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Abstract—The Euler-Bernoulli uniform elastically
supported beam model with incorporated dissipation
mechanisms is dealt with. Conditions are given to
ensure oscillatory character of solutions.
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1 Conservative systems

The classical linear theory of deformation yields the
Euler-Bernoulli model for transverse vibrations of a
beam. This typical linear elastic system is described by
the partial differential equation for the function (t, x) �→
u(t, x), u : R

+ × (0, �) → R:

�A
∂2u

∂t2
+

∂2

∂x2

(
EI

∂2u

∂x2

)
= 0. (1)

It represents the (oldest yet commonly used) model for
the motion of a straight elastic beam of length �, cross-
sectional area A, mass density �, oriented so that in the
rest configuration the x-axis lies along the neutral axis of
the beam with the end points located at x = 0 and x = �.
The one-dimensional model (1) where the displacement u
depends only on one-dimensional spatial variable x (and
time t) is obtained upon the use of Hooke’s law and other
simplifying assumptions: the thickness and width of the
beam are small compared with the length, cross-sections
of the beam remain plane during any deformation, each
point of the axis performs only motion in a plane per-
pendicular to the axis and all points of the axis move
in one common plane (plane of vibration). The quan-
tity E is the modulus of elasticity of the beam material
and I is the moment of inertia of the cross-section about
an axis through the center of mass perpendicular to the
plane of vibration (centroidal area moment of inertia).
In the particular case of a uniform beam whose material
and geometric properties are independent of x the quan-
tities �, A and the bending stiffness EI are constant and
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Eq. (1) assumes the (constant coefficients) form

∂2u

∂t2
+

EI

�A

∂4u

∂x4
= 0. (2)

The equation is complemented by boundary conditions.
For the sake of definiteness and simplicity let us assume
that the beam is simply supported (or hinged) at its ends.
This means that the edges of the beam cannot translate
in the transverse direction, but they are free to rotate
about the axis perpendicular to the plain of vibration,
i. e. the bending moment M = −EI∂2u/∂x2 vanishes
at the ends. Consequently, the boundary conditions are
given by

u(t, 0) =
∂2u(t, 0)

∂x2
= 0, u(t, �) =

∂2u(t, �)
∂x2

= 0. (3)

The Euler-Bernoulli beam model can be modified in va-
rious ways. For instance, if the beam rests on an elastic
foundation (the modulus of which is γ) or the beam is
subjected to an axial (tensile/compressive) force S we
get

�A
∂2u

∂t2
+ EI

∂4u

∂x4
− S

∂2u

∂x2
+ γ u = 0. (4)

In the Euler-Bernoulli model (and above mentioned modifications)

only translation motion of cross-sections is taken into account and

the effects of rotatory inertia are neglected. This is reasonable only

for a slender beam the cross-sectional dimensions of which are small

in comparison with its length. In contrast, these effects are involved

in a more accurate model due to Rayleigh. A still more complete

model (considered to be the most complete one-dimensional model)

is due to Timoshenko where also shearing deformations are taken

into account (for example rectangular beam elements are deformed

into parallelograms or skew trapezoids). For more detail see [1], [2],

[17], [21].

An important feature of the Euler-Bernoulli model is that
the forces acting on the system can be derived from a
potential energy and the total mechanical energy is con-
served: the system is conservative.

2 Dissipation mechanisms

“Perhaps the most notable disadvantage associated with
conservative systems is the fact that they do not occur in
nature” ([5], p. 433).
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The presence of energy dissipation mechanisms is now
generally accepted in all models used for simulation of
mechanical vibrations in elastic systems. Two kinds of
energy losses are distinguished: external (interaction with
surrounding medium, interface with other physical sys-
tems) and internal (caused by processes within the sys-
tem, e. g. increase of heat energy to the detriment of me-
chanical energy by means of internal friction, thermoelas-
tic effects, etc.). Dissipation mechanisms are often sug-
gested by experimental results. Dissipation mechanisms
are called direct if they give rise to supplementary dissipa-
tion terms in the original conservative equations. On the
other hand, indirect dissipation mechanisms “involve cou-
pling the mechanical equations governing beam motion to
related dissipation systems with additional dynamics, re-
sulting in an overall system in which mechanical energy
is dissipated” ([19], p. 379). Russell introduced two types
of such coupled dissipative systems: the Euler-Bernoulli
(and Timoshenko) beam with thermoelastic damping and
with shear difussion damping (see [19]). Further source of
damping is showed by the so-called hereditary materials,
or material with memory (see e. g. [1]).

Here we shall follow up three types of direct dissipation
mechanisms represented by direct insertion of the follow-
ing terms

(a) 2α0
∂u

∂t
, (b) − 2α1

∂3u

∂t ∂x2
, (c) 2α2

∂5u

∂t ∂x4
(5)

into Eq. (2) (α0, α1 and α2 are (small positive) con-
stants, the factor 2 is written only for computational con-
venience).

