobile platforms, scans for known
virus signatures

III. THE ARP AND DHCP PROTOCOLS

A. The Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) which is defined in

RFC 826 [4] is used to map the IP addresses onto the data
link layer MAC address. There are four main types of
messages in the ARP protocol. These are identified by
four values in the "Opcode" field of an ARP message,
these are [5]:

a) ARP Request – When a host sends an ARP
request it fills in its MAC address, IP address,
type of ARP message and the target IP address.
The ARP request is broadcast to all the hosts in
the same LAN as the sending host. The target
Mac address is left blank for the host with the
target IP address to fill in.

b) ARP Reply – When a host receives an ARP
request containing its own IP address as the
target IP address, it fills in the target Mac address
field with its MAC address. The host creates an
ARP reply with the values of the sender and
target fields in the ARP request reversed and the
Operation field set to the opcode of the ARP
reply. This packet is then sent only to the
requesting machine.

c) RARP Request – Reverse Address Resolution
Protocol (RARP) is the reverse of ARP. A RARP
request is sent when a machine wants to get the
IP address that corresponds to its MAC address.
RARP requests are broadcast in the LAN.

d) RARP Reply – RARP Reply is sent by RARP
servers. If the MAC address in the RARP request
belongs to one of the clients served by the RARP
server, a reply is sent with its corresponding IP
address. RARP was later replaced by BOOTP
(Bootstrap Protocol) and DHCP protocol.

Some optimizations are possible with ARP.
Suppose two computers A and B are on the same
LAN. Once computer A gets the ARP reply from
computer B, it stores that IP-to-MAC address
mapping of B in a local cache. So if in a short period
of time, if A wants to communicate with B, it refers
to the local ARP cache, eliminating a second
broadcast. Usually, A would include its IP-to-MAC
address mapping in the ARP packet, thus informing
B of its mapping. In fact all machines on same LAN
can enter this mapping information on A into their
ARP cache. Another optimization is to have every
computer broadcast its mapping when it boots, in the
form of an ARP looking for its won address. To
allow for changes in mapping, especially when
network card breaks down, and is replaced with a
new one, entries in ARP cache should time out after
few minutes. If computer A is transmitting to
computer C on different LAN, then it may have to
use proxy ARP. Using normal ARP would fail as
routers don’t forward Ethernet level broadcasts. So A
will direct all its traffic for C to a Router R with an

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

ARP cache entry of <IP_D, MAC_R>. R would thus
handle all remote traffic. Alternatively, R can be
configured to respond to ARP request for different
LAN or other local networks. The ARP request
message ("who is A.A.A.A tell B.B.B.B", where
A.A.A.A and B.B.B.B are IP addresses) is sent as a
broadcast message. It reaches all systems in the LAN
as it is a broadcast. This would make sure that the
target of the query will also receive a copy of the
request message. Only the target system responds
and the others discard the packet. The target system
creates an ARP response ("A.A.A.A is
hh:hh:hh:hh:hh:hh", where hh:hh:hh:hh:hh:hh is the
MAC source address of the computer with the IP
address of A.A.A.A). The response packet is then
unicast to the address of the computer which sent the
ARP query (in this case B.B.B.B). Since the original
request also included the hardware MAC address of
the requesting computer, it doesn't require another
ARP message to find this out [6].

B. The Dynamic Host Configuration
Protocol (DHCP)

DHCP stands for ‘Dynamic Host Configuration
Protocol’ and is a way by which networked computers get
their TCP/IP networking settings from a central server.
Dynamic Host Control Protocol (DHCP) is defined in
RFC 2131 [3] and 2132 [4]. It is an extension of BOOTP,
the previous IP allocation specification. It allows manual
and dynamic IP address assignment to computers that
requests for that. DHCP server is not reachable by
broadcasting from a different network. Hence a DHCP
relay agent is needed to forward the DHCP DISCOVER
broadcast packet from a newly booted machine. It is send
as a unicast transmission to the DHCP server (which may
be on another network) by the relay agent. The relay agent
usually keeps the IP address of the DHCP server. Thus
the relay agent is for relaying packets between servers and
clients. This makes the DHCP server handle the sub-net
that has no server available and thus there is no need to
setup a server per sub-net. To keep track of the duration
of IP address assignment, a DHCP server uses the concept
of leasing. As mentioned before, the DHCP server assigns
IP addresses automatically from a pool of IP addresses. If
a compute leaves the network ‘abruptly’ and does not
return the IP address that it was using, that IP address is
lost for any further assignment. As a precaution to that,
assignment of IP address is only for a fixed duration of
time, called leasing. Just before the expiry of the lease, a
computer should request the DHCP server for renewal.
Otherwise, that IP address cannot be used further [7].

