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Abstract— In this paper, an Exponentially weighted
Legendre-Gauss Tau Method (ELGT) for solving or-
dinary differential equations (ODEs) with oscillatory
solutions is developed. An algorithm for ELGT is
build up by combining three apparantly different
numerical techniques: The classical Legendre-Gauss
spectral Tau Method, exponential fitting and piece-
wise coefficients perturbation methods. Numerical
examples illustrating the efficiency and the high ac-
curacy of my established results are presented.
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1 Introduction

The solution of second order ODEs has played a fun-
damental role in the evolution of mathematical physics,
starting with the eigenvibrations of a string, and culmi-
nating in the atomic vibrations of Schrödinger wave equa-
tions. While the solution of this class of ODEs cannot be
given in a closed form except in special cases, it is possi-
ble to obtain accurate approximate solutions by means
of numerical procedures with high degree of accuracy.
But a challenging problem continues to face numerical
analysists and computational physicists is the approxi-
mation of ODEs with highly oscillatory solutions. In the
past there has been much interest in standard numerical
methods such as Numerov, Runge-Kutta or de Vogelaere
(see [6]). But due to the unsatisfactory performance of
those standard methods in detecting the strong oscilla-
tions exhibited by the solutions, efforts have concentrated
on modern techniques that have proven to be highly ac-
curate and more effective in approximating this class of
ODEs. Among those techniques are procedures based on
piecewise coefficients perturbation methods and on expo-
nential fitting (see [4] and [5]).

The present work is a contribution to this line of re-
search. The specific aim of this paper is to develop an
algorithm that combines three apparantly different tech-
niques: Legendre-Gauss Tau Method (LGT), exponential
fitting and coefficients perturbation methods.
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Section 2 is intended to give a brief description of LGT.
We try to get insight into the behavior of this method
by solving a simple ODE with a highly oscillatory solu-
tion. The unsatisfactory numerical results suggest that a
combination of the coefficients perturbation method with
LGT could result in a modified version of LGT that can
be more effective in detecting the sharp variations in the
oscillatory solutions. The main features of LGT are re-
called in section 3. Section 4 is devoted to develop a
modified LGT, called Exponentially weighted Legendre-
Gauss Tau Method (ELGT), and to formulate its algo-
rithms. Section 5 is concerned with analysing the error
of ELGT and to propose a reference correction procedure
that allows to increase the degree of accuracy. Numerical
examples supporting our results will be given in Section
6. In the last section, ELGT is extended to solve nonlin-
ear problems and to present some illustrative examples.

2 Legendre-Gauss Tau Method

LGT was invented by Lanczos [7] and later developed by
Ortiz [9] and by Gottlieb and Orszag [3] to treat problems
with different degrees of complexities.

2.1 The Main Features of LGT

Let us consider the initial value problem (IVP),

(Dy)(x) :=
ν∑

i=0

Pi(x)
diy

dxi
= f(x), x ∈ [a, b], (1)

y(k)(a) = αk ∈ R, k = 0, 1, · · · , ν − 1, (2)

where {Pi(x), i = 0, 1, · · · , ν} are continuous functions
with Pν(x) not vanishing in I := [a, b].

LGT seeks an approximation yN for y of the form

yN =
N+ν−1∑

i=0

aiLi(x),

where {ai; i = 0, 1, . . . , n + ν − 1} are determined by
• imposing the supplementary conditions (2) on yN ,

y
(k)
N (a) = αk; k = 0, 1, · · · , ν − 1,

• and, either, by an orthogonal projection of the resid-
ual RN (x) := DyN (x) − f(x) against subspace
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span{L0(x), L1(x), . . . , LN−1(x)},∫ b

a

RN (t)(t)Lk(t)dt = 0, l = 0, 1, 2, . . . , N − 1,

• or, by forcing RN (x) to vanish at the N LG points
{zi; i = 1, 2, . . . , N} ⊂ I,

RN (zi) = f(zi), i = 1, 2, 3, ..., N.

In the piecewise version of LGT we consider a partition
a = x0 < x1 < . . . < xM = b of [a, b]; hi = xi − xi−1, and
we use LGT(N) to solve the following M IVPs,

(Dyi)(x) = f(x), x ∈ [xi−1, xi], i = 1, 2, . . . , M,

y
(k)
i (xi−1) = y

(k)
i−1(xi−1), y

(k)
1 (x0) = αk, k = 0, 1. (3)

Throughout, LGT(M,N) will stand for piecewise LGT.
When M = 0, LGT(0,N)=LGT(N).

