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Abstract—The effectiveness of a proportional feed-

back control to suppress the Marangoni instability in

a variable-viscosity fluid layer with a deformable free

upper surface is investigated. Viscosity variation and

deformable free surface have destabilizing effects on

the stability limit. The stability thresholds for the

short-scale mode are strongly dependent on viscos-

ity variation and controller gain while the stability

thresholds for the long-scale mode are greatly influ-

enced by gravity and surface deformation. The feed-

back control strategy through thermal perturbation

in the boundary data is shown effective in suppress-

ing the Marangoni convection and delaying the onset

of instability.

Keywords: Marangoni convection, feedback control,

variable viscosity, deformable surface, instability

1 Introduction

Surface-tension-driven and buoyancy-driven convective
flows have long been studied since the pioneering works
of Benard [1], Rayleigh [2] and Pearson [3]. Convective
flows are of practical importance in material processing
technology in industrial applications. The industrial need
has motivated extensive theoretical, experimental and
numerical investigations to clarify the onset mechanism
of the instability. Since convective flows are undesirable,
it is beneficial to have a means to control the convec-
tive motions and achieve the preferable flow characteris-
tics. Tang and Bau [4, 5] successfully applied the feed-
back control strategy to suppress the Rayleigh-Bénard
convection. Bau [6] demonstrated that a proportional
feedback control was effective in delaying the onset of
convection in Marangoni-Bénard problems of Pearson [3]
and Takashima [13, 14]. Arifin et al. [7] investigated the
effect of a feedback control on Marangoni-Bénard convec-
tion for a free-slip bottom.

The stabilising effects of magnetic field and rotation on
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Marangoni convection have been analysed by Hashim
and Arifin [8], Hashim and Sarma [9, 10] and Sarma
and Hashim [11]. The aforementioned studies only dealt
with fluids with invariant viscosity. However, viscos-
ity of most fluids is known to decrease with temper-
ature [15] and has a destabilising effect on convection
[16, 17, 18, 19, 20]. Slavtchev and Ouzounov [19] stud-
ied the destabilising effect of temperature-dependent vis-
cosity in the Marangoni problem in microgravity. The
effects of viscosity variation, gravity waves and surface
deformation on Marangoni instability has been analysed
by Kalitzova-Kurteva et al. [20].

In this paper, we will demonstrate the possibility to al-
ter the stability characteristics in Marangoni problem of
a temperature-dependent-viscosity fluid layer. The ther-
mal proportional feedback control is employed to sup-
press the intensity of Marangoni convection. We will
show that the critical Marangoni number can be increased
to delay the onset of convection and appreciably to sta-
bilise the liquid layer.

2 Problem Formulation

2.1 Governing equations

Consider a horizontal layer of quiescent fluid of depth d
on a rigid heat-conducting wall with a free upper sur-
face. Variations of the dynamic viscosity µ and the sur-
face tension σ of the fluid with temperature are assumed
exponential and linear, respectively,

µ = µ0 exp [−γ (T − T0)] , (1)

σ = σ0 − ε (T − T0) , (2)

where T is the temperature of the liquid, µ0 and σ0 cor-
respond to values at a reference temperature T0, γ and
ε, which are positive for most fluids, correspond to the
rate of change of the dynamic viscosity and the surface
tension with temperature, respectively. Other physical
properties of the liquid are assumed constant. The sur-
face of the horizontal wall coincides with the xy-plane
and the z-coordinate measures the vertical distance from
the wall.

In the reference state, the fluid is at rest with the pressure
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and the liquid temperature are

pst = pg + ρg (d − z) , (3)

Tst = Tw − βz, (4)

where pg is the gas pressure, ρ the density, g the acceler-
ation due to gravity, Tw the temperature at the wall and
β > 0. When motion sets in, the velocity v = (u, v, w),
pressure p and temperature T fields obey the usual bal-
ance equations of mass, momentum and energy [20],

∇ · v = 0, (5)

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + ∇ · (2µDv) + ρg, (6)

∂T

∂t
+ (v · ∇) T = χ∇2T, (7)

where χ is the thermal diffusivity, g(0, 0,−g) the gravi-
tational acceleration, and D the deformation rate tensor.

2.2 Linearised controlled problem

We wish to extend the work of Kalitzova-Kurteva et
al. [20] by applying a simple control mechanism of Bau [6]
to suppress the intensity of convection and subsequently
delay the onset of convection. The stability of the liquid
system under controlled environment will be studied by
applying a very simple linear active control of propor-
tional feedback. Thermal control strategy can be easily
applied and thus simplify the problem of mathematical
formulation to a large extent where a slight modification
in the temperature field does not alter the internal mech-
anism in the system. The temperature perturbation field
is measured by a continuous distribution of sensors em-
bedded in a plane parallel to the xy-plane at a chosen
level. Each sensor emits signals to a thermal actuator
positioned directly beneath it on the heated surface. By
the proportional feedback rule, the actuator modifies the
heated surface temperature using a proportional relation-
ship between the temperature at the upper surface, z=1,
and the lower surface, z=0, [6]

T (x, y, 0, t) = T (x, y, 0)

−K [T (x, y, 1, t) − T (x, y, 1)] , (8)

or equivalently

T ′(x, y, 0, t) = −KT ′(x, y, 1, t), (9)

where K is the controller gain and T ′ denotes the devia-
tion of the fluid’s temperature from its conductive value.

