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1Abstract—Induction is the process of reasoning in which 
General rules are formulated based on limited observations 
of recurring phenomenal patterns. Decision tree learning is 
one of the most widely used and practical inductive methods, 
which represents the results in a tree scheme. Various 
decision tree algorithms have already been proposed, such 
as CLS, ID3, Assistant and C4.5. These algorithms suffer 
from some major shortcomings. In this paper, after 
discussing the main limitations of the existing methods, we 
introduce a new decision tree induction algorithm, which 
overcomes all the problems existing in its counterparts. We 
also illustrate the advantages and the new features of the 
proposed method. The experimental results will show the 
effectiveness of the method in comparison with other 
methods existing in the literature. 
 

Index Terms—Induction, Classification, Decision Tree 
Learning, Uncertainty, Outliers 
 

I.   INTRODUCTION 
Induction or inductive reasoning is a kind of reasoning 

in which we assert general rules based on limited 
observations of recurring phenomenal patterns [1,2]. For 
example, assume that all the people being observed when 
entering a new city for the first time are short. The 
conclusion that all the people of the city are short is an 
example of induction. Decision tree learning is one of the 
most widely used and popular inductive methods, which 
represents the results in a tree scheme [3]. A decision tree 
is a tree in which each branch node represents a choice 
between a number of alternatives, and each leaf node 
represents a classification or decision. A decision tree is 
built from a set of data about a number of patterns and 
represents the decisions or classifications for them. 
Decision tree learning is best suited to problems in which 
the training patterns are described in terms of attribute-
value pairs, the values for each attribute range over 
finitely many fixed possibilities and the target function 
has discrete values. In other words, we can state the 
problem of learning decision trees as follows: We have a 
set of patterns assumed to be correctly categorized into a 
set of classes. We also have a set of attributes describing 
the patterns, and each attribute has a finite set of possible 
values which it can take. We want to use the patterns to 
learn the structure of a decision tree which will be used to 
decide the class of an unseen pattern, in the future. 

The rest of this paper is organized as follows. Section 2 
introduces some existing decision tree learning 
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algorithms. In section 3, our proposed method for 
decision tree learning and rule extraction is presented and 
its main advantages are discussed. Experimental results 
on several benchmark datasets are shown in Section 4. 
Finally, we give a conclusion at the end of the paper. 
 

II.   RELATED WORK 
Various decision tree algorithms have already been 
proposed, such as ID3 [4,5], Assistant and C4.5 [6,7]. 
These methods have been applied to a wide range of tasks 
and expert systems including medical diagnosis 
applications. 

This section introduces ID3 and C4.5 methods as two 
well-known classification algorithms, which represent the 
classification rules by a decision tree. ID3 is based on a 
basic algorithm, named CLS (Concept Learning System). 
Very simply, these algorithms build a decision tree from a 
fixed set of training patterns. The resulting tree is used to 
classify future examples. A pattern has some attributes 
and belongs to a class (like "+" or "-"). The leaf nodes of 
the decision tree contain the class name whereas a non-
leaf node is a decision node. The decision node is an 
attribute test with each branch (to another decision tree) 
being a possible value of the attribute. The algorithms use 
a metric called information gain to help them decide 
which attribute goes into a decision node.  

A.   CLS and ID3 
ID3 was originally developed by J. Ross Quinlan at the 
University of Sydney, in 1975. As mentioned, ID3 is 
based on the Concept Learning System (CLS) algorithm. 
Fig. 1 describes the basic CLS algorithm over a set of 
training patterns S. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. CLS: The basic algorithm for decision tree learning 
 

An important issue in CLS may be the matter of 
choosing which attribute to test at each node in the tree. 
In this algorithm, the trainer decides which attribute to 
select at each node. This is the main difference between 
CLS and ID3. ID3 improves CLS by adding a heuristic 
for attribute selection. ID3 searches through the attributes 
of the training examples and extracts the attribute that 
best separates the given patterns. If the attribute perfectly 
classifies the training sets (all negative or all positive) 

Algorithm CLS 
Input: A set of training pattern S 
Output: A Decision tree compatible with all patterns in S 
 
Step 1: If all patterns in S are positive, then create "+" node and halt. 
            Else if all instances in S are negative, create a "-" node and halt.
            Otherwise select an attribute, A with values v1, ..., vn and create 
a decision node. 
Step 2: Partition the training Patterns in S into subsets S1, S2, ..., Sn 
according to the values of V. 
Step 3: Apply the algorithm recursively to each of the sets Si. 
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then ID3 stops; otherwise it recursively operates on the 
partitioned subsets of each attribute (according to 
different values an attribute can take) to get the best 
attribute. The algorithm performs a greedy search, that is, 
it picks the best attribute and never looks back to 
reconsider the earlier choices. The details of attribute 
selection mechanism are as follows. 