2.2 Numerical Experiment

To see the performance of LGT(M,N), let us apply it to
the following IVP,

y
′′

+ 4x2y = 2 cosx2, x ∈ [0, 40], (4)
y(0) = 0, y

′
(0) = 0,

whose the exact solution, y = sin x2, is highly oscilla-
tory for large x (see Figure 1). The exact errors at some
{xi, i = 0, 1, . . . , 800} committed by LGT(M,N) with
M = 800, h = 0.05 and N = 2 are listed in Table 1.

i xi err(xi) err
′
(xi)

√
err2 + err′2

0 0.05 6.51E -10 -8.68E -9 8.70E -9
100 5. 1.18E -4 5.42E -4 5.55E -4
200 10 6.07E -3 7.99E -2 8.02E -2
300 15 2.67E -2 2.01 2.01
400 20 -2.14E -1 9.48 9.48
500 25 -7.70E -1 -3.00E+1 3.00E+1
600 30 -8.67E -1 1.17E+1 1.17E+1
700 35 -3.84E+5 9.81E+8 9.81E+8
800 40. -2.91E+5 -7.19E+8 7.19E+8

Table 1: LGT(800,2) error for y = sin x2 in [0,40].

It is clearly seen, that the accuracy of LGT(M,N) deteri-
orates as we approach the end point.

In this paper we develop a modified LGT by introducing
in the desired approximate solution exponential weights
of the form eωx in a way that, for suitably chosen fre-
quencies ω, those weights will detect the strong oscilla-
tions throughout the domain of integration. The main
tool to achieve this goal will be the piecewise perturba-
tion method that will be presented in the next section.

3 Piecewise Coefficients Perturbation

This technique has been essentially devised to approxi-
mate second order ODE of the form

(Dy)(x) := y
′′

+ b(x)y = 0, x ∈ [a, b], (5)

y(a) = α0, y
′
(a) = α1.

The basic idea of the piecewise coefficient pertrubation
method (PPM) is as follows: Consider a partition a =
x0 < x1 < . . . < xM = b of [a,b], and on each [xi−1, xi],
i = 1, 2, . . .M , replace b(x) by an approximation b̃i(x) in
a way that the following M IVPs:

y
′′
0i + b̃i(x)y0i = 0, x ∈ [xi−1, xi], (6)

y
(�)
0i (xi−1) = y

(�)
0,i−1(xi−1), y

(�)
00 (x0) = α�,

i = 1, 2, . . . , M, � = 0, 1,

can be solved analytically. For each i = 1, 2, . . . , M , the
accuracy of y0i (called reference) can be increased by
adding corrections {yki(x); k = 1, 2, . . .} that are defined
by the following sequence of IVPs

y
′′
ki + b̃i(x)yki = δbi(x)yk−1,i, (7)

y
(�)
k (xi−1) = 0, k ≥ 1, � = 0, 1,

where δbi(x) := b̃i(x) − b(x). We call a PPM mth ap-
proximation of y on subinterval [xi−1, xi], the finite sum

Ymi := y0i + y1i + . . . + ymi. (8)

When b̃(x) is constant, the method is called CP-Method.
When b̃(x) is linear, it is called LP-method.

3.1 Strucrure of CP-Method Residual

In this section indices i will be spressed and X will des-
ignate xi. Adding up the reference equation (6) and the
first m correction equations (7), we find that

Y
′′
m + b(x)Ym = −δb ym, x ∈ [X, X + h], (9)

Ym(X) = η0, Y
′
m(X) = η1,

where {η0, η1} are generic values available from the ap-
proximation computed on subinterval [xi−2, xi−1].