The stability of the problem will be investigated by per-
forming a linear stability analysis. In formulation of the
dynamic conditions in the liquid system, the governing
equations and boundary conditions are linearised. We
consider a small disturbance,

(w′, T ′, ζ) = [−W (z), Θ(z), Z] exp
[

i (αxx + αyy)

+ωt
]

, (10)

where ζ = ζ(x, y, t) is the deviation from the flat
free surface, W (z), Θ(z) and Z the amplitudes, α =
(

α2

x + α2

y

)1/2
the wave number, and ω the time constant.

Substituting (10) into the linearised equations from (5)–
(7) and introducing the quantities d, d2/χ, χ/d, µ0χ/d2,
and βd as the scales for distance, time, velocity, pressure,
and temperature, respectively, yield [20]

f(z)
[(

D2 − α2 + N2 + 2ND
) (

D2 − α2
)

+2N2α2
]

W = Pr−1ω
(

D2 − α2
)

W, (11)
[

ω −
(

D2 − α2
)]

Θ = −W, (12)

where D = d/dz.

The boundary conditions at both surface boundaries, z =
0 and z = 1, comprise of,

W (0) = DW (0) = 0, (13)

W (1) + ωZ = 0, (14)

f(1)
[(

D2 − 3α2
)

DW (1) + N
(

D2 + α2
)

W (1)
]

+
α2

(

Bo + α2
)

Z

Cr
= Pr−1ωDW (1), (15)

f(1)
(

D2 + α2
)

W (1) − α2Ma [θ(1) − Z] = 0, (16)

DΘ(1) + Bi [Θ(1) − Z] = 0, (17)

while the uniform temperature boundary at the wall sur-
face, z = 0, is reinstated to include a controller rule with
gain K,

Θ(0) + KΘ(1) = 0. (18)

The dimensionless parameters are Ma = εβd2/χµ0 the
Marangoni number, Cr = µ0χ/σd the Crispation num-
ber, Bo = ρgd2/σ0 the Bond number, Bi = hd/λ the Biot
number, Pr = µ0/ρχ the Prandtl number and N = γβd
the viscosity parameter where λ is the thermal conduc-
tivity of the fluid and h is the heat transfer coefficient
between the liquid and the gas phase at the upper free
surface. The function f(z) is given by

f(z) = exp

[

N

(

z − 1 +
T0 − Ts

βd

)]

. (19)

In relation with some previous works of controlled and
uncontrolled systems, when N = 0, the system (11)–
(18) reduces to a system of a constant-viscosity liquid
with the application of a feedback control considered by
Bau [6]. For K = 0 and N = 0 the system coincides
with a constant-viscosity liquid of Marangoni problem of
Takashima [13]. When K = 0 and Cr = 0 we recover the
variable-viscosity Marangoni problem of Slavtchev and
Ouzounov [19] with the nondeformable free surface and
setting K = 0, N = 0 and Cr = 0, we recover the classi-
cal Marangoni problem of Pearson [3].
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Since the dynamic viscosity of the fluid varies with
temperature, the reference temperature for a variable-
viscosity fluid can be taken as temperature at the bot-
tom boundary µw, temperature at the upper free sur-
face µs or mean value of viscosities at both boundaries
µ = (µw + µs)/2 [19, 20]. The system (11)–(18) will
be solved for Mas, the Marangoni number corresponds
to µs. Then, Mas will be used to determine the mean
Marangoni number Ma given by

Ma =
2εβd2

χ (µs + µw)
=

2Mas

1 − exp(−N)
, (20)

in relation to the modified Crispation number for the
mean value of viscosities,

Cr =
χ (µs + µw)

2σd
=

[1 − exp(−N)] Cr

2
. (21)

Thus, our conclusions of the Marangoni instability will
be based on the marginal stability curves Ma.

We restrict to the case of a deformable surface Cr 6= 0
and consider the influences of no gravity Bo = 0, grav-
ity waves Bo = 0.1 and the heat transfer mechanism at
the free upper surface Bi = 0 and Bi = 0.1. Bo = 0.1
is representative for thin layers of some oils used in ex-
periments on earth [20]. Bi = 0 represents a thermally
perfectly insulated free surface and is considered as the
most unstable situation since the whole thermal energy
communicated in the system remains inside the liquid
layer. We also include Bi = 0.1 since the Biot number Bi
is at most 0.1 for a thin layer of liquid.