The term (a) introduces the so-called external or viscous
damping. The amplitudes of all normal modes of the
vibration (the modal amplitudes) are attenuated at the
same rate (contrary to experience). Normal modes are
terms in the Fourier series expansion of solution u with
respect to the orthogonal set {vk}∞k=1 of eigenfunctions
of the the “elasticity” operator L,

Lv =
d4v

dx4
, v(0) =

d2v(0)
dx2

= 0, v(�) =
d2v(�)
dx2

= 0. (6)

In [5] Chen and Russell proposed the so-called “square
root” (L

1
2 ) model for which the so-called structural

damping is achieved. Basic property (consistent with
empirical studies) is that the amplitudes of the normal
modes of vibration are attenuated at rates which are pro-
portional to the oscillation frequencies (see also [6], [20]).
It is shown in [18] that the positive square root L

1
2 of the

operator (6) is a differential operator

L
1
2 v = −d2v

dx2
, v(0) = v(�) = 0. (7)

Hence, the term 2α1L
1
2 ∂u

∂t is equal just to (b) in (5)
(and, moreover, with very natural interpretation that

the damping force is proportional to the bending rate).
For other boundary conditions, in general, there is a dif-
ference between the square root L

1
2 of the fourth-order

derivative operator and the negative second derivative,
by [18]: − d2v

dx2 = [I + P ]L
1
2 v where P is a bounded, but

in general not compact, operator in L2(0, �).

The presence of an additional term (c) in (2) means that
the damping rates of the normal modes of vibration de-
pend quadratically on frequency at low frequencies (con-
sistent with empirical studies for some materials), high
frequency modes are overdamped (and difficult to ob-
serve at all). This type of damping is the so-called in-
ternal or Kelvin-Voigt damping. A general scheme of
Kelvin-Voigt damping approach which can be applied to
vibration problems of any linear elastic system: damping
forces depend on velocity in the same way as restoring
forces depend on displacement.

The Euler-Bernoulli beam model equation under presence
of damping terms, axial force and (in general nonlinear)
elastic foundation assumes the form

∂2u

∂t2
+

EI

�A

∂4u

∂x4
− S

�A

∂2u

∂x2
+ σ(u) +

+ 2
(

α0
∂u

∂t
− α1

∂3u

∂t ∂x2
+ α2

∂5u

∂t ∂x4

)
= 0. (8)

3 Setting of the problem

Let I = (0, �), H = L2(I) and V = W 2
2 (I) ∩

◦
W 1

2 (I). We
identify H with its dual H ′ and H ′ with a dense subspace
of the dual V ′ of V , thus V ⊂ H ⊂ V ′, both embedding
are continuous and dense and it is correct to denote the
duality pairing on V ′×V by the same symbol 〈·, ·〉 as the
scalar product in H.

The operator (6) may can be viewed either as an unboun-
ded positive definite selfadjoint operator L : D(L) → H
where D(L) = {v ∈ W 4

2 (I) | v(0) = v(�) = 0, v′′(0) =
v′′(�) = 0}, either as an isomorphism of V onto V ′.

For the square root L
1
2 of L it holds D(L

1
2 ) = V and

〈Lw, v〉 = 〈L 1
2 w, L

1
2 v〉 for w, v ∈ V .

In terms of the operator L Eq. (8) can be subsumed in
the following abstract differential equation

ü +
(
a1 L

1
2 + a2 L

)
u + σ(u) +

+ 2
(
α0 + α1 L

1
2 + α2 L

)
u̇ = 0, (9)

where a1, a2, α0, α1, α2 are constants. The function u �→
σ(u) will be assumed (for definiteness and simplicity) in
the form σ(u) = σ+ u+−σ− u− where u± = max {±u, 0}
and σ+ and σ− are constants (in particular, if σ+ = σ− =
σ0 then σ(u) = σ0u).
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By an energy solution of Eq. (9) we mean a function
u ∈ C(R+;V ) ∩ C1(R+;H) ∩ C2(R+;V ′) such that for
any compact interval J ⊂ R

+ the equality
∫

J

[
〈−u̇− 2

(
α0 + α1 L

1
2 + α2 L

)
u, ż(t)〉 +

+ 〈(a1 L
1
2 + a2 L

)
u + σ(u), z(t)〉

]
dt = 0 (10)

holds for any z ∈
◦

W 1
2 (J ; V ) (the test function z belongs

to this space if and only if z : J → V is an absolutely con-
tinuous function, z vanishes at boundary points of J , the
(strong) derivative ż exists almost everywhere on J and
ż ∈ L2(J ;V )). A solution u is (by embedding theorems)
a continuous function on R

+ × Ī. The uniqueness of a
solution is achieved by prescribing values u and u̇ (in V
and H, respectively) for some t0 ∈ R

+.

4 Globally oscillatory solutions

For how long time period at most can a non-zero solution
remain non-negative (non-positive) on the interval I? To
answer this question we use the concepts of oscillatory
time and globally oscillatory function (cf. [4]).

A continuous function u : R
+ × I → R is called globally

oscillatory (about zero at +∞) if there exists the so-called
oscillatory time Θ > 0 such that for any interval J ⊂ R

+

the length |J | of which is greater than Θ the function
u changes the sign on the set J × I, i. e. there exist
couples (t1, x1), (t2, x2) ∈ J × I such that u(t1, x1) <
0 < u(t2, x2), and, consequently, u(t0, x0) = 0 for some
(t0, x0) ∈ J × I. (The concept of a globally oscillatory
function is used even for functions which may fail to be
continuous, cf. [4], [11].)