IV. SECURITY ATTACK -ARP POISONING PROCESS
ARP poisoning is an effective form of attack by a

hacker, where by he can masquerade a network and fool
the sending host. This happens because the ARP
broadcast reaches him too once connected to the wired
LAN or listen to wireless LAN. Later, he can reply the
ARP request with a forged ARP response putting his
computer’s MAC address in that. The sending host is thus
fooled into sending all the packets to the hacker’s
computer which can be forwarded to the receiving host, if

needed. The attacker can also poison the receiving host
and get a reverse path going. The attacker thus realizes a
two way man in the middle, where he can forward the
received packets to the correct destination after inspecting
and possibly modifying them. The two end points of the
connection will not notice the extra hop added by the
attacker if the packet TTL is not decremented [8],[9]. One
successful and effective attack on wireless LAN or
normal LAN is ARP poisoning. That’s why we propose a
new ARP protocol that could mitigate such attacks.

Figure 1. The ARP poisoning mechanism.

V. SECURE UNICAST ARP (S-UARP) PROPOSAL
A paper [9] on Secure ARP (S-ARP) has been

published by D. Bruschi et al. which deals with ARP
broadcast communication security. Here each host has a
public/private key pair certified by a local trusted party on
the LAN, which acts as a Certification Authority.
Messages are digitally signed by the sender, thus
preventing the injection of spurious and/or spoofed
information. It has been implemented also in Linux [9].
The S-UARP proposal we make is unicast in nature and
have different options for security implementation.

Many organizations would have implemented a DHCP
server for dynamic IP address assignment to individual
machines in a LAN. Hence the DHCP server can be
configured to have the MAC-to-IP address mapping or
vice-versa for all the computers/hosts under its domain.
We propose to extend the DHCP protocol to handle
Secure Unicast Address Resolution Protocol (S-UARP)
packets. We denote such a server as DHCP+ server from
now on. The DHCP relay agent also needs to be modified
to forward the S-UARP request/response messages. When
using dynamic IP addressing using DHCP, the DHCP+
server stores the mapping of IP to MAC address as it
leases out the IP address to the requesting hosts. We are
not dealing with static IP addressing option here. But
some suitable modification to this protocol can make it
suitable for static addressing too. The proposal itself has
an inherent partial-security against eavesdropping
compared to ARP broadcast in a wired network, since
packets are unicast in nature and is not broadcasted. In a
wireless network, a packet sniffer can capture these
unicast packets too since the radio transmission has no
defined boundaries of transmission. But we add security
into our protocol proposal.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

A. S-UARP Protocol
 This is a centralized protocol unlike the decentralized

approach in normal ARP. Consider the following
notations and their meaning as shown below.

 Notation: Meaning:
 S-UARP_req: S-UARP Request Packet
 S-UARP_res: S-UARP Response Packet
 DHCP+: DHCP+ Server
 ICP: Integrity Check Pass (security flag)
 ICF: Integrity Check Fail (security flag)
 A: Host A
 B: Host B

IP_A: IP address of A
MAC_A: MAC address of A
IP_B: IP address of B
MAC_B: MAC address of B

 SK: Session key
 KSA: Shared secret key between host A and
 the server
 MIC: Message Integrity Code

H Collision Free One-Way Hash
Function

t: Time (independent variable) with one
or more independent values.

 t1: Time period (duration) when receiver
 waits for S-UARP_req

t2: Time period when sender looks for a
packet to be sent to the same host
where ACK has to be sent.

t3: Time period within ACK packet has
to be sent. (t3 > t2)

t4: Time period after which S-UARP
cache needs refreshing.

