
 
 

 

  
Abstract—We consider an optimal stopping problem with 

some of the features of the blackjack type games. Let X1, 
X2,…,XN    be a finite sequence of nonnegative random variables. 
A decision maker observes sequentially the values and decides 
whether to stop or to continue. If he decides to stop at the mo-
ment k he obtains a payoff dependent on the sum X1+…+Xk . The 
greater the sum, the more the decision maker gains, unless the 
sum exceeds a positive number T – a limit given in the problem. 
If so, the decision maker loses all or part of his payoff. A special 
case of such a problem is considered in details. In this case a 
simple optimal stopping rule is found. Some examples and 
practical questions are discussed as well.  
 

Index Terms— Markov chain, optimal stopping rule, 

sequential decision making.  
 

I. INTRODUCTION 
There are some problems in real world applications  where 

the decision maker wants to get as close as possible to a given 
limit  but the limit should be crossed under the threat of some 
kind of punishment. Especially interesting are those in which 
the limit is approached by random moves (steps). Some of the 
problems can be modeled as follows.  Let X1 , X2 , …,  XN  be a 
finite sequence of independent nonnegative random vari-
ables. A decision maker observes sequentially the values of 
the variables and decides whether to stop or to continue. If he 
decides to stop at the moment k  he gains a value )( 1∑ =

k
i iXW , 

where RRW →+:  is a given function. The function is 
positive and  increasing on the interval (0, T] and is de-
creasing for arguments greater than T. It implies that W  
achieves its only maximum for TXk

i i =∑ =1 .  
Such a problem can be a model for various real world 

situations which can be observed in economics, finance, 
politics or social life. We describe just  two of them.  

The first example is service with work time limit.  
A decision maker controls  a mechanism (or an individual)   

which should not work longer than a given time period T.  He 
has several jobs to process in sequential order with the ith job 
requiring a random time Xi  for its execution. After each job 
he must decide whether to start next one or to stop. Every 
initiated job must be completed. The longer the  mechanism 
works, the more the decision maker gains but if the work time 
exceeds the limit T the  decision maker will be punished.  

The second problem is blackjack type games.  
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The games are played on a points system that gives nu-
meric values to every card in a single deck of playing cards. 
The cards are given to a player sequentially until he decides 
to stop. His score is the sum of the values in hand.  The player 
with the highest total score wins as long as it doesn't exceed a 
given limit number. If a player’s cards exceed  the limit then 
the player loses and his/her bet is taken by the dealer. Such 
games were considered in [3] 

One specific model of such a situation will be considered 
in detail in the sequel. 

 

II. PROBLEM STATEMENT  
Let X1, X2, … , XN   be a sequence of i.i.d. random variables 

having an exponential distribution with the density function:  
 

0,)()exp()( ),0[ >−= ∞ λλλ tttf 1  (1) 

 
The decision maker observes the sequence  X1, X2, … , XN    

and at each stage decides whether to stop or to continue. If he 
decides to stop at the moment k his gain depends on  

∑ == k
i ik XY 1 . The payoff function W is given by the fol-

lowing equation: 
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with B>0, T >0.  The punishment function F appearing in (2) 
has the form CxKxF +⋅=)( , with K ≥ 0, C ≥ 0, and 
K+C > 0. 

Our tusk is to find an optimal stopping rule for this prob-
lem i.e. stopping rule which maximizes the expected payoff 
for a decision maker 

 

III. SOME GENERAL DEFINITIONS AND RESULTS  
Before we solve our optimal stopping problem we need to 

present some necessary formal definitions and fundamental 
results from the theory of optimal stopping. They can be 
found e.g. in [1], [2], [4].  

Let X1 , X2 , …  be a sequence of independent random 
variables. Let Fn  denote the σ -algebra generated by the 
random variables X1 , X2 , …,  Xn  in an underlying probability 
space (Ω,F,P)  A stopping rule is a random variable τ with 

values in a set of natural numbers such that {τ=n}∈ Fn for 

n=1,2,… and P(τ<∞)=1. Let M(n,N)  be a class of all stop-
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ping rules τ such that P( n ≤ τ ≤ N)=1. The class M(1,N)  will 

be denoted M(N) 

Let (Yn,Fn) , n=1,2,… , be a homogenous Markov chain 

with values in a state space (Y,B). Let RRW →+:  be a Borel 
measurable function which values W(y) will be interpreted as 
the gain for a player when he stops the chain (Yn,Fn) at the 
state y. Assume that for a given state y and for a given stop-
ping rule τ the expectation E(W(Yτ)|Y1=y) exists. Then it is 
natural to interpret the value - denoted by EyW(Yτ) - as the 
mean gain corresponding to a chosen stopping rule τ.  