Eq. (9) is called uniformly globally oscillatory (about zero
at +∞) is there exists (the so-called uniform) oscillatory
time Θ such that any non-zero energy solution is globally
oscillatory with the same oscillatory time.

For examples of uniformly globally oscillatory equations
of mathematical physics see [3], [4], [7]-[9], [11]-[15], [22].

We formulate conditions in order Eq. (9) be uniformly
globally oscillatory. The evaluation of the uniform os-
cillatory time Θ can be done by means of the so-called
summit function (q, p) �→ ϑq

p; we refer to [10] where this
function is introduced and studied.

The results are based on the special properties of the
first frequency-mode pair, namely, on the existence of
λ1, the smallest eigenvalue of the eigenvalue problem for
operator (6) that is positive and on the existence of the
corresponding eigenfunction (modal function) v1 that can
be chosen positive in I. In our case Lv1 = λ1v1,

λ1 =
(π

�

)4

and v1 = sin
πx

�
. (11)

Theorem. Let a1, a2, α0, α1, α2, σ+, σ− ∈ R, a2 > 0.
Denote

α = α0 + α1

√
λ1 + α2λ1, (12)

E = min{σ+, σ−}+ a1

√
λ1 + a2λ1 (13)

and assume

E > 0, |α| <
√

E. (14)

Then Eq. (9) is uniformly globally oscillatory and the uni-
form oscillatory time is given by

Θ = ϑE
−|α| + ϑE

0 . (15)

Proof. We prove that any non-zero solution cannot re-
main of one sign in I for any time period J ⊂ R

+ greater
than Θ. By contradiction, let us assume that u is non-
negative on J × I where J ⊂ R

+ is any interval with the
length |J | greater than (15). We prove that u ≡ 0 in
R

+ × I.

By (14) we can choose ε > 0 such that |α| < E − ε and

|J | ≥ ϑE−ε
−|α| + ϑE−ε

0 > ϑE
−|α| + ϑE

0 .

(the function ϑq
p is monotonically decreasing in the vari-

able q if p is fixed, we refer again to [10]). Let us now
take any subinterval (τ1, τ2) of the interval J of the length
ϑE−ε
−|α|+ϑE−ε

0 . We choose a special test function z in (10)
in the form z = γ(t) v1 where v1 is the eigenfunction of L
from (11) and γ is the function possessing the following
properties:

• γ ∈ C2([τ1, τ2]),

• γ > 0 in (τ1, τ2), γ(τ1) = γ(τ2) = 0,

• γ̇(τ1) > 0, γ̇(τ2) < 0,

• γ̈ − 2 (α+γ̇+ + α−γ̇−) + (E − ε) γ = 0 in (τ1, τ2),

where α± = max {±α, 0 }, γ̇±(t) = max {±γ̇(t), 0}. An
explicit form of such a function can be found in [10].
(In terms introduced in [10] the function γ is the τ1–
shift t �→ c(t − τ1) of the universal comparison function
c(t) = C(t, q, p, n) corresponding to q = E − ε, p = −α+

and n = −α−.)

Inserting z(t) = γ(t) v1 (and zero outside of (τ1, τ2)) into
(10) and using L

1
2 v1 =

√
λ1 v1 we get

0 ≥ γ̇(τ1) 〈u(τ1, ·), v1〉 − γ̇(τ2) 〈u(τ2, ·), v1〉+

+
∫ τ2

τ1

[
γ̈ − 2(α+γ̇+ + α−γ̇−) + E γ

] 〈u, v1〉 dt ≥

≥ ε

∫ τ2

τ1

γ 〈u, v1〉 dt.

Due to the fact v1 > 0 in I and γ > 0 in (τ1, τ2) we
have u ≡ 0 in (τ1, τ2)× I, hence u ≡ 0 in J × I because
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(τ1, τ2) is arbitrary and consequently u ≡ 0 in R
+ × I

by virtue of the unique solvability of the initial boundary
value problem for Eq. (9).

The same conclusion u ≡ 0 is obtained if we assume u ≤ 0
on J × I where J ⊂ R

+ is any interval the length |J | of
which is greater than (15). The proof is complete.

Remark. Many differential operators exhibit similar
properties as the operator L, namely the positivity of
the first eigenvalue and the positivity of the correspond-
ing eigenfunction. Analogous suitable properties are en-
countered with a number of abstract operators in ordered
Banach spaces (see e. g. [16]). Moreover, it is possible to
define the notion of oscillation for abstract-valued func-
tions with values in abstract ordered Banach spaces (non-
negativity of a function is replaced by its appearance in
the cone defined by the ordering). This makes it possible
to define and investigate oscillatory properties of Eq. (9)
in a more general setting as an abstract evolution equa-
tion where L is a (positive definite, selfadjoint, with com-
pact resolvent) operator L on an abstract Hilbert space
H (see [13]) or even to cope with more general equations
involving nonlinear operators (see [11]).
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