
 
 

  
Abstract—In the symmetric case of the Gelfand problem 

involves the study of the points of intersection of the sequence of 
classical stationary solutions for an existing special value of the 
parameter λ. The bell-shaped solutions are being used in order 
to establish a first relation between the points of inflection of the 
difference of such two solutions and their points of intersection. 
The final result relates not only to the existence but also to the 
uniqueness of the point of intersection of any two different 
classical stationary solutions. 
 

Index Terms—Reaction-diffusion, symmetric problem, 
stationary solution, bell-shaped solution.  
 

I. INTRODUCTION 
We consider the symmetric case of the steady-state of the 
Gelfand problem [7] for reaction-diffusion processes:  
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where Ω  is a ball of NR  where 93 ≤≤ N , with a 
smooth boundary Ω∂  and B  is the operator which 
expresses the boundary conditions of the problem. 

Let f  satisfy the following properties: 
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Then according to [1]–[4], there exists a value ∞λ  of the 

positive parameter λ  for which the problem (1) has an 
infinite number of classical solutions )}({ xwk . 

 
It is already known from [5] that for the symmetric case of 

the Gelfand problem there exists a value )2(2* −= Ne&&  of 

the positive parameter λ  for which there exist infinite 
classical solutions with the last one being concave in the 
interval ]1,0[  with 0)1( =′′u  while the rest being 
bell-shaped.  

We shall examine the points of intersection between the 
bell-shaped solutions of this problem. 
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II. EXISTENCE OF POINTS OF INTERSECTION 

Let us consider two bell-shaped solutions ww, of the 

sequence )}({ xwk , such that the first has a greater 
supremum than the second. We shall prove the following 
proposition. 
 

Proposition 1: The functions ww,  have at least one point 
of intersection. 

 
Proof: We define the function wwu −= . Then, it 

follows that: 
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This means that there exist some wws ,∈ , such that  

0=+Δ ∞ ueu s
r λ . 

If there is no point of intersection of ww,  then ww <  

and: 0>+Δ ∞ ueu w
r λ  and 0<+Δ ∞ ueu w

r λ  since 

wsw << . Then, we conclude that kuueu w
r =+Δ ∞λ  

and muueu w
r =+Δ ∞λ , with 0,0 <> mk . Hence, we 

have a contradiction, because of the following Lemma [6], 
which states that for the linearized problem: 
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with w  the stationary solution, we have that 
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The following Proposition clarifies the relation of the 

intersection points of the functions ww,  with the points of 
inflection of u . 

 
Proposition 2: If the functions ww,  have at least two 

points of intersection, then their difference u  has at least two 
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points of inflection. 
 
Proof: Since 0)()( 21 == ruru , using Rolle’s 

proposition, we obtain the existence of 1z  such that 

0)( 1 =′ zu , 211 rzr << . Using again Rolle’s proposition 

for the derivative of u , since 0)0( =′−′=′ wwu  and 

0)( 1 =′ zu , we obtain that there exists 1y  such that 

0)( 1 =′′ yu , 110 zy << .  

Similarly, since 0)1()( 2 == uru , there exists 2z  such 

that 0)( 2 =′ zu , 122 << zr  and a 2y  such that 

0)( 2 =′′ yu , 221 zyz << .  
 
In the next proposition we prove the existence of points of 

inflection of the function u . 
 
Proposition 3: The difference u  of the functions ww,  

has at least one point of inflection. 
 
Proof: According to Proposition 1 we know that there is at 

least one point of intersection 0r  between the functions 

ww, . It then follows that 0)1()( 0 == uru , therefore 

there exists a z  such that 0)( =′ zu , 10 << zr .  

Τhen 0)()0( =′=′ zuu , thus there exists a y  such that 

0)( =′′ yu , ),0( zy ∈ . 
 

III. UNIQUENESS OF POINTS OF INTERSECTION 
The uniqueness of the point of intersection of two arbitrary 
classical bell-shaped solutions is closely dependent on the 
number of the points of inflection of their difference.  
 

Lemma: The difference u  of the functions ww,  satisfies 
the following inequalities : 

a) 0)0()0()0( >′′−′′=′′ wwu   

b) 0)1()1()1( <′′−′′=′′ wwu   
 
Proof:  
a) Using L’ Hospital’s rule we obtain that  
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Hence, we have: 
0)0()0()1()0( =+′′−+′′ ∞ ueuNu sλ  

which implies that 
.0/)0()0( <−=′′ ∞ mueeu s&&  

 
b) Again, we get from the equation of the problem that 

0)1()1()1()1( =+′−+′′ ∞ ueuNu wλ  
which implies that  

0)1()1()1( <′−−=′′ uNu  
as required. 

 
Proposition 4: The functions ww,  have exactly one point 

of intersection. 
 
Proof: We already know that the points of intersection of 

the functions ww,  lie on the interval of their points of 
inflection. From the previous Lemma it follows that u  can 
only have zero or two points of inflection. From Proposition 
3 we know that u  has at least one.  

Therefore u  has exactly two points of inflection, i.e., the 
functions ww,  have exactly one point of intersection.  

 

IV. DISCUSSION 
In this paper the entire behavior of the infinite bell-shaped 
classical solutions of the symmetric case of the Gelfand 
problem is studied. In particular, it is proved that any two 
solutions have a unique point of intersection. It still remains 
an open question whether all these points of intersection are 
different or if some of them coincide. We expect however 
that the k-th term of the infinite sequence of solutions has 
exactly k different points of intersection with the previous 
terms. 
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