
Uncertain Decision Tree Inductive Inference

S.M. Fakhrahmad, S. Jafari

1Abstract—Induction is the process of reasoning in which
General rules are formulated based on limited observations
of recurring phenomenal patterns. Decision tree learning is
one of the most widely used and practical inductive methods,
which represents the results in a tree scheme. Various
decision tree algorithms have already been proposed, such
as CLS, ID3, Assistant and C4.5. These algorithms suffer
from some major shortcomings. In this paper, after
discussing the main limitations of the existing methods, we
introduce a new decision tree induction algorithm, which
overcomes all the problems existing in its counterparts. We
also illustrate the advantages and the new features of the
proposed method. The experimental results will show the
effectiveness of the method in comparison with other
methods existing in the literature.

Index Terms—Induction, Classification, Decision Tree
Learning, Uncertainty, Outliers

I. INTRODUCTION
Induction or inductive reasoning is a kind of reasoning

in which we assert general rules based on limited
observations of recurring phenomenal patterns [1,2]. For
example, assume that all the people being observed when
entering a new city for the first time are short. The
conclusion that all the people of the city are short is an
example of induction. Decision tree learning is one of the
most widely used and popular inductive methods, which
represents the results in a tree scheme [3]. A decision tree
is a tree in which each branch node represents a choice
between a number of alternatives, and each leaf node
represents a classification or decision. A decision tree is
built from a set of data about a number of patterns and
represents the decisions or classifications for them.
Decision tree learning is best suited to problems in which
the training patterns are described in terms of attribute-
value pairs, the values for each attribute range over
finitely many fixed possibilities and the target function
has discrete values. In other words, we can state the
problem of learning decision trees as follows: We have a
set of patterns assumed to be correctly categorized into a
set of classes. We also have a set of attributes describing
the patterns, and each attribute has a finite set of possible
values which it can take. We want to use the patterns to
learn the structure of a decision tree which will be used to
decide the class of an unseen pattern, in the future.

The rest of this paper is organized as follows. Section 2
introduces some existing decision tree learning

1 S.M. Fakhrahmad is with the Department of Computer

Engineering, School of Engineering, Islamic Azad University of Shiraz
(and PhD student in Shiraz University), Shiraz, Iran
(e-mail: mfakhahmad@cse.shirazu.ac.ir)

S. Jafari is with the Department of Computer Science &
Engineering, School of Engineering, Shiraz University, Shiraz, Iran (e-
mail: jafaris@shirazu.ac.ir)

algorithms. In section 3, our proposed method for
decision tree learning and rule extraction is presented and
its main advantages are discussed. Experimental results
on several benchmark datasets are shown in Section 4.
Finally, we give a conclusion at the end of the paper.

II. RELATED WORK
Various decision tree algorithms have already been
proposed, such as ID3 [4,5], Assistant and C4.5 [6,7].
These methods have been applied to a wide range of tasks
and expert systems including medical diagnosis
applications.

This section introduces ID3 and C4.5 methods as two
well-known classification algorithms, which represent the
classification rules by a decision tree. ID3 is based on a
basic algorithm, named CLS (Concept Learning System).
Very simply, these algorithms build a decision tree from a
fixed set of training patterns. The resulting tree is used to
classify future examples. A pattern has some attributes
and belongs to a class (like "+" or "-"). The leaf nodes of
the decision tree contain the class name whereas a non-
leaf node is a decision node. The decision node is an
attribute test with each branch (to another decision tree)
being a possible value of the attribute. The algorithms use
a metric called information gain to help them decide
which attribute goes into a decision node.

A. CLS and ID3
ID3 was originally developed by J. Ross Quinlan at the
University of Sydney, in 1975. As mentioned, ID3 is
based on the Concept Learning System (CLS) algorithm.
Fig. 1 describes the basic CLS algorithm over a set of
training patterns S.

