
An Exact Algorithm for the Maximum Weight
K3-free Subgraph Problem

Masayasu Fujiwara * Kazuaki Yamaguchi * Sumio Masuda ∗

Abstract— The maximum independent set prob-
lem is one of the most famous and well-studied NP-
complete problems, and has some important applica-
tions. Some exact algorithms based on the branch-
and-bound technique have been proposed for the
problem. This paper deals with one of its variants, the
maximum weight K3-free subgraph problem. This pa-
per shows an interesting property of a K3-free graph,
an exact algorithm for the problem and its efficiency
with some computer experiemnts.

Keywords: K3-free graph, triangle-free graph, branch-

and-bound algorithm, clique, maximum weight inde-

pendent set

1 Introduction

A vertex induced subgraph G′ = (V ′, E′) of a graph G is
called a clique if any pair of vertices in V ′ are adjacent.
A clique with r vertices is denoted by Kr. A graph with-
out Kr is called a Kr-free graph (a K3-free graph is often
called a triangle-free graph). Given a graph G = (V,E)
with weight w(v) for each vertex v ∈ V and an integer
r ≥ 2, the maximum weight Kr-free subgraph problem
(MWKr-free problem for short) is to find a Kr-free sub-
graph in G whose sum of vertex weights is the maximum.

Figure 1: An input for the MWK3-free problem

Figure 1 shows an example of the input for the MWK3-
free problem, where each number attached to a vertex
specifies the weight of the vertex. For simplicity, each

∗Graduate School of Engineering, Kobe Univer-
sity, 1-1 Rokkodai, Nada, Kobe 657–8501 JAPAN.
Email: {ky, masuda}@kobe-u.ac.jp, Received on March 6, 2008.

solution is denoted with a vertex set. The solution of
the problem is a maximal set that does not contain
K3. Thus the candidates of the optimum solution are
{v1, v2, v4, v5}, {v1, v3, v4}, {v1, v3, v5} and {v2, v3, v5}.
The weights for these sets are 18, 19, 18 and 15, respec-
tively. Therefore, the optimum solution is the subgraph
induced by {v1, v3, v4}.

The MWKr-free problem for r = 2 is merely the maxi-
mum weight independent set problem, and is also equiv-
alent to the maximum weight clique problem for the
complementary graph of G. Some exact algorithms for
these problems and their unweighted versions (namely,
the maximum independent set problem and the maxi-
mum clique problem) were proposed, and some impor-
tant applications were shown in Refs.[1]-[8]. But no ex-
act algorithms for MWKr-free for r ≥ 3 are known. This
is the first paper to propose an exact algorithm for the
MWK3-free problem.

Section 2 shows some definitions and describes two theo-
rems on which our algorithm is based. Section 3 presents
our algorithm. Section 4 shows the efficiency of the algo-
rithm with some computer experiments. Finally, Sec-
tion 5 summaries the results and shows a conjecture
which might lead to stronger results.

2 Preliminaries

In this paper, a sequence is denoted with brackets. For
two sequences S = [s1, s2, · · · , sm] and T = [t1, t2, · · · , tn],
a sequence [s1, s2, · · · , sm, t1, t2, · · · , tn], which is made
by concatenating S and T , is denoted by S + T . For
1 < i < m, [s1, s2, · · · , si−1] and [si, si+1, si+2, · · · , sm]
are denoted by σ−(S, si) and σ+(S, si), respectively.

Our algorithm is based on the following two theorems.

Theorem 1 For a K3-free graph G = (V,E) and a se-
quence S in which each element of V appears exactly
once, there exist two subsequences S1 and S2 of S which
satisfy property A shown below.

Property A:

• Each element in V appears exactly once in either S1

or S2.

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

• Any consecutive two elements in S1 or S2 are not
adjacent in G.