In ID3, a measure called information gain is defined to 
be used to decide which attribute to test at each node. 
Information gain is itself calculated using another 
measure called entropy, which we first define for the case 
of a binary decision problem and then define for the 
general case.  

Given a binary categorization (e.g., "-" and "+"), C, 
and a set of patterns, S, in which the proportion of 
examples categorized as "+" by C is p+ and the proportion 
of examples categorized as "-" by C is p-, then the entropy 
of S is:  
                                            

                  (1) 
 

General entropy measure can be defined as follows. 
Given an arbitrary categorization, C into categories c1, ..., 
cn, and a set of examples, S, in which the proportion of 
samples in ci is pi, then the entropy of S is:  
 
                                                                                               
                                                                                (2) 

 
When p is very close to zero (meaning that the category 
has only a few samples in it), then the log(p) will be a big 
negative number, but the p part dominates the calculation, 
so the entropy works out to be nearly zero. Since the 
entropy measures the disorder in the data, this low score 
is good, as it reflects our desire to reward categories with 
few examples in. On the other hand, if p is very close to 1 
(meaning that the category has most of the samples in), 
then the log(p) part will be very close to zero, and this 
part dominates the calculation, so the overall value gets 
close to zero. Hence we see that both when the category 
is nearly - or completely - empty, or when the category 
nearly - or completely - contains all the examples, the 
score for the category gets close to zero, which models 
what we wanted it to. Note that 0*ln(0) is taken to be zero 
by convention.  

We now return to the problem of trying to decide the 
best attribute to select for a particular node in a tree. The 
following measure calculates a numerical value for a 
given attribute, A, with respect to a set of samples, S. 
Note that the values of attribute A will range over a set of 
possibilities which we call Values(A), and that, for a 
particular value from that set, v, we write Sv for the set of 
examples which have value v for attribute A.  

The information gain of attribute A, relative to a 
collection of samples, S, is calculated as:  

The information gain of an attribute can be considered 

as the expected reduction in entropy caused by knowing 
the value of attribute A.  

ID3 can deal with very large datasets by performing 
induction on subsets or windows onto the data. For this 

purpose, it selects a random subset of the whole set of 
training instances (called window) and then repeats the 
following operations until no exceptions left. It uses the 
induction algorithm to form a rule to explain the selected 
window, scans all of the training patterns looking for 
exceptions to the rule, and adds the exceptions to the 
window. 

ID3 is a non-incremental algorithm; meaning that it 
derives it learns and builds the decision tree from a fixed 
set of training instances. If a new instance is added to the 
dataset, it has to restart the construction of the decision 
tree. An incremental algorithm can revise its current 
concept definition and update the results, when a new 
sample is added to the dataset [8,9,10]. The classes 
created by ID3 are inductive, that is, given a small set of 
training instances, the specific classes created by ID3 are 
expected to work for all future instances. The distribution 
of the unknowns must be the same as the test cases. 
Induction classes cannot be proven to work in every case 
since they may classify an infinite number of instances. 
Note that ID3 and any inductive algorithm may 
misclassify data. 

B.   C4.5 
C4.5 is another decision tree learning method which 
makes a number of improvements to the original ID3 
algorithm. The main advantages of C4.5 are as follows: 

When building a decision tree, C4.5 can deal with 
datasets that have patterns with unknown attribute values. 
In such cases, it evaluates the information gain for an 
attribute by considering just the patterns for which the 
attribute is defined.  

When using a decision tree (for test data), C4.5 
classifies patterns having unknown attribute values by 
estimating the probability of every possible result. These 
probabilities are computed using the training data. 
Finally, all possible class labels appear in the 
classification result each one with a probability. 