Fig. 1. CLS: The basic algorithm for decision tree learning

An important issue in CLS may be the matter of
choosing which attribute to test at each node in the tree.
In this algorithm, the trainer decides which attribute to
select at each node. This is the main difference between
CLS and ID3. ID3 improves CLS by adding a heuristic
for attribute selection. ID3 searches through the attributes
of the training examples and extracts the attribute that
best separates the given patterns. If the attribute perfectly
classifies the training sets (all negative or all positive)

Algorithm CLS
Input: A set of training pattern S
Output: A Decision tree compatible with all patterns in S

Step 1: If all patterns in S are positive, then create "+" node and halt.
 Else if all instances in S are negative, create a "-" node and halt.
 Otherwise select an attribute, A with values v1, ..., vn and create
a decision node.
Step 2: Partition the training Patterns in S into subsets S1, S2, ..., Sn
according to the values of V.
Step 3: Apply the algorithm recursively to each of the sets Si.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

then ID3 stops; otherwise it recursively operates on the
partitioned subsets of each attribute (according to
different values an attribute can take) to get the best
attribute. The algorithm performs a greedy search, that is,
it picks the best attribute and never looks back to
reconsider the earlier choices. The details of attribute
selection mechanism are as follows.

In ID3, a measure called information gain is defined to
be used to decide which attribute to test at each node.
Information gain is itself calculated using another
measure called entropy, which we first define for the case
of a binary decision problem and then define for the
general case.

Given a binary categorization (e.g., "-" and "+"), C,
and a set of patterns, S, in which the proportion of
examples categorized as "+" by C is p+ and the proportion
of examples categorized as "-" by C is p-, then the entropy
of S is:

 (1)

General entropy measure can be defined as follows.
Given an arbitrary categorization, C into categories c1, ...,
cn, and a set of examples, S, in which the proportion of
samples in ci is pi, then the entropy of S is:

 (2)

When p is very close to zero (meaning that the category
has only a few samples in it), then the log(p) will be a big
negative number, but the p part dominates the calculation,
so the entropy works out to be nearly zero. Since the
entropy measures the disorder in the data, this low score
is good, as it reflects our desire to reward categories with
few examples in. On the other hand, if p is very close to 1
(meaning that the category has most of the samples in),
then the log(p) part will be very close to zero, and this
part dominates the calculation, so the overall value gets
close to zero. Hence we see that both when the category
is nearly - or completely - empty, or when the category
nearly - or completely - contains all the examples, the
score for the category gets close to zero, which models
what we wanted it to. Note that 0*ln(0) is taken to be zero
by convention.

We now return to the problem of trying to decide the
best attribute to select for a particular node in a tree. The
following measure calculates a numerical value for a
given attribute, A, with respect to a set of samples, S.
Note that the values of attribute A will range over a set of
possibilities which we call Values(A), and that, for a
particular value from that set, v, we write Sv for the set of
examples which have value v for attribute A.

The information gain of attribute A, relative to a
collection of samples, S, is calculated as:

The information gain of an attribute can be considered

as the expected reduction in entropy caused by knowing
the value of attribute A.

ID3 can deal with very large datasets by performing
induction on subsets or windows onto the data. For this

purpose, it selects a random subset of the whole set of
training instances (called window) and then repeats the
following operations until no exceptions left. It uses the
induction algorithm to form a rule to explain the selected
window, scans all of the training patterns looking for
exceptions to the rule, and adds the exceptions to the
window.

ID3 is a non-incremental algorithm; meaning that it
derives it learns and builds the decision tree from a fixed
set of training instances. If a new instance is added to the
dataset, it has to restart the construction of the decision
tree. An incremental algorithm can revise its current
concept definition and update the results, when a new
sample is added to the dataset [8,9,10]. The classes
created by ID3 are inductive, that is, given a small set of
training instances, the specific classes created by ID3 are
expected to work for all future instances. The distribution
of the unknowns must be the same as the test cases.
Induction classes cannot be proven to work in every case
since they may classify an infinite number of instances.
Note that ID3 and any inductive algorithm may
misclassify data.