Figure 2: A K3-free graph G

Before proving the theorem, we show an example.
For a K3-free graph G in Figure 2 and a se-
quence [v1, v2, v3, v4, v5, v6], two sequences [v1, v3, v5] and
[v2, v4, v6] satisfy property A. For G and another se-
quence [v1, v5, v2, v4, v3, v6], two sequences [v1, v5, v2, v4]
and [v3, v6] satisfy property A. The theorem guarantees
that two sequences satisfying property A always exsist
for any G and S.

Proof of Theorem 1

This theorem is proved by contradiction. Let a K3-
free graph G and a sequence S = [v1, v2, · · · , vn] be the
counter example with the minimum number of vertices.

Let G′ be a graph obtained by removing vn from G. From
the definitions of G and S, G′ and σ−(S, vn) has two
sequences S1 and S2 satisfying property A. Without loss
of generality, we assume that vn−1 is the last element in
S1.

Let vn−k (k > 1) be the last element in S2. Clearly,
vn−k+1, vn−k+2, · · ·, vn−1 are contained in S1 in this
order. We choose k to be the maximum number to satisfy
property A for G′ and σ−(S, vn).

If vn−k is not adjacent to vn, two sequences S1 and S2 +
[vn] satisfy property A for G and S, which contradicts
to the assumption that G and S constitute a counter
example. Therefore, vn−k is adjacent to vn. For a similar
reason, vn−1 is adjacent to vn. vn−k and vn−1 are not
adjacent because G is K3-free. See Figure 3(a).

Suppose that vn−i is not adjacent to vn−k for some
i ≥ 1. If vn−i−1 is not adjacent to vn, the sequences
σ−(S1, vn−i)+[vn] and S2+σ+(S1, vn−i) satisfy the prop-
erty A for G and S, which contradicts to the assumption
that G and S constitute a counter example. Hence vn−i−1

is adjacent to vn. Because vn−k is adjacent to vn and G
is K3-free, vn−k is not adjacent to vn−i−1. By mathemat-
ical induction, vn−i is adjacent to vn and not adjacent to
vn−k for 1 ≤ i ≤ k − 1. See Figure 3(b).

If vn−k+1 is the first element in S1, two sequences S2+S1

and [vn] satisfy property A for G and S, which contra-
dicts to the assumption that G and S constitute a counter
example. Thus, vn−k+1 is not the first element in S1. But

(a)

v

n�k

S

1

S

2

v

n

(b)

v

n�k

v

n�2

S

1

S

2

v

n

v

n�1

v

n�k+1

v

n�k+1

Figure 3: Illustrations for the proof of Theorem 1

this implies that S2+σ+(S1, vn−k+1) and σ−(S1, vn−k+1)
satisfy property A for G′ and σ−(S, vn), which contra-
dicts the definition that k is the minimum. 2

In a directed acyclic graph with vertex weights, we de-
fine the length of a path Π to be the sum of the weights
of the vertices on Π. Let G = (V,E) be an undi-
rected graph, where V = {v1, v2, · · · , vn}. For a sequence
S = [v1, v2, · · · , vn] and an integer h ≤ n, let D(G,S, vh)
be a directed graph with vertex set {v1, v2, · · · , vh}, in
which there is an arc from vi to vj if and only if i < j
and vi is not adjacent to vj . Especially, D(G,S, vn) is
denoted by D(G,S). As an example, we show D(G,S)
in Figure 4 for the graph G in Figure 1 and S =
[v1, v2, v3, v4, v5]. Let ℓ(G,S, v) be the length of the
longest path in D(G,S, v) whose endpoint is v. Let
ℓ(G,S) be the length of the longest path in D(G, S),
namely ℓ(G,S) = maxv∈V ℓ(G,S, v).

v

3

v

5

v

2

v

4

v

1

6

8

4

3

5

Figure 4: An example of D(G,S)

Theorem 2 Let G = (V,E) be an undirected graph with
vertex weights and let S = [v1, v2, · · · , vn], where V =
{v1, v2, · · · , vn}. Let w3(G) be the weight of the maximum
weight K3-free subgraph in G. For any G and S, w3(G) ≤
2ℓ(G, S).