Comparing (9) with the given IVP (5), we observe that
Ym is the exact solution of a perturbed version of the
original one where the perturbation occurs in the right
hand side as a residual of the form

R(x) = −δb ym. (10)

In particular, if b̃(x) ≡ b̄ is constant with ω =
√
−b̄, then

• the CP-reference y0 is given as

y0(x) = p10eωx + p20e−ωx,

where {p10, p20} are constants fixed in terms of the
initial conditions associated with (6),

• the kth CP-correction has the form

yk(x) = p1k(x)eωx + p2k(x)e−ωx,

for some polynomials {p1k, p2k} that involve two
constants fixed in terms of the initial conditions
yk(X) = y

′
k(X) = 0,
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• the CP-approximant Ym := y0 + y1 + . . . + ym can
be written as,

Ym = Pm1(x)eωx + Pm2(x)e−ωx,

• the CP-residul (10) takes the form

R(x) = −(δb p1,m)eωx − (δb p2m)e−ωx. (11)

This structure of CP-residual will be very constructive
in assuring the close dependence between the error func-
tion and the quality of perturbation measured by δb(x).
Subsequently this will allow to propose a technique that
reduces the error substantially.

3.2 Analyzing the CP-Error

Let em(x) := y(x)−Ym(x) denote the mth error function.
The difference between (5) and (9), taking into account
(11), yields the error equation,

e
′′
m + b(x)em = (δb p1m)eωx + (δb p2m)e−ωx,

em(X) = εm, e
′
m(X) = ε

′
m

where x ∈ [X, X + h]. em(x) is formally represented as

em(x)=
∫ x

X

G∗(x, t)δb(t)dt+G(x, X)ε
′
m+Gx(x, X)εm. (12)

G(x, t) being the Green function associated with D and

G∗(x, t) := G(x, t)
[
p1,m(t)eωt + p2,m(t)e−ωt

]
.

For the local truncation error (l.t.e.), let εm = ε
′
m = 0 and

take norms in (12), to get, for some constant κ = κ(ω).

‖em‖ ≤ κ‖δb‖, where ‖G∗‖ ≤ κ.

As far as CP-method is concerned, in the uniform norm
‖.‖∞ the smallest ‖δb‖∞ is realized when b̄ is the best
zeroth approximation of b(x),

b̄ = b(X +
h

2
), ω =

√
−b(X +

h

2
).

Alternatively, for the L2-norm, ‖.‖2, the smallest ‖δb‖2
is achieved if b̄ is the best zeroth approximation of b(x)
in L2[X, X + h],

b̄ =
∫ 1

0

b(X + ht)dt.

Hence, whether ‖.‖∞ or ‖.‖2 is adopted, we have

δb(x) = L1,h(x)× function of x.

We conclude that the residual (11) can be written as

R(x) = L1,h(x)τ1(x)eωx + L1,h(x)τ2(x)e−ωx. (13)

This result suggests that there could be a PPM version
other than CPM that would lead to a residual whose

the same structure as (13), except that the coefficients of
the exponentials e±ωx must be multiples of higher order
Legendre polynomial, LN,h(x) say. In other words, we
wish to find a method whose the residual is of the form

RN (x) = LN,h(x)τ1(x)eωx + LN,h(x)τ2(x)e−ωx. (14)

Next section demonstrates that LGT can be extended to
achieve this goal.

4 Exponentially Weighted LGT

In this section, two cases will be investigated:

4.1 Case 1: y
′′

+ a(x)y
′
+ b(x)y = 0

For each ω ∈ C, associate to Du := u
′′

+ a(x)u
′
+ b(x)u

the auxiliary operator Dω defined as
Dωu := u

′′
+ (2ω + a(x))u

′
+ (ω2 + a(x)ω + b(x))u.

We can now, by means of operators Dω, give a new char-
acterisation for the exact solution of 2nd order ODE:

Theorem 1. The exact solution of

Dy := y
′′

+ a(x)y
′
+ b(x)y(x) = 0 (15)

is expressible as a linear combination of {eω1x, eω2x},
y = φ1(x)eω1x + φ2(x)eω2x,

where frequencies {ω1, ω2} are the (real of complex) roots
of the quadratic equation

ω2 + a(X̄)ω + b(X̄) = 0, X̄ = X + h/2,

and where {φ1(x), φ2(x)} are exact solutions of

Dωjφ = φ
′′
j + (2ωj + a(x))φ

′
j + (ωjδa + δb)φ = 0. (16)

The proof of Theorem 1 is based on this technical lemma:

Lemma 1. For any constants {ωi, ci; i = 1, 2},
{Dωiφi = 0, i = 1, 2} ⇒ D[c1φ1e

ω1x + c2φ2e
ω2x] = 0.