B. C4.5
C4.5 is another decision tree learning method which
makes a number of improvements to the original ID3
algorithm. The main advantages of C4.5 are as follows:

When building a decision tree, C4.5 can deal with
datasets that have patterns with unknown attribute values.
In such cases, it evaluates the information gain for an
attribute by considering just the patterns for which the
attribute is defined.

When using a decision tree (for test data), C4.5
classifies patterns having unknown attribute values by
estimating the probability of every possible result. These
probabilities are computed using the training data.
Finally, all possible class labels appear in the
classification result each one with a probability.

C4.5 can also deal with the case of attributes with
continuous domains by discretization, as follows.
Suppose that attribute Ai has a continuous range. It
examines the values for this attribute in the training set.
Say they are, in increasing order, V1, V2, .., Vm. Then for
each value Vj, j=1,2,..m, it partitions the records into
those that have Ci values up to and including Aj, and
those that have values greater than Vj. For each of these
partitions it computes the gain, or gain ratio, and chooses
the partition that maximizes the gain. For example, if the
range of values for an attribute is [0..100]. Different
partitions can be verified to find the best partition. If the
best partition is found to be 80, then the range of this
attribute becomes {<=80, >80}. When dealing with
continuous attributes, this discretization method (as a
preprocessing step) involves a computational overhead.

III. THE PROPOSED ALGORITHM (UD3)
ID3 and other similar methods for decision tree learning
have a number of shortcomings. As the main limitations,
they do not represent probabilistic rules; for them, there is
no more effect for several identical samples than one;
they can not deal with inconsistent data and the results are
very sensitive to any change in training patterns.

(3)

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

In this section, we introduce our new decision tree
induction algorithm UD3, which aims to overcome the
problems existing in existing algorithms. There are
differences between the proposed method and its
counterparts in their approach for tree construction, rule
extraction, noise handling and testing the classifier, which
will all be discussed.

A. Decision Tree Construction
The procedure we follow to build a decision tree is
somewhat similar to which ID3 does. However, it has
some major differences. The first difference is that we
define and use some binary codes for logical statements
and perform binary operations over them to obtain some
hidden information, efficiently.

Definition 1.
Binary Code of the decision factor A, for the discrete
value λ (denoted by BCode(A = λ)) is a binary string
having a length equal to the number of training samples.
Each bit in this string is associated with a sample of the
dataset and is set to 1 if A has the value of λ and 0,
otherwise.
 In fact, the value of BCode indicates the truth or untruth
of a logical statement throughout all samples of a dataset.
Based on Definition 1, we can obtain the BCodes for
compound logical statements, as follows. Binary Code for
a conjunctive compound statement is obtained by
performing logical AND operation over the BCodes of all
contained statements; that is,

BCode(A1 = λ1 , A2 = λ2 , … , An = λn) = BCode(A1 = λ1) &
BCode(A1 = λ1) & … & BCode(A1 = λ1) (4)

The metric used by our method for attribute selection is
the same as ID3. As known, each node in the decision
tree stands for an attribute, say A (decision factor) with
each branch being a possible value of the attribute, such
as λ. Thus, the truth of the branch labeled by λ
throughout the whole data can be implied by the value of
BCode(A = λ). While building the decision tree, we
measure different BCodes and assign them to their related
branches in the tree. Since some inconsistencies may exist
in data, the following situation may occur. Assume that
we have used all of the attributes as decision nodes in
different levels of the tree. When adding the last attribute
to the last level of the tree, we can not state a certain class
label as a consequent related to that branch. In such cases,
we have to specify the class uncertainly by providing the
leaf node the error proportion. To do so in an efficient
way, we use the following method which specifies the
exact place of all exceptional patterns, too.
 For a leaf node, say L which can not be certainly
specified, we traverse the tree path from the root towards
L. Logical AND operation is then performed over all the
BCodes visited in the path. The result is a binary string,
say BANT in which the 1-bits show the place of samples
whose attributes exactly match the attribute values
existing in the path. Since these samples have different
class labels, we would rather select one having fewer
exceptions as the target class for the rule implied by the
path. For this purpose, we build the BCodes for each class
label. Let's assume that we have just two classes (- , +)

