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Abstract—We employed the genetic algorithm and
its hybrid which is a combination with the steep-
est descent method in estimating the parameters of
a smart beam structure consisting of a cantilever
beam bonded with a pair of piezoceramic patches.
The estimated parameters were the density, stiffness
and internal damping of both the beam and piezo-
ceramic patches and the dielectric constant of the
patches. The performance of these heuristic meth-
ods were compared with the Nelder-Mead method, a
direct search method.
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1 Introduction

Real-time feedback control of a cantilever beam with a
piezoceramic actuator and sensor was experimentally im-
plemented in [1]. To make the system size amenable
for real time computations, the model size was reduced
via the Proper Orthogonal Decomposition (POD). In
[11], feedback control using frequency shaping was imple-
mented on the same experimental system. The model pa-
rameters in [11] were estimated from experimental mea-
surements using least squares formulation.

In this paper, we propose the use of the genetic algo-
rithm and a hybrid extension for parameter estimation
to be done “off-line”, i.e., before the real-time implemen-
tation of feedback control. This optimization algorithm
has the advantage of global convergence, as opposed to
gradient-based methods which require an initial estimate
close to the true solution. This feature is desirable for
cases when book values of the parameters of the smart
material structure are not available. The hybridized al-
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Figure 1: A Cantilever Beam

gorithm attempts to speed up convergence by shifting to
the method of steepest descent as soon as the estimate
given by the heuristic algorithm is deemed close enough
to the true solution.

Section 2 describes the smart beam structure, presents
the strong and weak forms of the equations modeling its
dynamics as well as the cost functional used in parame-
ter estimation. Section 4 outlines the numerical solution
of the partial differential equation and the optimization
algorithms used in parameter estimation. Sections 5 and
6 contain the numerical results and conclusions, respec-
tively.

2 The Model

We consider a homogeneous cantilever beam bonded with
piezoceramic patches (see Figure 1). In order to excite
the beam, a voltage spike is induced on the patches and
corresponding displacements were measured from a cer-
tain point on the beam.

2.1 Mathematical formulation

The experiment we model consists of a beam of length `,
width b, thickness h, density ρ, Young’s modulus E and
Kelvin-Voigt damping cD. A pair of identical piezoce-
ramic patches is attached to a portion of the beam, say
at [x1, x2], with the same length and width b. Patch pa-
rameters will be denoted by the subscript p, so that the
patch thickness, width density and Young’s modulus are
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denoted by hp, bp, ρp, Ep and cDp , respectively.

Let y(t, x) be the displacement of the beam at position x
and time t. The damped Euler-Bernoulli equation is

ρhb
∂2y

∂t2
+ EI

∂4y

∂t4
+ cDI

∂5y

∂x4∂t
= f(t, x),

where the second and third terms in the left-hand side
of the equation are the stiffness and the damping terms,
respectively.

However, the pair of bonded piezoceramic patches con-
tribute to the density, damping and stiffness along the
region covered by the patches. Thus the PDE describing
the transverse beam vibrations with passive patch con-
tribution is given by

(
ρhb+ 2bρphpχp(x)

)∂2y

∂t2

+
∂2

∂x2

{(
EI +

2b
3
Epa3χp(x)

)∂2y

∂x2

}
+

∂2

∂x2

{(
cDI +

2b
3
cDpa3χp(x)

) ∂3y

∂x2∂t

}
=

∂2

∂x2

{1
2
Epbd31(h+ hp)(V1(t)

− V2(t))χp(x)
}

+ f(t, x). (2.1)

Here, a3 = (h/2 + hp)3 − h3/8 and

χp(x) =

{
1, x1 ≤ x ≤ x2

0, otherwise.

The first and second terms on the right-hand side of
Equation (2.1) are the control input and external force,
respectively.

The initial conditions are

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x),

while the cantilever boundary conditions are

y(t, 0) =
∂y

∂x
(t, 0) = 0, Mx(t, `) =

∂Mx

∂x
(t, `) = 0,

where Mx is the internal moment resultant. The latter
may be simplified to

y(t, 0) =
∂y

∂x
(t, 0) = 0,

∂2y

∂x2
(t, `) =

∂3y

∂x2∂t
(t, `) = 0,

∂3y

∂x3
(t, `) =

∂4y

∂x3∂t
(t, `) = 0.