Theoretically, y(x) can be found, once {φ1, φ2} are avail-
able, and the constants c1 and c2 in y = c1φ1(x)eω1x +
c2φ2(x)eω2x are fixed according to the given initial con-
ditions. Analytically, solving (16) is not easier, however,
than solving the original problem (15). But, computa-
tionally, numerical methods that approximate the smooth
solutions of (16) could be more successful than approxi-
mating (15) directly, specially when y(x) exhibits sharp
variations. Next I will propose an algorithm for LGT
that can effectively generate approximations {φ̃1, φ̃2} for
{φ1, φ2} defined by (16) and subsequently construct an
approximation ỹ = c1φ̃1e

ωx + c2φ̃2e
−ωx for y.

I will refer to this procedure by ELGT(M,N) where M
indicates the number of steps and N is the number of
Legendre-Gauss points in each subinterval [xi−1, xi].
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Algorithm 1 – Follows is an ELGT(M,N) algorithm
that approximates IVPs of the from

y
′′

+ a(x)y
′
+ b(x)y(x) = 0, x ∈ [a, b],

y(a) = α0, y
′)(a) = α1,

1. construct a partition a = x0 < x1 < . . . < xM = b of
[a, b]; set hi = xi − xi−1.

2. provide {zk}N
k=1, the N LG points in [0,1],

3. for i = 1, 2, . . . , M repeat (a)-(d)

(a) compute {ω1i, ω2i} for [xi−1, xi] by solving
ω2 + a(x̄i)ω + b(x̄i) = 0,, x̄i = xi−1 + hi

2 ,

(b) construct φN,i,1 =
∑N

j=0 ajiLji(x) whose the
coefficients {aji} of satisfy the linear system,

(Dω1iφN,i,1)(xi−1 + hizk) = 0
φN,i,1(xi−1) = 1, k = 1, 2, ..., N,

(c) construct φN,i,2 =
∑N

j=0 bjiLji(x) whose the
coefficients {bji} satisfy the linear system,

(Dω2iφN,i,2)(xi−1 + hizk) = 0,
φN,i,2(xi) = −1, k = 1, 2, ..., N,

(d) construct yNi = c1iφN,i,1e
ω1ix + c2iφN,i,2e

ω2ix;
{c1i, c2i} are fixed by left-end conditions

y
(�)
Ni(xi−1) = y

(�)
N,i−1(xi−1), � = 0, 1.

Let us identify now the residual resulting from
ELGT(M,N).

Theorem 2. ELGT(M,N) approximant yN,i produces
a residual of the form

RN (x) = LN,i(x)τ1(x)eω1x + LN,i(x)τ2(x)eω1x (17)

which is identical to (17) for a(x) ≡ 0.

Proof - Parts (b) and (c) imply respectively that

(Dω1iφN,i,1)(x) = LNi(x)× ρ1(x),
(Dω2iφN,i,2)(x) = LNi(x)× ρ2(x).

Therefore, if D is operated on yN,i given in (d) we get

DyN,i = D[c1iφN,i,1e
ω1ix + c2iφN,i,2e

ω2ix],
= c1iLNi(x)ρ1(x)eω1ix + c2iLNi(x)ρ2(x)eω2ix.

4.2 Case 2: y
′′

+ a(x)y
′
+ b(x)y = f(x)

Let us extend ELGT to nonhomogenous 2nd order ODE

Dy = y
′′
+ a(x)y

′
+ b(x)y=f(x), x ∈ [a, b], (18)

y(a) = α0, y
′
(a) = α1.

The general solution of (18) is written as

y = const1u1(x) + const2u2(x) + Y (x),

where {u1, u2} are two particular solutions of Dy = 0
and Y (x) is a particular solution of Dy = f .
The ELGT solution takes the form,

yN = c1φ1,N (x)eω1x + c2φ2,N (x)eω2x + YN (x),

where c1 and c2 are fixed by the initial conditions. To gen-
erate this approximation, replace, in Algorithm 1, step
(d) by (d)-(e):

Algorithm 2 – Algorithm 1 +

(d) compute the coefficients {cji, j = 0, 1, . . . , N +1} of

YN,i =
N/2∑
j=0

cjiLji(x)eω1ix +
N/2∑
j=0

cN/2+1+j,iLji(x)eω2ix

by solving

(DYN,i)(xi−1 + hizk) = f(xi−1 + hizk),
YN,i(xi−1) = 0, Y

′
N,i(xi−1) = 1, k = 1, 2, . . . , N,

(e) compute yNi = c1iφN,i,1e
ω1ix + c2iφN,i,2e

ω2ix + YN,i

where {c1i, c2i} are fixed by left-end conditions

y
(�)
Ni(xi−1) = y

(�)
N,i−1(xi−1), � = 0, 1.