and the BCodes for them are denoted by B- and B+. As we
aim to find the exceptions of each class as the consequent
of the rule, we perform NOT operation on both B- and B+.
Denote the results by B'- and B'+. As the final step, we
perform AND operation on BANT and each of B'- and B'+,
separately. Let's call the resulting bit strings by B rule - and
B rule +. The number of 1-bits in B rule – (B rule +) shows the
number of exceptional samples violating the rule if we
select the – (+) as the rule consequent class. One
interesting feature of this method is that the indices of 1-
bits exactly show the places of the exceptional patterns in
the dataset. The class having fewer exceptions is finally
selected as the rule consequent to be represented by the
leaf node, L. The proportion of 1-bits in its final BCode is
used as the error rate of the rule. The described algorithm
is presented in Fig. 2.

Fig. 2. The algorithm for assigning a consequent class to a leaf
node which can not be certainly defined

Example 2:
As an example, consider the dataset shown in Fig. 3. This
dataset contains a number of training patterns showing
whether it had been rainy (or not), sometime in the past.
This dataset contains 3 attributes used as decision factors;
the sky, the barometer status and the wind direction. Note
that there is an inconsistency in the data. That is, the last
three patterns show different classes (results), though
their attributes are exactly the same. Using the algorithm
presented in Fig. 2, this inconsistency is handled while
building the decision tree. This is accomplished as
follows.

 Decision Factors RESULT
 SKY BAROMETER WIND RAIN

1 clear rising north -
2 cloudy rising south +
3 cloudy steady north +
4 clear falling north -
5 cloudy falling north -
6 cloudy rising north +
7 clear rising south -
8 cloudy falling south -
9 cloudy falling south +

10 cloudy falling south -

Fig. 3. An example dataset containing inconsistencies

Step1:
BCode(Sky = 'Cloudy') = 0110110111
BCode(Barometer= 'Falling') = 0001100111
BCode(Wind = 'South') = 0101001111

Algorithm FindRuleConsequent
Input: A decision tree T with an uncertain leaf node L
Output: The class label for L, provided by an error rate

Step1: Traverse the path from the root towards L,
 Perform AND operation on all BCodes in the path; Denote the
result by BANT.
Step2: Build BCodes for both classes; Denote the results by B- and B+.
Step3: Perform NOT operation on B- and B+; Denote the results by B-'
and B'+.
Step4: Use AND operation between BANT and each of B'- and B'+;
Denote the results by Brule - and Brule +.
Step5: For B rule - and B rule + , count the no. of 1-bits (e- and e+) and
select the string containing fewer 1-bits.
 Compute the proportion of 1-bits in the selected string as the
error rate.
 Return the selected class and the measured error rate.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

BANT = BCode(Sky = 'Cloudy' , Barometer= 'Falling' ,
Wind = 'South') =
0110110111 & 0001100111 & 0101001111 =
0000000111

Step2:
B- = BCode(Rain = '-') = 1001101101
B+ = BCode(Rain = '+') = 0110010010

Step3:
B-' = 0110010010
B+' = 1001101101

Step4:
Brule - = BANT & B-' = 0000000111 & 0110010010 =
0000000010, e- = 1
Brule + = BANT & B+' = 0000000111 & 1001101101=
0000000101, e+ = 2

The purpose of the above process is to find the proper
alternative class label for the "?", shown in Fig. 4. The
final bit strings imply that if we replace "?" by "+", the
resulting rule will include two exceptions (patterns no. 8
and 10), while selecting "-" will lead to just one exception
for the rule (pattern no. 9).