The presence of the characteristic function χp in Equa-
tion (2.1) causes a discontinuity, hence a weak form of the
equation will be employed in the analysis and numerical
approximation.

2.2 Weak formulation and well-posedness

Let the space V of test functions be {φ ∈ H2(0, `) :
φ(0) = φ′(0) = 0}. For brevity, we will write ẏ(t, x) in
place of ∂y/∂t and reserve the prime notation for deriva-
tives with respect to x.

Multiplying both sides of (2.1) by a test function φ(x),
integrating over (0, `) and applying the boundary condi-
tions, we obtain the following weak form of the model

Find y(t, ·) ∈ V such that for all φ ∈ V , we have∫ `

0

(ρhbÿ(t, x))φ(x)dx+
∫ x2

x1

2bρphpÿ(t, x)φ(x)dx

+
∫ `

0

EIy′′(t, x)φ′′(x)dx+
∫ x2

x1

2b
3
Epa3y

′′(t, x)φ′′(x)dx

+
∫ `

0

cDIẏ
′′(t, x)φ′′(x)dx+

∫ x2

x1

2b
3
cDp

a3ẏ
′′(t, x)φ′′(x)dx

=
∫ x2

x1

1
2
Epbd31(h+ hp)(V1(t)− V2(t))φ′′(x)dx

+
∫ `

0

f(t, x)φ(x)dx. (2.2)

Denoting L2(0, `) by H, we can form the Gelfand triple
V ↪→ H ∼= H? ↪→ V ?. To write (2.2) in an abstract form,
we now define two sesquilinear forms σ1 : V × V → C
and σ2 : V × V → C as follows

σ1(ψ, φ) =
∫ `

0

EIψ′′(x)φ′′(x)dx

+
∫ x2

x1

2b
3
Epa3ψ

′′(x)φ′′(x)dx

and

σ2(ψ, φ) =
∫ `

0

cDIψ
′′(x)φ′′(x)dx

+
∫ x2

x1

2b
3
cDp

a3ψ
′′(x)φ′′(x)dx.

Note that σ1 and σ2 are symmetric, continuous and V -
elliptic.

For ψ ∈ V , we define A1ψ by 〈A1ψ, φ〉V ?,V = σ1(ψ, φ),
for all φ ∈ V . The operator A2 corresponding to σ2 is
defined similarly. We further define the operator B̃ : V →
H by B̃φ = 2(Epbd31(h+ hp))−1φ′′. We then have

〈ψ, B̃φ〉H = 〈B̃?ψ, φ〉H = 〈Bψ, φ〉H ,

where we have denoted the adjoint B̃? of B̃ by B.

We thus obtain the following abstract formulation of (2.2)
in variational form: for all φ ∈ V , we have

〈ρhbÿ(t, ·), φ〉H + 〈2bρpÿ(t, ·)χp(·), φ〉H
+ σ1(y(t, ·), φ) + σ2(ẏ(t, ·), φ)

= 〈BV1, φ〉H − 〈BV2, φ〉H + 〈f, φ〉H . (2.3)
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Moreover, we can show that the usual inner product in
L2(0, `) is equivalent to the following inner product in H

〈ψ, φ〉p =
∫ `

0

ρhbψ(x)φ(x)dx+
∫ x2

x1

2bρphpψ(x)φ(x)dx .

Now since for all ψ ∈ V and φ ∈ H, we have 〈ψ, φ〉H =
〈ψ, φ〉V ?,V and Eq. (2.3) can be written as

ÿ +A1y +A2ẏ = B̄u+ f ∈ V ?, (2.4)

with u =
[
V1(t) V2(t)

]T and B̄ =
[
B −B

]
.

Finally, (2.3) can be written in the first order form as

ż = Az + B̂u+ F ∈ V ?, (2.5)

where z = [ y
ẏ ], A =

[
0 I
−A1 −A2

]
, B̂ =

[
0
B̄

]
, and F =

[
0
f

]
.