5 Error Analysis

5.1 Exactness of ELGT(M,N)

Definition 1 Call ELGT(M,N) exact for a function u(x)
if ELGT(M,N) produces u(x) exactly when applied to
some equation u

′′
+ a(x)u

′
+ b(x)u(x) = f(x), whose u is

the exact solution.

Based on this definition, it is obvious to see that,

Theorem 3. By its very construction, ELGT is exact
for functions of the form {xkeωx; k = 0, 1, 2, . . .}, ω ∈ C.

Proof. For any ω and k, y := xkeωx satisfies exactly ODE

y
′′ − ω2y = k(k − 1)xk−2eωx + 2ωxk−1eωx. (19)

Thus, Theorem 3 holds true because (19) has constant
coefficients.

5.2 Error Estimation of ELGT(N)

Reconsider the nonhomogenous 2nd order ODE (18).
Omit indices i and let [X, X + h] ≡ [xi−1, xi] and YN ≡
yNi, the ELGT(M,N) approximant in [X, X + h].

Definition 2. Call YN := yNi Reference.

Let eN(x) := y(x) − YN (x) be the error function in
[X, X +h]. In this section we develop a correction proce-
dure that allows to improve the accuracy of the reference.
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In [2], I gave an infinite series representation e(x), re-
called in Theorem 4. In order to formulate it we need to
introduce the following recursions: For all k ≥ 2 let

ak+1(x) := a
′
k(x) + bk(x) − a(x)ak(x),

bk+1(x) := b
′
k(x)− b(x)ak(x),

with

a0(x) := 0, a1(x) := 1, a2(x) := −a(x),
b0(x) := 1, b1(x) := 0, b2(x) := −b(x).

Let F (x) := f(x)−RN (x) where RN (x) is given by (17).

Theorem 4. If a(x) and b(x) belong to C∞[X, X + h]
then, for � = 0, 1

e(�)(x) =
∑
k≥0

1
k!

{Fk�(x) + (x −X)kΔk+�(X)
}

for all x ∈ [X, X + h], where

Δk(X) = [ak(X)e
′
(X) + bk(X)e(X)],

Fk�(x) :=
∫ x

X

ak+�(t)(x − t)kF (t)dt, Fk := Fk0.

Consequently, the exact solution of (18) has the expan-
sion

y(�)(x) = Y
(�)
N (x) + δ

(�)
0 (x) + δ

(�)
1 (x) + δ

(�)
2 (x) + . . .

where {δk, δ
′
k} are called corrections and given by

δ
(�)
k (x) =

1
k!

{Fk�(x) + (x−X)kΔk+�(X)
}

.

Notation.

• ELGT(M,N,K) stands for ELGT(M,N) with K+1
corrections {δ0, δ1, . . . , δK}.

• Accordingly, ELGT(M,N,K) approximation is

YN,K = YN + δ0 + δ1 + . . . + δK .

• The error function of ELGT(M,N,K):

eN,K := y(x)− YNK(x).

Theorem 5. Under the above assumptions and nota-
tions, we have

eN,K(X + h) =
{

O(h2N+1) if k ≤ N ,
O(h2N+d+1) if k > N with d=N-k.

Proof. The accuracy of YNK is measured by the order of
δK+1 in terms of h because eN,K = δK+1 + δK+2 + . . . .

Assume X = 0. Find the order of δk(x) at the left-end
point x = h. Then δk(h) reduces to

δk(h) =
1
k!
Fk(h).

Analyse Fk(h):

Fk(h) =
∫ h

0

ak(t)(h− t)kR(t)dt

=
∫ h

0

ak(t)(h− t)k[τ1(t)eω1tLNi(t)

+τ2(t)eω2tLNi(t)]dt = 	1 + 	2.