Fig. 4. The Decision tree built for the dataset shown in Fig. 3

A1) Deriving Rule Set
As illustrated before, in ID3, each path from the root of
the decision tree to a leaf node will be represented by an
if-then rule. That is, the number of rules is equal to the
number of leaf nodes of the decision tree. In the proposed
method, the rules are extracted from different branches of
the tree. However, it has some major differences. The
first difference is that in the proposed scheme, we may
have uncertain rules (which have exceptions in the
training data) and thus a certainty factor (CF) should be
defined for them.

To evaluate a rule, we use two well-known metrics,
namely, confidence and Support, which are the major
measures in the mining of frequent patterns and
association rules [11,12]. The support of a rule X → Y is
defined as the proportion of patterns in the dataset
satisfying X and Y, simultaneously. The confidence of a
rule X → Y is defined as support(X ∩ Y)/support(X),

i.e., the fraction of all patterns satisfying X, which satisfy
Y as well. Since these two factors are important for a rule
to be considered as an interesting rule, we use both of
them to define a certainty factor for generated rules (CF),
as shown in (5).

 CF(rule) = Confidence(rule)*Support(rule) (5)

The values of Confidence and Support can also be
easily computed from the resulting bit strings. If the class
"-" ("+") has been selected for the rule consequent, the
support value of the rule can be obtained from the
proportion of 1-bits in Brule – (Brule +), which shows the
fraction of patterns that satisfy both the premise and the
consequent of the rule.

 Support(rule) = e* / (no. of patterns) (6)

where e* stands for e- or e+, based on the rule's
consequent.
Beside their main meaning, e- and e+ imply another
concept, too. e- (e+) is the no. of patterns that violate the
rule whose consequent is "-" ("+"). From another
viewpoint, we can say that e- (e+) is the no. of patterns
which satisfy the rule whose consequent is "+" ("-").
Thus, (e- + e+) is the no. of all patterns that satisfy the
premise of the rule, without any attention to their class
labels, whereas max(e- , e+) indicates the no. of patterns
that satisfy the whole rule. The Confidence of the rule can
be obtained from equation (7).

 Confidence(rule) = max(e- , e+) / (e- + e+) (7)

As an example, the certainty factor of the rule discussed
in Example 2 can be computed as follows:
e- = 1, e- = 2
Confidence(rule) = max(2,1)/(2+1) = 2/3
Support(rule) = 2/10 = 0.2
CF(rule) = 2/3 * 0.2 = 4/30 = 0.13,
and the resulting rule is presented in the following format:

If (Sky = 'Cloudy' AND Barometer= 'Falling' AND Wind =
'South') Then It will not rain (-), CF = 0.13

Now, assume that a decision tree has been built for a

dataset containing a large number of attributes. Also,
assume that the tree includes many long branches from
the root to the leaf nodes, i.e., long if-then rules. In this
situation, we may prefer to have rules which have shorter
lengths, even if they have smaller CF values. For this
purpose, we can select any top-down path, which can be
between any two nodes within the tree. The selected path
represents the antecedent part of a rule, whose consequent
should be determined. We make a small variation to the
algorithm presented in Fig. 2 and then follow it to specify
the consequent of the rule. The mere change occurs in
Step1 of the algorithm, where we traversed the whole
path from the root to a leaf node. In the current case, we
traverse the selected path and measure BANT just from the
combination of BCodes located within the path.

Example 3:
Consider that the decision tree shown in Fig. 4 has been
constructed. Assume that we are just interested in rules
having not more than 2 antecedents. The process of rule

BAROMETE
R

SKY

WIND

Clear Cloudy

Falling
Steady

Rising

North South

-

+ ?