C4.5 can also deal with the case of attributes with 
continuous domains by discretization, as follows. 
Suppose that attribute Ai has a continuous range. It 
examines the values for this attribute in the training set. 
Say they are, in increasing order, V1, V2, .., Vm. Then for 
each value Vj, j=1,2,..m, it partitions the records into 
those that have Ci values up to and including Aj, and 
those that have values greater than Vj. For each of these 
partitions it computes the gain, or gain ratio, and chooses 
the partition that maximizes the gain. For example, if the 
range of values for an attribute is [0..100]. Different 
partitions can be verified to find the best partition. If the 
best partition is found to be 80, then the range of this 
attribute becomes {<=80, >80}. When dealing with 
continuous attributes, this discretization method (as a 
preprocessing step) involves a computational overhead. 
 

III.   THE PROPOSED ALGORITHM (UD3) 
ID3 and other similar methods for decision tree learning 
have a number of shortcomings. As the main limitations, 
they do not represent probabilistic rules; for them, there is 
no more effect for several identical samples than one; 
they can not deal with inconsistent data and the results are 
very sensitive to any change in training patterns.  

 

(3)
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In this section, we introduce our new decision tree 
induction algorithm UD3, which aims to overcome the 
problems existing in existing algorithms. There are 
differences between the proposed method and its 
counterparts in their approach for tree construction, rule 
extraction, noise handling and testing the classifier, which 
will all be discussed. 

 

A.   Decision Tree Construction 
The procedure we follow to build a decision tree is 
somewhat similar to which ID3 does. However, it has 
some major differences. The first difference is that we 
define and use some binary codes for logical statements 
and perform binary operations over them to obtain some 
hidden information, efficiently.  

 
Definition 1.  
Binary Code of the decision factor A, for the discrete 
value λ (denoted by BCode(A = λ)) is a binary string 
having a length equal to the number of training samples. 
Each bit in this string is associated with a sample of the 
dataset and is set to 1 if A has the value of λ and 0, 
otherwise. 
   In fact, the value of BCode indicates the truth or untruth 
of a logical statement throughout all samples of a dataset. 
Based on Definition 1, we can obtain the BCodes for 
compound logical statements, as follows. Binary Code for 
a conjunctive compound statement is obtained by 
performing logical AND operation over the BCodes of all 
contained statements; that is, 
 
BCode(A1 = λ1 , A2 = λ2 , … , An = λn) = BCode(A1 = λ1) & 
BCode(A1 = λ1) & … & BCode(A1 = λ1)                                (4) 
 

The metric used by our method for attribute selection is 
the same as ID3. As known, each node in the decision 
tree stands for an attribute, say A (decision factor) with 
each branch being a possible value of the attribute, such 
as λ. Thus, the truth of the branch labeled by λ 
throughout the whole data can be implied by the value of 
BCode(A = λ). While building the decision tree, we 
measure different BCodes and assign them to their related 
branches in the tree. Since some inconsistencies may exist 
in data, the following situation may occur. Assume that 
we have used all of the attributes as decision nodes in 
different levels of the tree. When adding the last attribute 
to the last level of the tree, we can not state a certain class 
label as a consequent related to that branch. In such cases, 
we have to specify the class uncertainly by providing the 
leaf node the error proportion. To do so in an efficient 
way, we use the following method which specifies the 
exact place of all exceptional patterns, too.  
    For a leaf node, say L which can not be certainly 
specified, we traverse the tree path from the root towards 
L. Logical AND operation is then performed over all the 
BCodes visited in the path. The result is a binary string, 
say BANT in which the 1-bits show the place of samples 
whose attributes exactly match the attribute values 
existing in the path. Since these samples have different 
class labels, we would rather select one having fewer 
exceptions as the target class for the rule implied by the 
path. For this purpose, we build the BCodes for each class 
label. Let's assume that we have just two classes (- , +) 