 The S-UARP protocol is described as follows in 3

steps:

1. A DHCP+ : S-UARP_req

2. DHCP+ A : S-UARP_res + MIC

3. A DHCP+ : (ACK) KSA

A simple example and explanation to show how this
can be implemented with DES algorithm is as follows:

1. When a host A wants to communicate to host B, it
sends a S-UARP request packet (unicast packet)
to the DHCP+ server (which answers the S-UARP
packets), instead of sending a broadcast to all. We
assume that the secret hashing key (KSA) is
distributed between the client and the server,
using private-public key mechanism or any other
secure mechanism.

2. The DHCP+ server encrypts the response message
using DES with cipher block chaining (CBC). It
cuts the message (S-UARP_res) into
predetermined-sized of i blocks (where i = 1, 2,
…., n). Use the CBC residue (that is the last block
output by CBC process) as a message integrity

code (MIC). This MIC would act as a checksum
[7]. The plaintext message plus the MIC would be
transmitted to the host (receiver) or A. i.e.
DHCP+ Server Host A: Transmit S-UARP
response (plain text) + MIC. The transmitted
response message will be as follows:

S-UARP response

(plain text)

MIC

(CBC residue)

 Figure 2. The S-UARP response message and MIC transmitted

from DHCP+ Server.

 If the response message doesn’t arrive within a
time period t1, host A will retransmit another S-
UARP request packet to server. This can continue
until it gets a request packet.

3. Once the UARP response is received, host A
checks for validity by using its secret key. The
receiver (Host A) encrypts the plaintext S-
UARP_res using DES that it received with the
shared secret key and do the hashing process to
produce similar MIC (say, MIC*). Finally it
checks the CBC residue or MIC. If MIC = MIC*,
the message is a non-tampered in transit. We then
call it Integrity Check Pass (ICP) state. Otherwise
it is Integrity Check Fail (ICF) state and is
discarded. The S-UARP response contains time ts
when it was generated by the server. Host A also
checks the freshness of the response by checking
tr – ts = Δt (similar to t3), where tr is the time when
A receives the response from the server and Δt is
the accepted time interval for transmission delay.
Finally, the host A sends an encrypted
acknowledgment (ACK)KSA to the server. ACK
contains the timestamp ta generated by the host A
to ensure that the message is fresh and is not a
replay.

The entries in S-UARP cache remains valid for a time
period, t4 (say, in minutes) as in ARP protocol. Once that
time period expires, a new S-UARP request need to be
sent by a host to DHCP+ server to get the IP-to-MAC
address mapping. This can deal with a situation of change
in ethernet card for a machine.

B. Detailed Explanation
The protocol can be shown in detail as follows, with

the timing details and optimization (as explained under
section IV.C). When DHCP+ Server assigns a dynamic IP
address to a host, the IP and MAC address of the DHCP+
server should be made known to the host.

 Procedure S-UARP_Communication (A B)
 BEGIN:

Initialize the flag [pkt_send (from to)] = failure;
 while (pkt_send (A DHCP+) == failure)
 {
 Initialize t;
 S-UARP_req (IP_A, MAC_A, IP_B);
 A DHCP+ : Sends S-UARP_req; //no broadcast
 if (t < t1)

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

pkt_send (A DHCP+) = success;
 else

pkt_send (A DHCP+) = failure;
 }
 while (pkt_send (A DHCP+) == success || t > t3))
 {
 Initialize t;

S-UARP_res (IP_A, MAC_A, IP_B, MAC_B, ts)
 DHCP+ A : Sends UARP_res + MIC;
 if (pkt_send (DHCP+ A) == success && t < t2
 && ICP)
 {
 Host A DHCP+: Piggyback (ACK)KSA;
 if (pkt_send (A DHCP+) == success)
 S-UARP Cache updated;
 else
 Go to start of enclosed while loop; flag =
success;
 A B : A communicates to B directly;
 }

 else if (pkt_send (DHCP+ A) == success &&
 t2 < t < t3 && ICP)