3 Results and discussion

We seek a closed form solution for the marginal stability
curves of the steady (ω = 0) Marangoni convection and
by setting ω = 0 in (11), the solution for W (z) which
satisfies the boundary conditions (13) and (14) is,

W (z) = A1

{

[exp(k1z) − exp(k2z)] cos(k3z)

− [A2 exp(k1z) − A3 exp(k2z)] sin(k3z)
}

,

(22)

where A1 is an arbitrary constant and k1, k2, k3, k, A2 and
A3 are given by,

k1 = −N

2
+

1√
2

(

k2 + α2 +
N2

4

)1/2

, (23)

k2 = −N

2
− 1√

2

(

k2 + α2 +
N2

4

)1/2

, (24)

k3 =
1√
2

[

k2 −
(

α2 +
N2

4

)]1/2

, (25)

k =

[

(

α2 +
N2

4

)2

+ α2N2

]1/4

, (26)

A2 = cot k3 +
(k2 − k1) exp (k2 − k1)

k3 [1 − exp (k2 − k1)]
, (27)

A3 = cot k3 +
k2 − k1

k3 [1 − exp (k2 − k1)]
. (28)

Substituting W (z) in (12), the complete solution for the
temperature is

Θ(z) = F1 sinh(αz) + F2 cosh(αz) + Θp(z), (29)

where F1 and F2 are to be determined from the boundary
conditions (17) and (18). Θp(z) denotes the particular
solution corresponding to the nonhomogeneous equation
involving W (z). Thus,

Θp(z) = A1

{

[C1 exp (k1z) + C2 exp (k2z)] cos(k3z)

+ [C3 exp (k1z) + C4 exp (k2z)] sin (k3z)
}

,

(30)

where

C1 =
2A2k1k3 +

(

k2

1 − k2

3 − α2
)

4k2

1
k2

3
+ (k2

1
− k2

3
− α2)

2
, (31)

C2 = −
2A3k2k3 +

(

k2
2 − k2

3 − α2
)

4k2

2
k2

3
+ (k2

2
− k2

3
− α2)

2
, (32)

C3 =
2k1k3 − A2

(

k2

1
− k2

3
− α2

)

4k2
1
k2
3

+ (k2
1
− k2

3
− α2)

2
, (33)

C4 = −
2k2k3 − A3

(

k2

2
− k2

3
− α2

)

4k2

2
k2

3
+ (k2

2
− k2

3
− α2)

2
. (34)

The expressions for W (z) and the derivatives of W (z) and
Θp(z) at z = 1 for the determination of the remaining
unknown quantities are listed as follows,

W (1) = A1

[

(expk1 − exp k2) cos k3

− (A2 expk1 − A3 expk2) sin k3

]

, (35)

D2W (1) = A1

{[

(

k2

1 − k2

3 − 2A2k1k3

)

expk1

+
(

2A3k2k3 − k2

2
+ k2

3

)

exp k2

]

cos k3

+
[

(

A2k
2

3
− A2k

2

1
− 2k1k3

)

exp k1

+
(

2k2k3 + A3k
2

2 − A3k
2

3

)

exp k2

]

sink3

}

,

(36)

D3W (1) = A1

{[

(

k3

1 − 3k2

3k1 − 3A2k3k
2

1

+A2k
3

3

)

expk1 +
(

3k2

3k2 + 3A3k3k
2

2

−k3

2
− A3k

3

3

)

exp k2

]

cos k3

+
[

(

k3

3 + 3A2k
2

3k1 − 3k3k
2

1 − A2k
3

1

)

exp k1

+
(

3k3k
2

2 − k3

3 + A3k
3

2

−3A3k
2

3k2

)

expk2

]

sin k3

}

(37)
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Θp(1) = A1

[

(C1 exp k1 + C2 exp k2) cos k3

+ (C3 exp k1 + C4 exp k2) sin k3

]

, (38)

DΘp(1) = A1

{

[

(C1k1 + C3k3) exp k1

+ (C2k2 + C4k3) exp k2

]

cos k3

+
[

(C3k1 − C1k3) exp k1

+ (C4k2 − C2k3) exp k2

]

sink3

}

. (39)

Therefore, we obtain the coefficients F1 and F2,

F1 =
1

R1

{

α sinhα [A1 (C1 + C2) + KΘp(1)]

−DΘp(1) − BiΘp(1)

+ coshα
[

BiA1 (C1 + C2) − KDΘp(1)
]

}

+
BiCrR2(1 + K coshα)

R1α2 (Bo + α2)
, (40)

F2 = −A(C1 + C2) + KF1 sinhα + KΘp(1)