(100100010) (011011101)

(100100011)
(100100010)

(100100010)

(100100010) (100100011)

+ +

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

extraction from all branches of the tree can be
accomplished straightforward, except the branch which is
shown in more significance. This branch has 3 decision
factors (and 3 BCodes). Any two of these decision factors
can be selected to form a two-antecedent rule. To do so,
we traverse the branch and perform AND operation over
the BCodes of only two of the decision factors, as we
want them to be present in the rule's premise. Selecting
SKY and BAROMETER, for example, the process of rule
extraction will be as follows:

BCode(Sky = 'Cloudy') = 0110110111
BCode(Barometer= 'Falling') = 0001100111

BANT = BCode(Sky = 'Cloudy' , Barometer= 'Falling') =
0110110111 & 0001100111 = 0000100111

B- = BCode(Rain = '-') = 1001101101
B+ = BCode(Rain = '+') = 0110010010

B-' = 0110010010
B+' = 1001101101

Brule - = BANT & B-' = 0000100111 & 0110010010 =
0000000010, e- = 1
Brule + = BANT & B+' = 0000100111 & 1001101101=
0000100101, e+ = 3
The same as the last example, the class "-" is selected
again:
If (Sky = 'Cloudy' AND Barometer= 'Falling' AND Wind = 'South')
Then It will not rain (-)
Confidence(rule) = max(3,1)/(3+1) = 3/4
Support(rule) = 3/10 = 0.3
CF(rule) = 3/4 * 0.3 = 9/40 = 0.225

A2) Handling Noisy Data
Assuming that there are no inconsistencies in the data
(when two examples have exactly the same values for the
attributes, but are categorized differently), it is obvious
that we can always construct a decision tree to correctly
decide for the training cases with 100% accuracy. All we
have to do is make sure every situation is catered for
down some branch of the decision tree. Of course, 100%
accuracy may indicate overfitting. In ID3, if some noisy
patterns exist in the dataset, they will be the main cause
for overfitting. This is because the decision tree is
constructed according to the attribute values of the
decision tree. Noisy patterns (outliers) will affect on the
structure of the decision tree. In our proposed method, in
order to decrease the effect of outliers on the decision tree
structure, we follow the following strategy. Consider a
dataset structurally similar to the dataset shown in Fig. 3,
which contains 1000 training patterns. Assume that the
attribute SKY is selected to be located as the root of the
decision tree (the same as Fig. 4). One of the possible
values for this attribute is "Clear" which will be
represented by a branch from the root. The same as ID3,
we compute the values of p+ and p-, for patterns in which
the value of SKY is "Clear". In ID3 the extension of a
branch will stop only if one of these two values
(p+ and p-) is 1 and the other is 0. This means that the
consequent class can now be stated, with certainty.
However, in this example, assume that just one of the
patterns (in which the value of SKY is "Clear") has the "-"
class label, while all others are from the "+" class. This

pattern is more likely to be an outlier. Thus, we ignore
such exceptional patterns while building the decision tree.
In general, when there is a high gap between the values of
p+ and p- (p+<<p- or p-<<p+) we assume the greater value
to be 1 and the other to be 0. In practice, we define a
minimum threshold called ρ for p+/p- or p-/p+. If any of
these proportions is less than ρ, we stop extending of the
branch and assign it a consequent class according to the
majority. If a proper value is assigned to ρ, this strategy
will be very effective for avoiding overfitting. This will
be shown experimentally, in Section 4.

A3) Testing the Classifier
In order to classify a test pattern, it is compared with
every rule within the rule base, to find the rule which is
compatible to be fired. However, in some cases, we may
find more than one rules which are satisfied by the pattern
attribute values. If all of them have the same consequent,
there will be no ambiguity for the pattern's class.
Otherwise, suppose that we are encountered two (in case
of binary categorization) or n (in case of n-ary
categorization) groups of rules, where each group consists
of rules showing a different class label. For each group,
we compute the average of all CF values belonging to the
contained rules. Finally, the rules having the maximum
value for their CFs, are used to classify the test sample.