and the BCodes for them are denoted by B- and B+. As we 
aim to find the exceptions of each class as the consequent 
of the rule, we perform NOT operation on both B- and B+. 
Denote the results by B'- and B'+. As the final step, we 
perform AND operation on BANT and each of B'- and B'+, 
separately. Let's call the resulting bit strings by B rule - and 
B rule +. The number of 1-bits in B rule – (B rule +) shows the 
number of exceptional samples violating the rule if we 
select the – (+) as the rule consequent class. One 
interesting feature of this method is that the indices of 1-
bits exactly show the places of the exceptional patterns in 
the dataset. The class having fewer exceptions is finally 
selected as the rule consequent to be represented by the 
leaf node, L. The proportion of 1-bits in its final BCode is 
used as the error rate of the rule. The described algorithm 
is presented in Fig. 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. The algorithm for assigning a consequent class to a leaf 
node which can not be certainly defined 

 
Example 2:  
As an example, consider the dataset shown in Fig. 3. This 
dataset contains a number of training patterns showing 
whether it had been rainy (or not), sometime in the past. 
This dataset contains 3 attributes used as decision factors; 
the sky, the barometer status and the wind direction. Note 
that there is an inconsistency in the data. That is, the last 
three patterns show different classes (results), though 
their attributes are exactly the same. Using the algorithm 
presented in Fig. 2, this inconsistency is handled while 
building the decision tree. This is accomplished as 
follows. 

  Decision Factors   RESULT 
 SKY BAROMETER WIND  RAIN 

1 clear rising north  - 
2 cloudy rising south  + 
3 cloudy steady north  + 
4 clear falling north  - 
5 cloudy falling north  - 
6 cloudy rising north  + 
7 clear rising south  - 
8 cloudy falling south  - 
9 cloudy falling south  + 

10 cloudy falling south  - 
   

Fig. 3. An example dataset containing inconsistencies 
 
 
Step1:  
BCode(Sky = 'Cloudy') = 0110110111 
BCode(Barometer= 'Falling') = 0001100111 
BCode(Wind = 'South') = 0101001111 

Algorithm FindRuleConsequent 
Input: A decision tree T with an uncertain leaf node L 
Output: The class label for L, provided by an error rate 
 
Step1: Traverse the path from the root towards L,  
           Perform AND operation on all BCodes in the path; Denote the 
result by BANT. 
Step2: Build BCodes for both classes; Denote the results by B- and B+.
Step3: Perform NOT operation on B- and B+; Denote the results by B-' 
and B'+. 
Step4: Use AND operation between BANT and each of B'- and B'+; 
Denote the results by Brule - and Brule +. 
Step5: For B rule - and B rule + , count the no. of 1-bits (e- and e+) and 
select the string containing fewer 1-bits.  
           Compute the proportion of 1-bits in the selected string as the 
error rate. 
            Return the selected class and the measured error rate.  
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BANT = BCode(Sky = 'Cloudy' , Barometer= 'Falling' , 
Wind = 'South') =  
0110110111 & 0001100111 & 0101001111 = 
0000000111  
 
Step2: 
B- = BCode(Rain = '-') = 1001101101 
B+ = BCode(Rain = '+') = 0110010010 
 
Step3: 
B-' = 0110010010 
B+' = 1001101101 
 
Step4: 
Brule - = BANT & B-' = 0000000111 & 0110010010 = 
0000000010,    e- = 1 
Brule + = BANT & B+' = 0000000111 & 1001101101= 
0000000101,   e+ = 2 
 

The purpose of the above process is to find the proper 
alternative class label for the "?", shown in Fig. 4. The 
final bit strings imply that if we replace "?" by "+", the 
resulting rule will include two exceptions (patterns no. 8 
and 10), while selecting "-" will lead to just one exception 
for the rule (pattern no. 9).  

 
 
 
 
 

 

 

 

 

 

 

 

 
Fig. 4. The Decision tree built for the dataset shown in Fig. 3 
 

A1) Deriving Rule Set 
As illustrated before, in ID3, each path from the root of 
the decision tree to a leaf node will be represented by an 
if-then rule.  That is, the number of rules is equal to the 
number of leaf nodes of the decision tree. In the proposed 
method, the rules are extracted from different branches of 
the tree. However, it has some major differences. The 
first difference is that in the proposed scheme, we may 
have uncertain rules (which have exceptions in the 
training data) and thus a certainty factor (CF) should be 
defined for them.  