1 + K coshα
, (41)

where

R1 = α coshα + Bi sinhα + αK, (42)

R2 = −D3W (1) + 3α2DW (1) − ND2W (1)

−Nα2W (1). (43)

The magnitude of the surface deflection Z can be cal-
culated from (15). From boundary condition (16), we
obtain an expression for Mas in terms of α, K, N, Cr, Bi
and Bo which can be conveniently written in the form

Mas = −
R1

(

Bo + α2
) [

α2W (1) + D2W (1)
]

R3

,(44)

where

R3 = α coshα
{

α2Θp(1)
(

Bo + α2
)

−
[

3α2DW (1) − D3W (1) − ND2W (1)

−Nα2W (1)
]

Cr
}

− α2 sinhαDΘp(1)
(

Bo + α2
)

−α3A1

(

Bo + α2
)

(C1 + C2)

+αKCr
[

D3W (1) − 3α2DW (1)

+ND2W (1) + Nα2W (1)
]

. (45)

Fig. 1 shows the marginal stability curves for a case of
a deformable surface Cr = 0.001 and Bi = 0 for some
parameters values of Bo, N and K. Each curve has two
local minima, one at α = 0 of long-scale mode and the
other one at α > 0 of the short-scale mode. In Fig. 1(a),
when Bo = 0 the global minima are at α = 0 indicating
that only the long-scale mode dominates where the con-
troller gain K is not effective. When the gravity waves
are considered Bo = 0.1, as shown in Fig. 1(b), the local

minimum at α = 0 has a nonzero mean Marangoni num-
ber Ma. As the value of the controller gain K increases,
the marginal stability profile increases but as the viscosity
parameter increases, the marginal profile decreases. The
global minima for constant-viscosity fluid are at α = 0
while the global minima for a variable-viscosity fluid of
N = 8 are at α > 0.

Figs. 2 and 3 show the effects of viscosity variation N
and controller gain K on Mac and αc for Bo = 0.1 and
Cr = 0.001. In Fig. 2, there exists a critical value of
viscosity parameter, say N∗ where when N < N∗, Mac

increases and when N > N∗, Mac decreases. Mac for
Bi = 0.1 is slightly higher than Mac for Bi = 0. The
long-scale mode occurs when N < N∗ while the short-
scale dominates when N > N∗ and αc decreases as N
increases. When N = N∗, both modes co-exist marked
by discontinuous jumps (vertical lines) of αc from zeros
to nonzero values. As K increases, the effect of Bi on αc

weakens. In Fig. 3, there exists a critical value of con-
troller gain, say K∗ where when K < K∗, Mac increases
in a short-scale mode but when K > K∗, Mac is insen-
sitive of K in a long-scale mode. When K = K∗, both
modes occur with transitions from an increasing Mac to
a stable Mac and from a short-scale mode to a long-scale
mode.

The effect of deformable surface on the marginal curves,
Mac and αc are depicted in Fig. 4 and 5. The curve for a
deformable surface Cr 6= 0 differs fundamentally from the
curve for a nondeformable surface Cr = 0. There exist
two local minima for Cr 6= 0 instead of one minimum
for the case Cr = 0. When the surface is increasingly
deformed, the minimum at α > 0 is invariant but the
minimum at α = 0 decreases. There exists a value of Cr

∗

to mark the transition from invariant Mac to a decreasing
Mac as well as the transition from the short-scale mode
to a long scale mode. When Cr < Cr

∗

, there is a weak
effect of Cr on Mac but strong effects of K and N on
Mac. When Cr > Cr

∗

and increases, Mac decreases,
long-scale mode dominates and the effects of K and N
weaken.

Viscosity variation and deformable surface inhibit convec-
tive motion and have destabilizing effects on the stability
thresholds. The use of a proportional feedback control is
effective in increasing the critical Mac and stabilising the
liquid layer.

4 Conclusions

Proportional feedback control has been used to in-
vestigate and suppress the Marangoni instability in a
temperature-dependent-viscosity fluid layer with a de-
formable upper surface. Viscosity variation and de-
formable surface have destabilising effects on the stabil-
ity thresholds and the use of feedback control is shown
effective in suppressing the Marangoni convection in a
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Figure 1: Marginal curves (a) Bo = 0 (b) Bo = 0.1 for Bi = 0, Cr = 0.001 and various N and K.

temperature-dependent-viscosity liquid layer.
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Figure 2: Effect of N on (a) Mac (b) αc for Bo = 0.1, Cr = 0.001, Bi = 0, 0.1 and K = 0, 1, 5.
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Figure 4: Marginal curves (a) K = 0 (b) K = 1 for Bi = 0, Bo = 0.1, N = 1.5 and various Cr.
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Figure 5: Effect of Cr on (a) Mac (b) αc for Bi = 0, Bo = 0.1 and various N and K.
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