Baire's Theorem in Probabilistic Modular spaces

Kourosh Nourouzi *

Abstract— A real linear space X equipped with a probabilistic-valued function ρ defined on X is called a probabilistic modular space if it satisfies the following conditions:

i. $\rho_x(0) = 0$, ii. $\rho_x(t) = 1$ for all t > 0 iff x = 0, iii. $\rho_{-x}(t) = \rho_x(t)$, iv. $\rho_{\alpha x+\beta y}(s+t) \ge \rho_x(s) \land \rho_y(t)$ for all $x, y \in X$, and $\alpha, \beta, s, t \in \mathcal{R}_0^+, \ \alpha + \beta = 1$.

In this note, we give a modular formulation of Baire's Theorem in probabilistic modular spaces.

Keywords: Modular Space, Probabilistic Modular space, Baire's Theorem

1 Introduction

A modular on a real linear space X is a real functional μ on X satisfying the following conditions:

1. $\mu(x) = 0$ iff x = 0, 2. $\mu(x) = \mu(-x)$, 3. $\mu(\alpha x + \beta y) \le \mu(x) + \mu(y)$, for all $x, y \in X$ and $\alpha, \beta \ge 0, \alpha + \beta = 1$.

Then, the vector subspace

$$X_{\mu} = \{ x \in X : \mu(ax) \to 0 \text{ as } a \to 0 \},\$$

of X is called a modular space.

Such spaces were considered for instance in [1, 2, 3]. The notions of modular and probabilistic metric spaces [4] provide the inspiration for introducing a new concept that it is called a probabilistic modular space in this note. We aim to investigate the Baire's Theorem in such spaces.

2 Probabilistic Modulars

A function $f : \mathcal{R} \longrightarrow \mathcal{R}_0^+$ is called a distribution function if it is non-decreasing and left-continuous with $\inf_{t \in \mathcal{R}} f(t) = 0$, and $\sup_{t \in \mathcal{R}} f(t) = 1$.

Definition 1 A pair (X, ρ) will be said a probabilistic modular space if X is a real vector space, ρ is a mapping

from X into the set of all distribution functions (for $x \in X$, the distribution function $\rho(x)$ is denoted by ρ_x , and $\rho_x(t)$ is the value ρ_x at $t \in \mathcal{R}$) satisfying the following conditions:

1. $\rho_x(0) = 0$, 2. $\rho_x(t) = 1$ for all t > 0 iff x = 0, 3. $\rho_{-x}(t) = \rho_x(t)$, 4. $\rho_{\alpha x + \beta y}(s + t) \ge \rho_x(s) \land \rho_y(t)$ for all $x, y \in X$, and $\alpha, \beta, s, t \in \mathcal{R}_0^+, \alpha + \beta = 1$.

We say that (X, ρ) satisfies Δ_2 -condition if there exists c > 0 (Δ_2 -constant) such that $\rho_{2x}(t) \ge \rho_x(\frac{t}{c})$ for all $x \in X$ and t > 0.

Example 1 Suppose that X is a real vector space and μ is a modular on X. Define

$$p_x(t) = \begin{cases} 0 & t \le 0\\ \frac{t}{t+\mu(x)} & t > 0 \end{cases}$$

Then (X, ρ) is a probabilistic modular space.

ł

Example 2 Suppose that X is a real vector space and μ is a modular on X. Define

$$\rho_x(t) = \begin{cases} 0 & t \le \mu(x) \\ 1 & t > \mu(x) \end{cases}$$

Then (X, ρ) is a probabilistic modular space.

Definition 2 Let (X, ρ) be a probabilistic modular space.

- A sequence (x_n) in X is said to be ρ -convergent to a point $x \in X$ and denoted by $x_n \to x$ if for every t > 0 and $r \in (0, 1)$, there exists a positive integer k such that $\rho_{x_n-x}(t) > 1 - r$ for all $n \ge k$.
- A sequence (x_n) in X is called a ρ -Cuachy sequence if for every t > 0 and $r \in (0, 1)$, there exists a positive integer k such that $\rho_{x_n-x_m}(t) > 1-r$, for all $m, n \ge k$.
- The modular space (X, ρ) is said to be ρ -complete if each ρ -Cauchy sequence in X is ρ -convergent to a point of X.

^{*}This research was in part supported by a grant from IPM (No. 86470033). Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O.Box 19395-5746, Tehran, Iran. (nourouzi@mail.ipm.ir) Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.(nourouzi@kntu.ac.ir)

Proceedings of the World Congress on Engineering 2008 Vol II WCE 2008, July 2 - 4, 2008, London, U.K.

- The ρ -closure of a subset E of X is denoted by \overline{E} and defined by the set of all $x \in X$ such that there is a sequence (x_n) of elements of E such that $x_n \to x$. The subset E is ρ -dense in X if $\overline{E} = X$.
- For $x \in X$, t > 0, and 0 < r < 1, the ρ -ball centered at x with radius r is defined by

$$B(x, r, t) = \{ y \in X : \rho_{x-y}(t) > 1 - r \}.$$

An element x ∈ E is called a ρ-interior point of E if there are r ∈ (0,1) and t > 0 such that B(x,r,t) ⊆ E. We say that E is ρ-open in X if each element of E is a ρ-interior point.