We now apply the following theorem from [2] to assert
the existence, uniqueness and continuous dependence of
the solution on the initial data

Theorem 2.1. If the sesquilinear forms σ1 and σ2

are symmetric, continuous and V -elliptic for each y0 ∈
V , y1 ∈ H, then (2.4) has a unique solution y, ẏ ∈
L2((0, T ), V ) and ÿ ∈ L2((0, T ), V ?). Furthermore, since
the map (y0, y1, B̄u + F ) → (y, ẏ) is continuous from
V ×H×L2((0, T ), V ?) to L2((0, T ), V ?)×L2((0, T ), V ?),
the solution of (2.4) depends continuously on the data
(y0, y1, B̄u+ F ).

3 Parameter Estimation

Seven parameters of the beam were estimated, namely,
the density ρ, ρp, the Young’s modulus E, Ep, and the
damping cD, cDp

of both the beam and the patches, and
the dielectric constant d31 of the patches. The “true”
values of the parameters, together with those of the mea-
sured parameters (x1, x2, h, `, b, x̂) are given in Table 1.
Since the large difference in their magnitudes could give
rise to difficulties in optimization, the parameters were
normalized by multiplying some constants (see Table 1).

We numerically simulated the data where the parameters
used in simulation served as the true parameters of the
structure. Thus, the PDE was discretized and simulated
using the true parameters in Table 1, and the numerical
data consisted of model displacements at the observation
point x̂. The observation or measurement at x̂ models
the proximity probe in the experimental setup of [1, 11].

Galerkin approximation was used to discretize (2.2). Cu-
bic splines were employed as basis functions because of
smoothness requirements, their accuracy and their adapt-
ability to different boundary conditions with regard to
patch contributions. For N + 1 basis functions, the dis-
cretized PDE will give rise to a system of 2(N + 1)
first-order ordinary differential equations. The latter was
solved using a stiff numerical ODE solver.

Patch parameters Beam parameters

ρp(kg/m3) = 7.450× 103 ρ(kg/m3) = 2.943× 1010

hp(m) = 0.00053 h(m) = 0.001

Ep(N/m3) = 6.400× 1010 E(N/m3) = 7.062×1010

cD(Ns/m3) = 3.960× 105 cDp(Ns/m3) = 1.04× 106

x1(m) = 0.02041 `(m) = .286
x2(m) = 0.04592 b(m) = 0.2543
d31(m/V)=−2.62×10−10 x̂(m) = 0.11076

Normalized parameters

q1 = ρhb q2 = 2bρphp

q3 = EI q4 = 2b
3
Epa3

q5 = cDI q6 = 2b
3
cDpa3

q7 = 1
2
Epbd31 · (h+ hp)

Table 1: Beam and Patch parameters

In our simulations, we used N = 16 standard cubic
splines as was done in [1]. In order to produce trans-
verse vibrations, the voltage spikes were negatives of each
other and were triangular in shape. They had a dura-
tion of 0.001 seconds with a maximum height of 100V at
t = 0.0005 seconds. Beam displacements were measured
from t = 0 to t = 0.01 at 1000 time instances.

Let us denote by yi, (i = 1, . . . , 1000) the displace-
ments using true parameters, and by yN

i (ti, x̂; q) the
model displacements for any given set of parameters
q = [q1, . . . , q7]. We define the cost function by

J =
1000∑
i=1

|yN
i (ti, x̂; q)− yi|

1000 ·max{|yi|2}
. (3.1)

The optimization problem is to find the optimal vector
q = q∗ that minimizes the cost function J . This optimal
vector q∗ will now be the estimated parameters of the
beam.

4 The Optimization Algorithms

The Genetic algorithm (GA) is a heuristic optimization
algorithm modeled on the Darwinian principles of sur-
vival of the fittest, with a random but structured ex-
change of information. For a detailed treatment of this
family of methods, we refer the reader to [3, 4, 7, 9].
While it is observed that GA performs well in solving op-
timization problems, it also requires many function evalu-
ations and is computationally expensive. For this reason,
hybrid GAs are being explored to improve performance
and convergence.