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

Proof of Theorem 2

Let G′ = (V ′, E′) be the maximum weight K3-free sub-
graph in G. Let S′ be the subsequence of S which is
obtained by removing the vertices in V − V ′ from S. By
Theorem 1, there are two sequences S1 and S2 which sat-
isfy property A for G′ and S′. Because any consecutive
pair of vertices in S1 are not adjacent in G, a directed
path containing all elements in S1 exists in D(G,S). Be-
cause ℓ(G,S) is the length of the longest path in D(G,S),
the sum of the vertex weights in S1 is not greater than
ℓ(G,S). Same argument holds for S2. Because the sum
of the vertex weights in S1 and S2 equals to the sum of
the vertex weights in V ′, w3(G) ≤ 2ℓ(G, S) holds. 2

3 Our algorithm

Our algorithm for the MWK3-free problem is an ordinary
branch-and-bound algorithm, therefore we just describe
the branching rule and the bounding rule. Let P (X,Y)
be the subproblem defined by X and Y , where X is the
set of the vertices already chosen, and Y is the set of the
candidates to be chosen. According to this notation, the
original problem is denoted by P (∅, V).

3.1 Branching Rule

At first the algorithm constructs a sequence S in which
each element of Y appears exactly once by the procedure
shown in Section 3.2. For simplicity, we suppose that
the procedure has produced S = [v1, v2, ..., v|Y |]. Then
our algorithm makes subproblems P (Xi, Yi) = P (X ∪
{vi}, {v1, v2, · · · , vi−1}) for i = |Y |, |Y | − 1, · · · , 2, 1 and
solves them in this order.

Each subproblem P (Xi, Yi) might have useless vertices in
Yi. If a vertex vh in Yi is adjacent to vi and is adjacent to
some vertex in X which is also adjacent to vi, these three
vertices construct K3. Therefore the vertex vh cannot
be added to Xi. Thus, before solving each subproblem
P (Xi, Yi), our algorithm removes useless vertices like vh

in Yi. This procedure is efficiently executed with using
bit vectors.

3.2 Constructing Vertex Sequence

Theorem 2 guarantees that the value of the optimum solu-
tion of P (Xi, Yi) is not greater than 2ℓ(G,S, vi) for each
i. If we can obtain S such that ℓ(G,S, vi) is small for
each i, pruning often occures and the computation time
gets shorter. Therefore the desirable sequence is S which
makes ℓ(G,S, vi) small for each i. The procedure shown
in Figure 5 is a simple heuristic for obtaining such a se-
quence S.

The procedure calculates S and a(vi) = ℓ(G,S, vi) for
each i at the same time. This procedure is just a
greedy algorithm to make each a(·) smaller, so does

1. Let S be an empty sequence.

2. Let a(v) ← w(v) for each v ∈ V .

3. Repeat the following statements until |S| = |V |

(a) Find a vertex v such that a(v) is the minimum
among all vertices in V − S.

(b) Let S ← S + [v].

(c) For each t that is adjacent to v in V − S, let
a(t) ← a(v) + w(t).

Figure 5: Procedure to get S

not guarantee that a(·) becomes minimum, but guar-
antees that the longest path in D(G,S, vi) always in-
cludes vi. From this fact we obtain a little better upper
bound ℓ(G,S, vi−1) + ℓ(G,S, vi) for P (Xi, Yi), instead of
2ℓ(G, S, vi). The computational complexity of this pro-
cedure is O(|V |2).

3.3 Bouding Rule

Our bounding rule is very simple. The algorithm prunes
a subproblem whose upper bound is not greater than the
value of the temporal best solution. The upper bound for
each subproblem is obtained during the construction of
the sequence.