Baire's Theorem. Let (X, ρ) be a ρ -complete probabilistic modular space satisfying Δ_2 -condition. If (\mathcal{O}_n) is a sequence of ρ -open and ρ -dense subsets of X, then $\bigcap_1^{\infty} \mathcal{O}_n$ is ρ -dense in X.

Proof First of all note that if B(x, r, t) is a ball in Xand y is an arbitrary element of it, then $\rho_{x-y}(t) > 1-r$. Since $\rho_{x-y}(\cdot)$ is left continuous, there is $\epsilon_y > 0$ such that $\rho_{x-y}(\frac{t-\epsilon}{c}) > 1-r$, for all $\epsilon > 0$ with $\frac{t-\epsilon}{c} > 0$ and $\frac{\epsilon}{c} \in (0, \epsilon_y)$, where c is the Δ_2 -constant. If 0 < r' < r, $\frac{\epsilon}{c} \in (0, \epsilon_y)$, and $z \in \overline{B}(y, r', \frac{\epsilon}{2c^2})$, then there exists a sequence (z_n) in $\overline{B}(y, r', \frac{\epsilon}{2c^2})$ such that $z_n \to z$ and hence we have

$$\begin{array}{ll} \rho_{z-y}(\frac{\epsilon}{c}) & \geq & \rho_{(z-z_n)}(\frac{\epsilon}{2c^2}) \wedge \rho_{(y-z_n)}(\frac{\epsilon}{2c^2}), \\ & > & 1-r, \end{array}$$

for some $n \in \mathcal{N}$. Thus,

$$\begin{array}{rcl}
\rho_{x-z}(t) & \geq & \rho_{2(z-y)}(\epsilon) \wedge \rho_{2(x-y)}(t-\epsilon), \\
& \geq & \rho_{z-y}(\frac{\epsilon}{c}) \wedge \rho_{x-y}(\frac{t-\epsilon}{c}), \\
& > & 1-r,
\end{array}$$

i.e., $\overline{B}(y, r', \frac{\epsilon}{2c^2}) \subseteq B(x, r, t)$. It implies that if A is a nonempty ρ -open set of X, then $A \cap \mathcal{O}_1$ is non-empty and ρ -open. Thus it contains a ball $B(x_0, r_0, \frac{t_0}{c})$. By induction, we choose $x_n \in X, r_n \in (0, 1)$, and $t_n > 0$ as follows: With x_i, r_i , and t_i if i < n, we see that

$$\mathcal{O}_n \cap B(x_{n-1}, r_{n-1}, \frac{t_{n-1}}{c}),$$

is non-empty and ρ -open, therefore we can choose x_n, r_n, t_n so that $0 < t_n < \frac{1}{n}, 0 < r_n < \min\{r_{n-1}, \frac{1}{n}\}$ and

$$\overline{B}(x_n, r_n, \frac{t_n}{c}) \subseteq \mathcal{O}_n \cap B(x_{n-1}, r_{n-1}, \frac{t_{n-1}}{c}).$$

Now (x_n) is ρ -Cauchy. Because, if 0 < r < 1, and t > 0, we can choose $k \in \mathcal{N}$ such that $2t_k < t$ and $r_k < r$. For $m, n \geq k$ we have $x_m, x_n \in B(x_k, r_k, \frac{t_k}{c})$ and

$$\begin{array}{lll} \rho_{x_m-x_n}(t) & \geq & \rho_{x_m-x_n}(2t_k), \\ & \geq & \rho_{x_k-x_n}(\frac{t_k}{c}) \wedge \rho_{x_k-x_n}(\frac{t_k}{c}), \\ & \geq & 1-r_k, \\ & > & 1-r. \end{array}$$

Since X is ρ -complete, $x_n \to x$ for some $x \in X$. But $x_n \in B(x_k, r_k, \frac{t_k}{c})$, for all $n \ge k$ and therefore

$$x \in \overline{B}(x_k, r_k, \frac{t_k}{c}) \subseteq \mathcal{O}_k \cap B(x_0, r_0, \frac{t_0}{c}) \subseteq \mathcal{O}_k \cap A,$$

for all k. Now, the fact that arbitrary ρ -open set A intersects $\cap \mathcal{O}_n$ and $B(z, r, t) \supseteq B(z, \frac{r}{n}, \frac{t}{n})$ for all n, completes the proof.

References

- Kozlowski W.M., Modular function spaces, Marcel Dekker, 1988.
- [2] Musielak J., Orlicz spaces and modular spaces, Lecture notes in Mathematics, vol. 1034, Springer-Verlag, 1983.
- [3] Musielak J., Orlicz W., "On modular spaces", Studia Mathematica, V18, pp. 49-65, 1959.
- [4] Schweizer B., Sklar A., Probabilistic metric spaces, New York, Amsterdam, Oxford: North Holland 1983.