Let  us define a function VN by the equation: 
 

VN(y) = 
)(W

sup
NM∈τ

 EyW(Yτ) (3) 

where MW(N)  is a set of all stopping rules belonging to M(N)  
for which the expectations EyW(Yτ) exist for all y∈ Y and are 
larger than -∞. The value VN (y) is called a value of the 
problem of optimal stopping when the initial state of the 
process is y. 

A stopping rule τ*∈ MW(N)    which  for all y∈Y  satisfies 
the condition 

 
EyW(Yτ∗)= VN(y) (4) 
 
is called  an optimal stopping rule. 

Let B denote a class of all Borel measurable functions W 

for which the expectations EyW(Y2) exist for all y∈Y.  Let us 

define an operator Q operating on functions W ∈ B  by 
QW(y) = max{W(y), EyW(Y2)} (5) 

The following theorem, which can be found in [4], pro-
vides us with the solution to the optimal stopping problem in 
the considered case. 
Theorem  Assume that W ∈ B.  Then:  

i. Vn(y) = QnW(y)     ,  n=1,2,…   
ii. Vn(y) = max{W(y), EyVn-1(Y2)},  where V0(y) = W(y)  
iii. A stopping rule *

nτ  defined by  
)}()(:1min{*

kkknn YWYVnk =≤≤= −τ  

is an optimal stopping rule in a class MW(n)   
If  Ey|W(Yk)| < ∞ , for k=1,…,n  ,  then the stopping rule *

nτ  is 

optimal in the class M(n)  
 

IV. PROBLEM SOLUTION 
It is easy to see that our problem is a special case of the 

above general problem. So, in order to solve it we apply the 
Theorem.  

First we need  to find the form of  Vn(y)=Qn(y),  n=1,2,…N. 
For every y∈(0,T], by (1),(2) and (5), we have  
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It is easy to verify, that (for any given parameters T, λ, B, 

K, C  characterizing our problem) a point t1 for which the 
functions  W and I1 have equal values is exactly the same as 
the point at which the function I1 takes its only maximum on 
the interval (0,T]. Moreover, the following conditions hold: 

I1(y)> W(y)  for y∈(0, t1) and I1(y) < W(y)  for y∈(t1,T] 
The value of  t1 is given by the formula: 
 

)ln(1
1 B

CKBTt λ
λ

++
−=  (8) 

 
It also follows from (2) that I1(y)≤ W(y)  for y > T. In view 

of Theorem 1 it implies that one step before the end of ob-
servations the decision maker should continue the observa-
tions if he is at any state y which is less than t1 and should stop 
otherwise. 

Let In(y) denote the expectation EyVn-1(y+X2), n=2,…,N.  
Now, with the help of mathematical induction, we show that 
the following lemma is true 

Lemma. Let t1 be given by the formula (8). Then for any 
natural number n the function In satisfies the following con-
ditions: 

i. In(y) > W(y)  for  y∈(0, t1)  
ii. In(y) ≤ W(y)  for  y∈[t1,∞) 

Proof. It was already shown that conditions i and ii hold for 
n=1. Now let us assume that the conditions hold for In-1. 
Then, by the definition of Vn-1 and the induction assumption,  
for y∈(0, t1) we have: 
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It implies that condition i. is satisfied.   
Again by the induction assumption, when y∈[t1,∞) we 

obtain:  
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Thus the condition ii. also holds and the proof of the 

lemma is completed.  
It follows from the lemma immediately that for n=1,…,N  

functions Vn have the form:  
 

)()()()()( ),[),0[ 11
yyWyyIyV ttnn ∞⋅+⋅= 11  (11) 

 
where  t1 is given by (8).  

The following proposition provides us with the solution of 
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our problem.  
Proposition. Let us consider a sequence X1 , X2 , … , XN   of  

i.i.d. random variables with density functions given by (1). 
The optimal stopping rule for the problem of optimal stop-
ping of the Markov chain ( ∑ == n

i in XY 1 , Fn) with the gain 
function (2) is given by: 

}:1min{ 1
* tYNk kN ≥≤≤=τ  

with t1 being given by the formula (8) 
The value VN(y)  of the problem can be calculated for  y < t1 

with the help of the following recursive equation: 
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n=2,…,N ,  
with the initial condition )()( 11 yIyV = given by (7). 
 