4 Computer Experiments

We executed our algorithm for random graphs with edge-
density between 0.1 and 0.9. We set the number of
vertices to 50, 100, or 200, and assigned integer vertex
weights randomly between 1 and 10. For each condition,
we executed the algorithm 10 times and measured the
minimum and maximum values of CPU time. For this
experiment, we used an AMD Athlon(tm) 64 X2 Dual
Core Processor 5000+, Linux (kernel 2.6) and C++ pro-
gramming language. The results are shown in Table 1.
The exact solution can be obtained within practical time
for each condition, but the variance of computation time
is very big. We have not clarified the reason for this yet,
but guess it is due to the looseness of upper bounds. Fur-
ther studies are necessary to prove it.

5 Conclusions and Future Works

In this paper we showed an interesting fact for K3-free
graphs and the practical exact algorithm for the maxi-
mum weight K3-free subgraph problem. This is the first
exact algorithm for the problem. It might be possible to
improve this algorithm by tighter upper bound calcula-
tion.

Although only the algorithm for the MWK3-free prob-
lem was shown in this paper, a similar algorithm can be

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

Table 1: Benchmark Results

vertices density CPU time [sec]
min max

50 0.9 0.00 0.00
50 0.8 0.00 0.00
50 0.7 0.00 0.00
50 0.6 0.00 0.01
50 0.5 0.01 0.04
50 0.4 0.01 0.08
50 0.3 0.10 0.35
50 0.2 0.14 1.87
50 0.1 0.15 8.52
100 0.9 0.00 0.01
100 0.8 0.02 0.04
100 0.7 0.10 0.21
100 0.6 0.61 1.18
100 0.5 3.46 9.15
100 0.4 30.17 146.61
100 0.3 264.56 1689.34
200 0.9 0.16 0.21
200 0.8 1.07 1.93
200 0.7 13.86 22.16
200 0.6 213.90 372.29

constructed for the MWKr-free problem for any r > 3 if
the following conjecture holds :

Conjecture 1 For a Kr-free graph G = (V,E) and a
sequence S in which each element in V appears exactly
once, there exist (r− 1) sequences S1, S2, · · · , Sr−1 which
satisfy the following property.

Property A’ :

• Each element in V appears exactly once in one of
S1, S2, · · · , Sr−1.

• Any consecutive two elements in any one of
S1, S2, · · · , Sr−1 are not adjacent in G.

References

[1] Babel, L., “A fast algorithm for the maximum weight
clique problem,” Computing, vol.52, pp.31–38, 1994.

[2] Fahle, T., “Simple and fast: Improving a branch-
and-bound algorithm for maximum clique,” Proc.
10th Annual European Symp. on Algorithms, Lec-
ture Notes in Computer Science, vol.2461, pp.485-
498, Springer, Berlin, 2002.

[3] Österg̊ard, P.R.J., “A fast algorithm for the maxi-
mum clique problem,” Discrete Applied Mathemat-
ics, vol.120, pp.197–207, 2002.

[4] Österg̊ard, P.R.J., “A new algorithm for the
maximum-weight clique problem,” Nordic Journal of
Computing, vol. 8, pp.424–436, 2001.

[5] Sewell, E.C., “A branch and bound algorithm for
the stability number of a sparse graph,” INFORMS
Journal on Computing, vol.10, pp.438–447, 1998.

[6] Tomita, E., and Seki, T., “An efficient branch-
and-bound algorithm for finding a maximum clique,”
Proc. 4th Int’l Conf. on Discrete Mathematics and
Theoretical Computer Science, Lecture Notes in
Computer Science, vol.2731, pp.278–289, Springer,
Berlin, 2003.

[7] Wood, D.R., “An algorithm for finding a maximum
clique in a graph,” Operations Research Letters,
vol.21, pp.211–217, 1997.

[8] Yamaguchi, K., Sakakibara, Y., and Masuda, S., “A
generic method to extend an algorithm for the max-
imum clique problem to an algorithm for the max-
imum weighted clique problem”, Proc. 2004 Int’l
Technical Conf. on Circuits/Systems, Computers
and Communications (CD-ROM), Sendai, 2004.

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