IV. EXPERIMENTAL RESULTS
In order to assess the performance of the proposed
scheme over some real-life data, we used the data sets
shown in Table I available from UCI ML repository, most
of which are medical datasets. For rulebase construction,
we used 10CV technique which is a case of n-fold cross
validation. In this experiment, we compared our proposed
method with two other inductive rule-based methods, ID3
and C4.5, which were introduced in Section 2. Since the
datasets contain continuous numeric data, as a
preprocessing step, each continuous attribute was
discretized by partitioning the domain interval of the
attribute into five equi-width intervals.

Table I. Some statistics of the datasets used in our computer

simulations

Data set Number of
attributes

Number of patterns Number of
classes

Iris 4 150 3
Wine 13 178 3

Thyroid 5 215 3
Sonar 60 208 2
Bupa 6 345 2
Pima 8 768 2
Glass 9 214 6

In the implementation of the proposed method, all

strategies discussed in Section 3 were attended in order to
optimize the accuracy, the efficiency and the
interpretability. For a dataset containing n attributes, we
restricted the rules to have not more than n/2 antecedent
conditions. We tested three different values for the ρ (the
minimum threshold of p+/p-, as discussed in Section
3.1.2) to evaluate the effect of using this threshold and the
proper value it should be assigned to.

Table II indicates the generalization accuracy of the
proposed classifier when different values of ρ are used.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

The results of the other two methods, ID3 and C4.5 on
different datasets are also shown in this table.

Although ID3 always gets the accuracy of 100% over

the training data, we can see in Table I that among the
three methods, it has the least values of the accuracy over
the test data. This narrates from the problem of overfitting
in ID3. C4.5 has better accuracies compared to ID3,
which can be due to the principal variations it has made in
its algorithm.

Comparing the results obtained from running of the
proposed method using different values of ρ implies that
using this strategy (using a threshold for p+/p-) will have
positive effect on the generalization accuracy and in order
to avoid overfitting. However, it should be selected
carefully. If the value of ρ is very small (very close to
zero), it does not have any effect, since according to the
no. of patterns, this proportion may represent even less
than 1 pattern out of the whole! On the other hand, if a
large value is given to ρ, it may have some negative effect
on the classifier's accuracy. In this case, the accuracy may
decrease on both the training and the test data.

As shown in Table II, in most cases, when ρ has a
relative proper value, the proposed classifier results in
better classification rates, compared to the results of C4.5.

V. CONCLUSION
In this paper, we proposed a new decision tree induction
algorithm, called UD3. The basis of this method is similar
to other decision tree algorithms, such as ID3 and C4.5.
However it has some valuable advantages to its
counterparts. In order to improve efficiency, the proposed
scheme maps some important information into special bit
strings and makes use of the speed of logical operations
over them during the induction process. On the other
hand, the method can deal with inconsistencies in data
and also it provides uncertainty. A very important feature
of the method which helps much to avoid overfitting, is
its flexibility in decision tree making and rule extraction
from the tree. Unlike ID3, it does not try to completely
satisfy all the training patterns with the constructed tree.
In order to obtain a good generalization accuracy, it
avoids generating rules for patterns that seem very
exceptional, since they are likely to be outliers. For rule
extraction from the constructed tree, we are able to
choose any path within the tree (not essentially a full path
from the root to a leaf node) to be represented as an if-
then rule. Every generated rule is provided by a certainty

factor (CF) which is easily calculated and can be used as
a metric for rule selection when testing the system.

In order to evaluate the classification ability of the
proposed method over some real-life data, we used the
some benchmark datasets available from UCI ML
repository, most of which are medical datasets. The
proposed method was compared with two other inductive
rule-based methods, ID3 and C4.5, as two well-known
methods. Our method uses a parameter ρ, while
constructing the decision tree. The experimental results
showed that when a proper value is assigned to ρ, the
algorithm will result in better generalization ability, in
comparison with ID3 and C4.5.