 {
 Host A DHCP+: Sends (ACK)KSA packet;
 if (pkt_send (A DHCP+) == success)
 S-UARP Cache updated;
 else
 Go to start of enclosed while loop; flag =
success; A B : A communicates to B directly;
 }
 else if (pkt_send (DHCP+ A) == failure || t > t3)
 {
 Go to start of enclosed while loop;
 }
 }
 if (t > t4 || ICF)

 S-UARP_Communication (A B);

 END: //end of procedure

C. Possible Optimization

An optimization possible is that the ACK can be
piggybacked on another packet to the DHCP+ server, if
packet transmission from host A to server happens within
time t2. This can eliminate the separate ACK packet sent
and save ACK congestion in the network. If there is no
scope for piggybacking, and the acknowledgement is not
received within a reasonable time period t3 (where t3 >
t2), the server sends the S-UARP response packet again.
If the S-UARP response packet is received by the host
and the ACK packet is lost on transit, the duplicate
response packets send by the server (after timeout t3)
would be rejected.

D. Flow Chart for S-UARP
The flow chart for the S-UARP protocol can be shown

as follows. It depicts the scenario when Host A wants to
communicate to Host B (or a general Host X) and how the
protocol works with respect to different time durations.

Host A sends
S-UARP_req to
DHCP+ server

Pkt received
& t < t1

Host A wants to send packets
to Host B (or Host X) for first
time. Checks S-UARP Cache
and see no IP-MAC mapping

DHCP+ server
sends

(S-UARP_res +
MIC) to Host A

YES

NO

Host A sends
(ACK)KSA to

DHCP+ server
t < t3

If ACK lost,
duplicate
response
rejected by
Host A.

NO

The IP-to-MAC mapping
stored in S-UARP cache.

A B (or X)
communicates directly now.

t > t4YES NO

Refer to
S-UARP
cache

Host A wants
to transmit to
Host X

t < t2 & pkts
present to DHCP+

server YES

Host A sends
piggybacked
(ACK)KSA to

DHCP+ server

NO

YES

Figure 3. The flowchart showing the procedure of S-UARP
operation.

 Note in Figure 3, t1 is the maximum time period for S-
UARP response arrival (if it fails, host A would send
another request), t2 is the maximum wait time for sending
piggybacked ACK, t3 is the maximum acknowledgement
wait time for sending ACK packet, where t3> t2 (if t > t3,
the server would send response again) and t4 is the
maximum wait time, until S-UARP cache is refreshed.

E. Alternate S-UARP Protocols (with more
security)

One of the limitations of the above protocol is that the
request and the response are both in clear, though this is
not a serious threat considering the content of the packets.
Moreover, the message integrity is only on the server’s

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

response side.

1) Alternate Proposal 1: A better approach needs to
ensure the integrity of both S-UARP request and response
as follows:

1. A DHCP+ : S-UARP_req + MIC1

2. DHCP+ A : S-UARP_res + MIC2

3. A DHCP+ : (ACK, NRN) KSA

 In this protocol, we assume that a random number RN
is known to both host and the server and is kept secret
(generated by A or DHCP+). In step 1, A sends the
request in clear and the MIC (i.e. MIC1). The MIC1 is
generated using a collision-free one-way hash function
like SHA1 that takes the secret key KSA,, the S-UARP_req
and the random number RN as inputs. That means, MIC1
= H(KSA, RN, S-UARP_req). In step 2, the server uses the
S-UARP_req (in plain text), the known random number
RN and secret key, KSA to create a similar MIC (say,
MIC1*). If MIC1 = MIC1*, then the request is accepted
else it will be rejected. After verifying the integrity of the
message, the server sends the response and MIC2 to the
host. The MIC2 is generated in the same way (i.e. MIC2 =
H(KSA, RN, S-UARP_res). Finally in step 3, Host A will
check the integrity of the response as in the above case (to
see MIC2 = MIC2*). Host A then sends an
acknowledgement and a new random number (NRN)
encrypted by the secret key (KSA). NRN can be used in
the next request/response exchange. As in the first
protocol, the acknowledgment contains the timestamp to
check when the server sent the response to the host, thus
protecting against replay attacks.