For 	 ∈ {	1,	2}:

	 =
r∑

j=0

τj

∫ h

0

ak(t)(h− t)ktjeωtLNi(t)dt

∼ τ0

∫ h

0

ak(t)(h− t)keωtLNi(t)dt

∼ τ0

〈
ak(t)(h− t)keωt

∣∣∣ LNi

〉

∼
{

τ0O(hN ) = O(h2N+1) if k ≤ N,
τ0O(hk) = O(hN+k+1) if k > N.

The last assertion follows from Lemma 2. Thus,

	1 and 	2 ∼
{

O(h2N+1) if k ≤ N,
O(h2N+d+1) if k > N with d = N − k.

Lemma 2.

1. If f(t)=
∞∑

m=0

fmLm,h(t), t ∈ [0, h], then fm =O(hm).

2. If, further, f(t)=(h− t)kg(t) , then

fm=
{

O(hm) if k ≤ m,
O(hk) if k > m.

6 Numerical Examples

Example 1. The IVP

y
′′

+ y = 0.001 cos(x), x ≥ 0,

y(0) = 1, y
′
(0) = ω,

has the exact solution y(x) = cos(x) + 0.0005x sin(x).
This problem can be solved exactly by ELGT(M,N,0) for
N ≥ 2 and arbitrary M.

Example 2. The IVP

y
′′− 2y

′
+ 101y= 1

500ex(cos(10x)− 1
25x sin(10x)), x ≥ 0,

y(0) = 0, y
′
(0) = 10,

whose y(x) = ex(sin(10x) + 1
1000x2 cos(10x)) is the exact

solution, can be solved exactly by ELGT(M,N,0) for N ≥
4 and any M.

Example 3. z(x) = eix(1 − 0.005ix) ∈ C is the exact
solution of IVP,

z
′′

+ z = 0.001eix,
z(0) = 1, z

′
(0) = 0.9995i.
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Figure 1: Left (Eq. 4): Plot of sinx2 in [0,20]. Right (Example 5): Plot of log2

∣∣∣ global err[400,4,P]
global err[800,4,P]

∣∣∣ at points
xm for ELGT(M,N,P) with M=400,800, N=4 and P=0(bottom), 6(middle), 10(top). Note that for P>2N, or-
der[ELGT(M,N,P)] is N+P.

It can be reproduced exactly by ELGT(M,N,0) for N ≥ 2
and arbitrary M.

Example 4. Reconsider IVP (4) and let us solve it by
ELGT(800,2). The errors of ELGT(800,2) along those of
classical LGT(800,2) are listed Table 2. One can easily
appreciate the significant improvement throughout the
interval of integration and at right end point.

k xk ωk er(xk) er
′
(xk)

√
er2 + er′2

1 0.05 0.05i -1.26E-9 -7.71E-8 -7.71E-8
100 5.00 9.95i 1.70E-6 4.48E-5 4.48E-5
200 10.00 19.95i -3.01E-5 1.33E-3 1.33E-3
300 15.00 29.95i -3.43E-4 4.26E-3 4.28E-3
400 20.00 39.95i -1.01E-3 -2.45E-2 2.45E-2
500 25.00 49.95i 3.89E-4 -1.35E-1 1.35E-1
600 30.00 59.95i 5.55E-3 4.23E-2 4.27E-2
700 35.00 69.95i -2.26E-3 4.54E-1 4.53E-1

800 40.00 79.95i -9.92E-3 -6.42E-1 6.42E-1
Classical LGT(800,2) result:

800 40.00 -2.91E+5 -7.19E+8 7.19E+8

Table 2: (Example 4) ELGT(800,2) error in approximat-
ing sin x2 in [0,40] compared to classical LGT(800,2).

Example 5. Consider the nonhomogenous linear IVP

y
′′
+ 4x2y=(4x2−ω2) sin(ωx)−2 sin(x2), 0≤x≤10, (20)

y(0) = 1, y
′
(0) = ω,

with exact solution y(x) = sin(ωx) + cos(x2). Let {0 =
x0 < x1 . . . < xM = 10} be a uniform partition of [0,10].
We applied ELGT(M,N,P) with M=400, 800, N=4 and
P=0, 6, 10. The global errors at xm are displayed Table
3. Note that the last 3 columns assure that for P>2N,
the order of ELGT(M,N,P) is N+P.