To evaluate a rule, we use two well-known metrics, 
namely, confidence and Support, which are the major 
measures in the mining of frequent patterns and 
association rules [11,12]. The support of a rule X → Y is 
defined as the proportion of patterns in the dataset 
satisfying X and Y, simultaneously. The confidence of a 
rule X → Y is defined as support(X ∩ Y )/support(X), 

i.e., the fraction of all patterns satisfying X, which satisfy 
Y as well. Since these two factors are important for a rule 
to be considered as an interesting rule, we use both of 
them to define a certainty factor for generated rules (CF), 
as shown in (5). 
 
     CF(rule) = Confidence(rule)*Support(rule)              (5) 
 

The values of Confidence and Support can also be 
easily computed from the resulting bit strings. If the class 
"-" ("+") has been selected for the rule consequent, the 
support value of the rule can be obtained from the 
proportion of 1-bits in Brule – (Brule +), which shows the 
fraction of patterns that satisfy both the premise and the 
consequent of the rule. 
 
    Support(rule) = e* / (no. of patterns)                          (6) 
 
where e* stands for e- or e+, based on the rule's 
consequent. 
Beside their main meaning, e- and e+ imply another 
concept, too. e- (e+) is the no. of patterns that violate the 
rule whose consequent is "-" ("+"). From another 
viewpoint, we can say that e- (e+) is the no. of patterns 
which satisfy the rule whose consequent is "+" ("-"). 
Thus, (e- + e+) is the no. of all patterns that satisfy the 
premise of the rule, without any attention to their class 
labels, whereas max(e- , e+) indicates the no. of patterns 
that satisfy the whole rule. The Confidence of the rule can 
be obtained from equation (7). 
 
   Confidence(rule) = max(e- , e+) / (e- + e+)                   (7) 
 
As an example, the certainty factor of the rule discussed 
in Example 2 can be computed as follows: 
e- = 1, e- = 2 
Confidence(rule) = max(2,1)/(2+1) = 2/3 
Support(rule) = 2/10 = 0.2 
CF(rule) = 2/3 * 0.2 = 4/30 = 0.13, 
and the resulting rule is presented in the following format:  

If (Sky = 'Cloudy' AND Barometer= 'Falling' AND Wind = 
'South') Then It will not rain (-), CF = 0.13 

 
Now, assume that a decision tree has been built for a 

dataset containing a large number of attributes. Also, 
assume that the tree includes many long branches from 
the root to the leaf nodes, i.e., long if-then rules. In this 
situation, we may prefer to have rules which have shorter 
lengths, even if they have smaller CF values. For this 
purpose, we can select any top-down path, which can be 
between any two nodes within the tree. The selected path 
represents the antecedent part of a rule, whose consequent 
should be determined. We make a small variation to the 
algorithm presented in Fig. 2 and then follow it to specify 
the consequent of the rule. The mere change occurs in 
Step1 of the algorithm, where we traversed the whole 
path from the root to a leaf node. In the current case, we 
traverse the selected path and measure BANT just from the 
combination of BCodes located within the path. 
 
Example 3:  
Consider that the decision tree shown in Fig. 4 has been 
constructed. Assume that we are just interested in rules 
having not more than 2 antecedents. The process of rule 

BAROMETE
R 

SKY 
 

WIND 
 

Clear Cloudy  

Falling 
Steady 

Rising

North South 

- 

+ ?

(100100010) (011011101)

(100100011)
(100100010)

(100100010)

(100100010) (100100011)

+ + 
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extraction from all branches of the tree can be 
accomplished straightforward, except the branch which is 
shown in more significance. This branch has 3 decision 
factors (and 3 BCodes). Any two of these decision factors 
can be selected to form a two-antecedent rule. To do so, 
we traverse the branch and perform AND operation over 
the BCodes of only two of the decision factors, as we 
want them to be present in the rule's premise. Selecting 
SKY and BAROMETER, for example, the process of rule 
extraction will be as follows: 
 
BCode(Sky = 'Cloudy') = 0110110111 
BCode(Barometer= 'Falling') = 0001100111   
 
BANT = BCode(Sky = 'Cloudy' , Barometer= 'Falling') =  
0110110111 & 0001100111 = 0000100111  
 