In this work, we employed the standard GA and a hybrid
method that combines GA with the method of steepest
descent. The hybrid method was adopted from [5] and
[6], incorporating some ideas about the shift from local
to global searches used in [8]. The local search employed
here is a first order steepest descent method with back-
tracking line search strategy. This method moves along
the direction of the steepest gradient until some improve-
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ment is found. It ends when no new point can be found
(i.e., when the gradient is zero).

As in [5], we apply an adaptive way of shifting from a
local search to a global search and vice versa. This can
be done by introducing a coefficient of variation, the ratio
of the mean evaluation of the offspring population to its
corresponding standard deviation,

CV =
m

σ
=

mean{J(x), x ∈ X0}√
Var{J(x), x ∈ X0}

,

where J is the cost function. A local search will be called
when this ratio is increasing between two successive gen-
erations (i.e., if CVR > 1), where

CVR =
CV(i)

CV(i− 1)

=
coefficient of variance at generation i

coefficient of variance at generation i− 1
.

We also applied the reduced clustering strategy. In this
strategy, the population is divided into several clusters
such that all associated elements of a certain cluster are
closer to its centroid than to any other centroids. The
local search is then applied to the best element of each
cluster. During the optimization process, the number
of clusters is progressively reduced so as to focus on a
reduced number of local minima.

After implementing the GA and hybrid GA, we also car-
ried out the optimization using the Nelder-Mead method,
a popular non-gradient direct search method that makes
use only of functional evaluations.

All algorithms were implemented using the open source
numerical software Scilab.

5 Numerical Results

In Figure 2, we plot the model using parameters obtained
by the GA, hybrid GA and Nelder-Mead algorithms. The
displacements were taken at the observation point x̂ and
simulation time was up to 0.1 sec. A 10% noise was intro-
duced into the data and the genetic algorithms were run
using the following parameters: 30 generations, 50 indi-
viduals, mutation probability of 0.45 and cross-over prob-
ability of 0.15. Furthermore, the Nelder-Mead parame-
ters were λe = 2;λr = 1;λoc = 0.5;λic = −0.5;λs = 0.5
(see, for example, [10] for details of the Nelder-Mead al-
gorithm).

Note that the plots of the three models in Figure 2 almost
coincide with the true solution.

In Table 2, we present the true parameters and the es-
timated parameters from the three algorithms. As ex-
pected, the genetic algorithms took more function eval-
uations and longer computational time compared with

Figure 2: Plots of the model using true parameters
and parameters obtained from GA, hybrid GA and the
Neldel-Mead algorithms.

the Nelder-Mead algorithm, but their cost function val-
ues are lower. Furthermore, the relative error (‖qtrue −
qest‖/‖qtrue‖) of the estimated parameters (in the ta-
ble) for Nelder-Mead, GA and hybrid GA are 0.0360932,
0.0036765 and 0.0071044, respectively.

True Nelder-Mead GA Hybrid
GA

q1 = 0.7484049 0.72734373 0.74061864 0.74746874
q2 = 2.0082071 2.02196142 2.03912998 1.9561229
q3 = 1.4965555 1.49472319 1.48238625 1.48636416
q4 = 10.499967 10.11023766 10.51907021 10.4443615
q5 = 0.0000220 0.00003784 0.00002211 0.00002142
q6 = 0.0000650 0.00008459 0.00006338 0.00006589
q7 = 0.0032620 0.00323708 0.00324447 0.00324234

Cost (3.1) 0.00644038 0.0000104 0.00000547
CPU time (s) 228.6687 1027.3389 983.3531
Evaluations 265 1305 1476.4

Table 2: True and estimated parameters with 10% data
error. Nelder-mead initial iterates are within 10% of the
true parameters.

6 Conclusions

The global convergence of GA and hybrid GA make them
good optimization algorithms when designing smart ma-
terial structures. Even though these algorithms take
more computational time, the parameter estimation can
be done “off-line”. Real-time parameter estimation might
be necessary, e.g., due to changes in material properties in
time, and for this case, the use of gradient based methods
are more practical. The parameters obtained from GA or
hybrid GA would be good initial guesses for the gradient
based methods.
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