 2) Alternate Proposal 2: Another more secure
alternative is to use a session key SK and an Exclusive-OR
(XOR) operation as follows:

1. A DHCP+ : S-UARP_req + MIC1

2. DHCP+ A : S- UARP_res + SK ⊕ MIC2 +

MIC3

3. A DHCP+ : MIC4

 Here, MIC1 = H(KSA, RN, S-UARP_req), MIC2 =
H(KSA, S-UARP_req, S-UARP_res), MIC3 = H(SK,
NRN), and MIC4 = H(SK, ACK, NRN). In this protocol,
the RN is generated by the server and is also known to
host as a secret. In step 1, A sends the request and the
MIC1 (using the key KSA, RN and S-UARP_req). In step
2, the server checks the integrity of the message (as
shown in the previous protocols), and sends S-

UARP_res, SK ⊕ MIC2 and MIC3 to A. MIC2 and MIC3
are generated using the secret key and the session key
respectively. MIC2 is XORed with session key, SK. In
step 3, host A checks the integrity of the message received
and then compute the acknowledgment as shown in
MIC4. This acknowledgement calculation involves the
timestamp as in previous cases. The NRN (generated by A
or DHCP+) is used by the server in MIC3 is also
contained in MIC4 and is kept secret by both parties for
the next request/response exchange. It is clear here that
even when an attacker knows KSA, he will not be able to
send the acknowledgment or MIC4 as he does not know

the SK, used. As in the previous protocol, the attacker
cannot also reply an old message (replay attack) since the
ACK contains the timestamp when the server generated
the message in step 2. It should be noted here that in all
the three protocols, both requests and responses were sent
in clear to avoid extra encryption overhead. The main
objective is to ensure that the message was not modified
in transit and to block the possibility of an ARP poisoning
by an attacker.

VI. CONCLUSION
 The new S-UARP protocol is more efficient in

reducing broadcast congestion in network, since the S-
UARP request is unicast and directed to only DHCP+
server. The protocol is also more secure and it is quite
difficult for an attacker to do ARP poisoning attack,
especially on the more secure versions of S-UARP.
Especially it is protected against message integrity attacks
(when ARP packet content can be modified by attacker)
and masquerading attacks (when new ARP bogus packet
injection can be done by attacker). It should be noted that
this proposal is only relevant to pervasive network based
on IPv4, since ARP is implemented only in IPv4
networks. IPv6 networks use a different mechanism
(called Neighbor Discovery Protocol). Nevertheless it is
quite relevant until a whole conversion to IPv6 from IPv4
fully happens.

ACKNOWLEDGMENT
The author wishes to acknowledge King Fahd University
of Petroleum and Minerals (KFUPM) Saudi Arabia for its
support in providing the various facilities utilized in the
presentation of this paper.

REFERENCES

[1] David D., Tom M., and Thad S. (2004), Mobile Phones as

Computing Devices: The Viruses are Coming!, Pervasive
Computing, pp. 11-15

[2] Roy, C. Al-Muhtadi, J. and Prasad, N.,(2002), Towards Security
and Privacy for Pervasive Computing. Available:
http://www.cyberdudez.com/towards-percomp-security.pdf

[3] Neal Leavitt (2000), Malicious Code Moves to Mobile Devices,
Computer Journal, December, PP: 16-19

[4] David C. Plummer (1982) , “RFC 826 -ARP Protocol”, 1982.
Available: http://www.faqs.org/rfcs/rfc826.html

[5] Roney Phlips, (2007), “Securing Wireless Networks from ARP
Cache Poisoning”, Master’s Thesis, San Jose State University,
May, 2007.

[6] The TCP/IP Guide Website. Available:
http://www.tcpipguide.com/free/t_ARPMessageFormat.htm

[7] Andrew S. Tanenbaum, “Computer Networks, 4e”, Prentice Hall
PTR, 2003, pp.450 --454.

[8] Corey Nachreiner, "Anatomy of an ARP Poisoning Attack", 2003.
Available:
http://www.watchguard.com/infocenter/editorial/135324.asp

[9] Bruschi, D., A. Ornaghi and E. Rosti, "S-ARP: a Secure Address
Resolution Protocol", 19th Annual Computer Security Applications
Conference, 2003.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