B- = BCode(Rain = '-') = 1001101101 
B+ = BCode(Rain = '+') = 0110010010 
 
B-' = 0110010010 
B+' = 1001101101 
 
Brule - = BANT & B-' = 0000100111 & 0110010010 = 
0000000010,    e- = 1 
Brule + = BANT & B+' = 0000100111 & 1001101101= 
0000100101,    e+ = 3 
The same as the last example, the class "-" is selected 
again: 
If (Sky = 'Cloudy' AND Barometer= 'Falling' AND Wind = 'South') 
Then It will not rain (-) 
Confidence(rule) = max(3,1)/(3+1) = 3/4 
Support(rule) = 3/10 = 0.3 
CF(rule) = 3/4 * 0.3 = 9/40 = 0.225 
  

A2) Handling Noisy Data 
Assuming that there are no inconsistencies in the data 
(when two examples have exactly the same values for the 
attributes, but are categorized differently), it is obvious 
that we can always construct a decision tree to correctly 
decide for the training cases with 100% accuracy. All we 
have to do is make sure every situation is catered for 
down some branch of the decision tree. Of course, 100% 
accuracy may indicate overfitting. In ID3, if some noisy 
patterns exist in the dataset, they will be the main cause 
for overfitting. This is because the decision tree is 
constructed according to the attribute values of the 
decision tree. Noisy patterns (outliers) will affect on the 
structure of the decision tree. In our proposed method, in 
order to decrease the effect of outliers on the decision tree 
structure, we follow the following strategy. Consider a 
dataset structurally similar to the dataset shown in Fig. 3, 
which contains 1000 training patterns. Assume that the 
attribute SKY is selected to be located as the root of the 
decision tree (the same as Fig. 4). One of the possible 
values for this attribute is "Clear" which will be 
represented by a branch from the root. The same as ID3, 
we compute the values of p+ and p-, for patterns in which 
the value of SKY is "Clear". In ID3 the extension of a 
branch will stop only if one of these two values             
(p+ and p-) is 1 and the other is 0. This means that the 
consequent class can now be stated, with certainty. 
However, in this example, assume that just one of the 
patterns (in which the value of SKY is "Clear") has the "-" 
class label, while all others are from the "+" class. This 

pattern is more likely to be an outlier. Thus, we ignore 
such exceptional patterns while building the decision tree. 
In general, when there is a high gap between the values of 
p+ and p- (p+<<p- or p-<<p+) we assume the greater value 
to be 1 and the other to be 0. In practice, we define a 
minimum threshold called ρ for p+/p- or p-/p+. If any of 
these proportions is less than ρ, we stop extending of the 
branch and assign it a consequent class according to the 
majority. If a proper value is assigned to ρ, this strategy 
will be very effective for avoiding overfitting. This will 
be shown experimentally, in Section 4.   

A3) Testing the Classifier 
In order to classify a test pattern, it is compared with 
every rule within the rule base, to find the rule which is 
compatible to be fired. However, in some cases, we may 
find more than one rules which are satisfied by the pattern 
attribute values. If all of them have the same consequent, 
there will be no ambiguity for the pattern's class. 
Otherwise, suppose that we are encountered two (in case 
of binary categorization) or n (in case of n-ary 
categorization) groups of rules, where each group consists 
of rules showing a different class label. For each group, 
we compute the average of all CF values belonging to the 
contained rules. Finally, the rules having the maximum 
value for their CFs, are used to classify the test sample.     

IV.   EXPERIMENTAL RESULTS 
In order to assess the performance of the proposed 
scheme over some real-life data, we used the data sets 
shown in Table I available from UCI ML repository, most 
of which are medical datasets. For rulebase construction, 
we used 10CV technique which is a case of n-fold cross 
validation. In this experiment, we compared our proposed 
method with two other inductive rule-based methods, ID3 
and C4.5, which were introduced in Section 2. Since the 
datasets contain continuous numeric data, as a 
preprocessing step, each continuous attribute was 
discretized by partitioning the domain interval of the 
attribute into five equi-width intervals.  