REFERENCES
[1] John, H., et al., Induction: Processes of Inference, Learning and

Discovery, MIT Press, 1986.
[2] S. Muggleton, Inductive Acquisition of Expert Knowledge,

Addison-Wesley, 1990.
[3] Breiman, Friedman, Olshen, Stone, Classification and Decision

Trees, Wadsworth, 1984.
[4] Andrew Colin, Building Decision Trees with the ID3

Algorithm, Dr. Dobbs Journal, June 1996
[5] P.H., Winston, Excellent introduction to ID3 and its use in

building decision trees and rule sets from them, Artificial
Intelligence, Third Edition, Addison-Wesley, 1992.

[6] J. Ross Quinlan, Morgan Kaufmann,"C4.5 Programs for
Machine Learning", 1993.

[7] Lynn Monson, "Algorithm Alley Column: C4.5", Dr. Dobbs
Journal, Jan 1997.

[8] Paul E. Utgoff and Carla E. Brodley, 'An Incremental Method
for Finding Multivariate Splits for Decision Trees', Machine
Learning: Proceedings of the Seventh International Conference,
pp.58, 1990.

[9] Paul E. Utgoff, "Incremental Induction of Decision Trees",
Kluwer Academic Publishers, 1989.

[10] S.M. Fakhrahmad , M.H. Sadreddini and M. Zolghadri Jahromi,
"IQPI: An incremental system for answering imprecise queries
using approximate dependencies and concept similarities",
Accepted for publication in International Journal of Computer
Science (IJCS), Vol 34, Issue 2, 185-191 (Dec 2007).

[11] S.M. Fakhrahmad, M.H. Sadreddini and M. Zolghadri Jahromi,
"Mining Frequent Itemsets in Large Data Warehouses: A Novel
Approach Proposed for Sparse Data Sets", In Proc. of:
IDEAL2007, Springer, 16-19 Dec 2007, Birmingham, UK, pp.
517-524.

[12] H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining, Fuzzy Sets and Systems, Vol 141,
Issue 1, 59-88 (2004).

[13] S.M. Fakhrahmad and M. Zolghadri Jahromi, "Constructing
Accurate Fuzzy Classification Systems: A New Approach Using
Weighted Fuzzy Rules", 4th International Conference (IEEE) on
Computer Graphics, Imaging and Visualization, (CGIV07),
Bangkok, Thailand, 15-17 August 2007, pp. 408-413.

[14] Q. Yang, T. Li, K. Wang, Building association rule based
sequential classifiers for web document prediction, Journal of
Data Mining and Knowledge Discovery, 8(3) (2004) 253-273.

[15] H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-

objective genetic local search algorithms and rule evaluation
measures in data mining, Fuzzy Sets and Systems 141 (1) (2004)
59-88.

[16] L. Sánchez, I. Couso, J. A. Corrales, O. Cordón, M. J. Del
Jesus, F. Herrera, Combining GP operators with SA search to
evolve fuzzy rule based classifiers, Information Sciences 136 (1-
4) (2001) 175-191.

[17] A. Chatterjee and P. Siarry, A PSO-aided neuro-fuzzy classifier
employing linguistic hedge concepts, Expert Systems with
Applications 33 (4) (2007) 1097-1109.

Table II. Classification Accuracies of the proposed method using
different values for ρ (minimum threshold for p+/p-) in
comparison with ID3 and C4.5 for data sets of Table I

Generalization Accuracy (%)

The proposed method (UD3) Data sets ID3 C4.5
ρ = 0.002 ρ = 0.02 ρ = 0.2

Iris 84.6 94.9 89.7 94.8 84.9
Wine 86.7 94.4 91.5 96.0 85.2
Pima 69.3 75 74.3 76.2 64.6
Bupa 54.6 61.8 58.7 64.4 49.8

Thyroid 86.4 93.3 89.9 93.7 83.2
Glass 56.9 72.7 57.4 74.2 61.3
Sonar 68.7 76.7 71.2 78.6 66.6

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