We omit the proof of the Proposition because it directly  
follows Theorem 1 and the formula (11) 

The results stated in the Proposition  imply  that at any 
moment k the decision maker should continue the observa-
tions if  he is at any state y which is less than t1 and should 
stop otherwise. Such a stopping rule maximizes his expected 
payoff. The maximum that the decision maker may expect to 
gain is VN(0) 

V. SOME EXAMPLES AND FINAL REMARKS  
We can see that the recursive equation (11) involves in-

tegrating and one cannot be happy about it.  We may notice 
however, that for any natural number n the functions Vn can 
be expressed in terms of  elementary functions (involving  ex, 
lnx, xn) though the calculations are rather arduous, even for 
small numbers n. Fortunately, one may use a computer with 
symbolic manipulation software such as Mathematica, Ma-
ple, Maxima, Axiom, etc., to obtain the form of the functions.  
We applied Mathematica 4.0 software to compute the form 
of the functions  Vn , n=1,…,15. As an example, we present 
here  Mathematica output for the function V5  (when n is 
greater the formulae for Vn are too large to paste into the text).  
In the presented below output variable y and constants T, 
λ, K, B, C  have their previous meaning. 
Mathematica output for the function V5: 
 
(e−Tλ(−eyλ(K +Cλ)(120 − 96yλ +36y2λ2 − 8y3λ3 + T 4λ4 + 
y4λ4 − 4T3λ3(−2 + yλ) + 6T 2λ 2(6 − 4yλ + y2λ2) − 4Tλ 
(−24 + 18yλ − 6y2λ2 − T 3λ 3 + y3λ 3)) + B(24eTλ(5 + yλ) −  
eyλ (120 − 96yλ + 36y2λ2 − 8y3λ3 + T 4λ 4 + y 4λ 4 − 4T 3λ3 

(−2 + yλ) + 6T 2λ 2(6 − 4yλ + y2λ2) − 4Tλ((−24 + 18yλ −  
6y2λ2 + y3λ3))) −4eyλ(B + K + Cλ)( −24 + 18yλ − 6y2λ2 −  
T 3λ3 + y3λ3 +3T 2λ 2(−2 + yλ) − 3Tλ(6 − 4yλ + y2λ2))  
ln((B + K + Cλ) /B) − 6eyλ(B + K + Cλ)(6 − 4yλ + T 2λ 2 +  
y2λ2 − 2Tλ(−2 + yλ)) ln2((B + K + Cλ) /B) − 4eyλ((B + K +  
Cλ)(−2 − Tλ + yλ) ln3((B + K + Cλ) /B) − eyλ((B + K + Cλ)  
ln4((B + K + Cλ) /B))) / 24λ 
 
With the help of such formulae we can compute an expected 
payoff for a decision maker and analyze dependence between 
the payoff and the parameters characterizing the problem. 

For example let us consider  the case where T=10 and  
λ=B=K=C=1. Then  t1=10-ln(3) which means that in the case  
the decision maker should continue his observations until the 
sum of already observed values exceeds  10-ln(3)≈ 8.901. If  
the initial state y equals 0 by applying this stopping rule he 
may expect to win (in average) about V5(0)≈4.911 if he has 
got five steps to the end of observations, about V10(0) ≈8.168 
if he has 10 observations ahead, and V15(0) ≈8.863 if he has 
15 observations before the end of the process. No other 
stopping rule can guarantee the decision maker as much.  

In our paper we consider the problem of optimal stopping 
where the decision maker must make at least one observation  
and the initial state for the process is 0 (the decision maker’s 
gain is 0 if he does not make any observation)  But we can 
also consider the situation where he can stop the process 
without any observation – it would  be justified e.g. in the 
case where t1 is less than 0. For example if T=10 and  
B=K=C=1 it would be the case where λ < λmin≈0.07289 or, in 
other words, where EX1 > 1/λmin≈ 13.7184 (i.e. an average 
length of the step while approaching the limit is greater than 
13.7184)  In such a case the value of the problem is negative 
e.g. if N=5 and λ = 0.072 then V5(0)= -0.393552, and it 
would be better  for the decision maker to stop without any 
observations.  

Fig. 1 shows the expected payoff for the decision maker as 
a function of  λ in case where N=5. 

 

 
Fig.1. The value V5(0) as a function of λ when  T=10 and  

B=K=C=1. 
 
One can verify easily, that in our example the value of  λ 

for which the expected payoff achieves its maximum equals 
λ* =0.411868. Such knowledge can be important if we have 
influence on the value of λ (or, equivalently, on the average 
length of the step while approaching the limit). If so, we 
would choose the value λ* to achieve the greatest gain.  
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