Variations of ELGT error in terms N . To see the varia-
tions of the ELGT error at points {xm; m = 1, 2, . . . , M}
with respect to N , the order of LN(x), we report in Table
4 the exact errors when (20) is solved by ELGT(M,N)

Method order
i xi ELGT(100,4,0) ELGT(200,4,0) h8

ELGT(100,4,6) ELGT(200,4,6) h10

ELGT(100,4,10) ELGT(200,4,10) h14

60 3 1.77E-09 5.83E-12 8
7.39E-11 6.97E-14 10
7.53E-15 4.88E-19 14

80 4 2.41E-09 9.81E-12 8
1.83E-10 1.52E-13 10
5.16E-15 4.90E-19 13

100 5 1.28E-09 5.66E-12 8
1.60E-10 7.89E-14 11
1.12E-14 1.52E-18 13

160 8 1.03E-06 3.69E-09 8
1.35E-07 1.63E-10 10
2.94E-10 2.52E-14 14

180 9 3.59E-06 1.25E-08 8
7.59E-07 8.20E-10 10
3.12E-09 2.21E-13 14

200 10 6.25E-06 2.12E -08 8
2.17E-06 2.11E-09 10
1.46E-08 9.10E-13 14

Table 3: (Example 5) Comparison of the global error at
some xm obtained by ELGT(M,N,P) for M=100, 200,
N=4 and P=0, 6, 10.

with M = 10 (i.e. h = 1), and N = 10, 12, . . . , 20.
To explain the dependence between the global error and
N , we plot in Fig. 2 the pairs {(N, ln |erN (xm)|); N =
10, 12, . . . , 20}, for each m= 1, 2, . . . ,M, (M=10 and 20).
It is observed that the error decays exponentially with
respect to N , in accordance with an earlier result given
in [1], i.e.

error of ELGT(M,N) ∼ 1
N !cN

N

where cN
N is the leading coefficient of LN(x) in [0,1].

7 Nonlinear Differential Equations

Consider nonlinear ODEs of the form

y
′′

= f(x, y, y
′
), x ∈ [a, b], (21)
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Figure 2: (Example 5.) The order of ELGT(M,N) vis-avis N: Variations with N of ln |y(xm)− yN (xm)| compared to
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|, N=10, 12, . . . , 20 and m=1,2,...,8 and M=10 (left), M=20 (right).

xm erN (xm)
N=10 N=12 N=14 N=16 N=18 N=20

1 7.34E-9 -9.62E-13 -8.55E-16 -4.45E-20 1.03E-23 4.45E-28
2 -9.81E-8 -1.70E-11 1.43E-14 5.34E-18 3.83E-22 -4.76E-26
3 3.19E-7 2.01E-10 1.45E-14 -3.03E-17 -1.14E-20 -1.57E-24
4 -3.05E-7 -4.79E-10 -2.90E-13 -5.93E-17 -9.77E-22 8.48E-26
5 -8.71E-7 7.85E-10 3.56E-12 1.86E-15 -1.79E-18 -5.04E-22
6 2.54E-6 1.40E-8 -2.58E-11 -1.42E-13 1.18E-17 1.69E-19
7 -1.87E-4 4.89E-7 -3.51E-9 1.09E-11 8.77E-15 4.90E-18
8 2.34E-2 -2.70E-4 1.72E-6 -5.94E-9 1.33E-11 -1.95E-14
9 1.30E-1 1.03E-4 -2.30E-5 2.89E-7 -1.74E-9 6.02E-12
10 -4.98E1 -4.31E-1 9.78E-3 -1.26E-4 9.98E-7 -5.03E-9

Table 4: (Example 5.) Exact error erN (xm) at some
points xm for h = 1 for N = 10, 12, ..., 20.

y(a) = α0, y
′
(a) = α1.

To approximate the exact solution y by means of ELGT
we follow the following procedure:

Take a partition a = x0 < x1 < . . . < xM = b of [a,b]
and set h = xi − xi−1.

On each [xi−1, xi], apply ELGT iteratively to linear IVPs,

y
′′
k−fy′y

′
k−fyyk =f(x, yk−1, y

′
k−1)−fy′y

′
k−1−fyyk−1+O(e2),

where e(x) = y−yk−1, and {fy, fy′ , fyy, fy′y′ , fyy′} are
evaluated at (yk−1, y

′
k−1).

For small h, one can safely drop O(e2).

For each cycle, construct yk. Repeat the process until a
prescribed convergence tolerance ε is satisfied.