 
Table I. Some statistics of the datasets used in our computer 

simulations 

Data set Number of 
attributes 

Number of patterns Number of 
classes 

Iris 4 150 3 
Wine 13 178 3 

Thyroid 5 215 3 
Sonar 60 208 2 
Bupa 6 345 2 
Pima 8 768 2 
Glass 9 214 6 

 
In the implementation of the proposed method, all 

strategies discussed in Section 3 were attended in order to 
optimize the accuracy, the efficiency and the 
interpretability. For a dataset containing n attributes, we 
restricted the rules to have not more than n/2 antecedent 
conditions. We tested three different values for the ρ (the 
minimum threshold of p+/p-, as discussed in Section 
3.1.2) to evaluate the effect of using this threshold and the 
proper value it should be assigned to.  

Table II indicates the generalization accuracy of the 
proposed classifier when different values of ρ are used. 
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The results of the other two methods, ID3 and C4.5 on 
different datasets are also shown in this table. 

  

 
Although ID3 always gets the accuracy of 100% over 

the training data, we can see in Table I that among the 
three methods, it has the least values of the accuracy over 
the test data. This narrates from the problem of overfitting 
in ID3. C4.5 has better accuracies compared to ID3, 
which can be due to the principal variations it has made in 
its algorithm.  

Comparing the results obtained from running of the 
proposed method using different values of ρ implies that 
using this strategy (using a threshold for p+/p-) will have 
positive effect on the generalization accuracy and in order 
to avoid overfitting. However, it should be selected 
carefully. If the value of ρ is very small (very close to 
zero), it does not have any effect, since according to the 
no. of patterns, this proportion may represent even less 
than 1 pattern out of the whole! On the other hand, if a 
large value is given to ρ, it may have some negative effect 
on the classifier's accuracy. In this case, the accuracy may 
decrease on both the training and the test data.        

As shown in Table II, in most cases, when ρ has a 
relative proper value, the proposed classifier results in 
better classification rates, compared to the results of C4.5. 

V.   CONCLUSION 
In this paper, we proposed a new decision tree induction 
algorithm, called UD3. The basis of this method is similar 
to other decision tree algorithms, such as ID3 and C4.5. 
However it has some valuable advantages to its 
counterparts. In order to improve efficiency, the proposed 
scheme maps some important information into special bit 
strings and makes use of the speed of logical operations 
over them during the induction process. On the other 
hand, the method can deal with inconsistencies in data 
and also it provides uncertainty. A very important feature 
of the method which helps much to avoid overfitting, is 
its flexibility in decision tree making and rule extraction 
from the tree. Unlike ID3, it does not try to completely 
satisfy all the training patterns with the constructed tree. 
In order to obtain a good generalization accuracy, it 
avoids generating rules for patterns that seem very 
exceptional, since they are likely to be outliers. For rule 
extraction from the constructed tree, we are able to 
choose any path within the tree (not essentially a full path 
from the root to a leaf node) to be represented as an if-
then rule. Every generated rule is provided by a certainty 

factor (CF) which is easily calculated and can be used as 
a metric for rule selection when testing the system.  

In order to evaluate the classification ability of the 
proposed method over some real-life data, we used the 
some benchmark datasets available from UCI ML 
repository, most of which are medical datasets. The 
proposed method was compared with two other inductive 
rule-based methods, ID3 and C4.5, as two well-known 
methods. Our method uses a parameter ρ, while 
constructing the decision tree. The experimental results 
showed that when a proper value is assigned to ρ, the 
algorithm will result in better generalization ability, in 
comparison with ID3 and C4.5. 
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Table II. Classification  Accuracies of the proposed method using 
different values for  ρ (minimum threshold for  p+/p-)  in 
comparison with ID3 and C4.5 for data sets of Table I 

Generalization Accuracy (%) 

The proposed method (UD3) Data sets ID3 C4.5  
ρ = 0.002 ρ = 0.02 ρ = 0.2 

Iris 84.6 94.9 89.7 94.8 84.9 
Wine 86.7 94.4 91.5 96.0 85.2 
Pima 69.3 75 74.3 76.2 64.6 
Bupa 54.6 61.8 58.7 64.4 49.8 

Thyroid 86.4 93.3 89.9 93.7 83.2 
Glass 56.9 72.7 57.4 74.2 61.3 
Sonar 68.7 76.7 71.2 78.6 66.6 
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