Example 6. Consider the nonlinear problem [5]

y
′′

+ y + y3 = (cosx + ε sin(10x))3 − 99ε sin(10x), x ≥ 0,

y(0) = 1, y
′
(0) = 10ε,

whose the exact solution is y(x) = cosx + ε sin(10x). I
solved this problem over [0, 200] and measured the error
at x=100 and x=200. The results are given in Table 3.

M h xm ELGT[M,4,0] ELGT[M,4,6]

400 0.5 100.0 1.96E-5 1.60E-6
800 0.25 100.0 2.31E-8 6.20E-10
1600 0.125 100.0 6.90E-11 2.74E-13

400 0.5 200.0 9.04E-6 8.31E-7
800 0.25 200.0 1.16E-8 4.68E-10
1600 0125 200.0 3.36E-11 2.18E-13

Table 5: (Example 6.) The error at the mid-point and
end-point of [0, 200] obtained by ELGT[M,4,K] for M =
400, 800, 1600 and K = 0, 6.

Example 7. The following nonlinear problem was stud-
ied in Papeorgiou et al [10]

y
′′

+ 100y = sin y, x ≥ 0,
y(0) = 0, y

′
(0) = 1.

Exact y(x) is not available, but exact y(20π) =
0.000392823991. We applied ELGT in [0, 20π] and re-
ported the errors at x = 20π in Table 6.

ELGT(M,4) Papageorgiou Tsitouras and
et al [10] Simos [13]

M steps Error M steps Error F. Ev. Error

100 2.66E-4 2400 5.63E-4
200 9.13E-6 4800 9.29E-6
400 6.04E-8 7200 8.24E-7 12000 2.6E-11
800 2.69E-10 14000 3.6E-11
1600 1.50E-12 16000 5.8E-12

Table 6: (Example 7.) The error at x = 20π for the
ELGT and [10].

Example 8. (Duffing problem). The exact solution of

y
′′

+ y + y3 = F cos(Ωx), x ≥ 0,

y(0) = yG(0), y
′
(0) = 0,
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is given by yG(x) =
∑∞

i=0 α2i+1 cos((2i + 1)Ωx), where
α1 = 0.200179477536, α3 = 0.246946143E−3, α5 =
0.304014E−6, α7 = 0.374E−9, α9, α11, . . . < 10−12.

I solved this problem in [0, 20π] with F = 0.002 and Ω =
1.001 for M=50, 100 and 200. The maximum errors over
[0, 20π] were computed and listed in Table 7. My results
are compared to those obtained by the five stage method
introduced in [10]. I also solved the Duffing problem in

ELGT(M,4) Papageorgiou et al [10]
M steps Error M steps Error

50 5.41E-06 600 4.31E-07
100 2.25E-08 1200 6.56E-09
200 9.15E-11 2400 1.05E-10

Table 7: (Example 8.) Maximum errors over [0, 20π] for
ELGT compared to those given in [10].

interval [0, 300] with several number of steps. The results
are listed in Table 8.

Error at x = 300
M steps ELGT Ixaru and Vanden Simos [13]

Berghe [5]

300 6.25E-7 1.10E-3 1.70E-3
600 2.78E-9 5.42E-5 1.88E-4
1200 1.31E-11 1.86E-6 1.37E-5
2400 6.19E-8 8.70E-7
4800 2.40E-9 5.41E-8

Table 8: (Example 8.) The Euclidean norm of the global
error at the end-point x = 300 of [0,300] for ELGT and
EFERKM of Ixaru and Vanden Berghe [5] and by Simos’s
method given in Simos [13], [14].

8 Conclusions and Future Work

In this paper, an exponentially weighted Legendre-Gauss
Tau Method for approximating ODEs with strongly oscil-
latory solution is developed. ELGT involves some weights
with frequencies {ω} being the roots of the quadratic
equation associated with the constant reference equation.
The new method is capable of detecting the sharp vari-
ations of the function throughout a considerably large
interval of integration. The accuracy of ELGT can be
measured either in terms of the step size h or in terms
of N , the degree Legendre polynomial LN . In the former
we obtain an error of order O(h2m) and the latter results
in error of order O( 1

N ! ).

ELGT needs to be tested on Sturm-Liouville problems,
both regular and irregular. A comprehensive treatment
for systems of nonlinear ODEs is not presented here, but
it is possible using Alekseev-Góbner lemma.
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