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Abstract—This paper aims to give general condi-
tions on switchings thresholds to ensure the switch-
ings existence for a particular class of hybrid dynam-
ical systems. We develop here the study considering
systems of this class in dimension one and, above all,
in dimension two. We finally conclude that those con-
ditions could be applied to any dimension systems of
this hybrid systems class and we illustrate all results
with a thermal application.
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1 Introduction

A hybrid dynamical system is a dynamical system that
exhibits both continuous and discrete behaviors [5], [6].
It is generally described by a differential equations sys-
tem (which represents the continuous dynamics) and by a
switching equation (which describes the discrete dynam-
ics).

In this paper, we consider a particular class of hybrid dy-
namical systems (h.d.s.) with autonomous switchings,
these switchings being generated by a hysteresis phe-
nomenon. This class is very interesting to study. In-
deed, first, it models an important number of industrial
applications in many research areas (thermic, electronics,
automotive...) and in any dimension. Moreover, it has
a mathematical model which permits to develop a depth
analysis. Thus, for example, we can solve optimization
problems [2], we can study and determine equations for
one-period cycles [3], for two-period cycles [4] and we can
be confronted to chaos problems with period-doubling bi-
furcations and positive value for the largest Lyapunov
exponent [1]. So, despite a relatively simple mathemati-
cal model, a very complex and important analysis can be
made.

Nevertheless, all these problems imply that switchings
exist and in applications, numerical values were chosen
in order to have a cycle for solution. So, all this study
makes sense only if switchings exist which is not always
the case. That’s why, in this paper, we give conditions on
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some system parameters (and particularly on switchings
thresholds) to ensure switchings existence and we try to
conclude that these conditions are the same for any di-
mension systems belonging to the studied h.d.s. class.

2 Presentation of the studied h.d.s. class

In RN , N ≥ 1, we consider a basis which is generally
the canonical basis or an eigenvectors basis. In relation
to this basis, we consider the following hybrid dynamical
system (h.d.s.) of order N :{

Ẋ(t) = AX(t) + q(ξ(t))B + C,
ξ(t) = LX(t),

(1)

where A is a square matrix of order N , B, C and X are
columns matrices of order N , L is a row matrix of order
N , all these matrices taking real values. Moreover, we
suppose that matrix A only has eigenvalues with strictly
negative real part and that X, and so ξ are continuous.

In this model, the discrete variable is q, which can take
two values 0 and 1 according to ξ following a hysteresis
phenomenon described on figure 1. If ξ reaches its lower

Figure 1: Hysteresis phenomenon

threshold θ1 by decreasing value, then q goes from value
0 to value 1. Identically, if ξ reaches its upper threshold
θ2 by increasing value, then q goes from value 1 to value
0. In these conditions, the multifunction q(ξ) is explicitly
given by :⎧⎨
⎩

q(ξ(t)) = 0 if ξ(t−) = θ2 and q(ξ(t−)) = 1,
q(ξ(t)) = 1 if ξ(t−) = θ1 and q(ξ(t−)) = 0,
q(ξ(t)) = q(ξ(t−)) otherwise.

(2)

In the first two cases of (2), t is called switching time
and θ1 and θ2 are respectively called lower and upper
switchings thresholds.
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3 Study of switchings conditions

To find switchings conditions, first, we need to have cy-
cles equations that have been generally determined in [1].
Repeat here the same reasoning.

We consider t0 a given initial time and t1 < t2 < ... <
tn < tn+1 < ... an increasing suite of successive switch-
ings times in [t0,+∞[, all necessarily distincts because
definition of q(ξ(t)) implies ξ(tn) �= ξ(tn−1). So, we sup-
pose that instant tn of the n-th switching exists and is
finite.

To simplify notations, we set qn = q(ξ(tn)) and we have
q(ξ(t)) = qn in [tn, tn+1[. Identically, we set ξn = ξ(tn)
and Δqn = qn − qn−1. A classical integration of general
differential system (1) in [tn, tn+1[ gives:

X(t) = e(t−tn)AΓn −A−1(qnB + C), (3)

where Γn is a column matrix of order N corresponding
to integration constant, function of n. Thus, introducing
notation σn = tn− tn−1 > 0, ∀n ≥ 1, and considering the
continuity assumption of the state at tn, we obtain:

∀n ≥ 1, Γn = eσnAΓn−1 +ΔqnA−1B. (4)

Moreover, constant Γ0 is given by equation (3) when n =
0 and t = t0 by the following expression:

Γ0 = X(t0) +A−1(q0B + C). (5)

Then, we have ∀n ≥ 1, ξn = qnθ1 + qn−1θ2 which tra-
duces the fact that ξn takes value θ1 or θ2 according to
hysteresis variable q. We also have by definition ∀n ≥ 1,
ξn = LX(tn) = L(Γn−A−1(qnB+C)). Combining these
two expressions, we finally obtain the following equation:

∀n ≥ 1, L(Γn−A−1(qnB+C))−qnθ1−qn−1θ2 = 0. (6)

Resolution of system (1), (2) with unknowns X(t),
(tn)n∈N is reduced to the one of system (4), (6) with
unknowns (Γn)n≥1, (σn)n≥1. It is from these two last
equations that we will study switchings conditions.

Moreover, such globally non linear systems can admit
none, one or several solutions. Equation ξn = θ1 or θ2 im-
plies that search for cycles solution corresponds to search
for periodic suites (σ2n,Γ2n, σ2n+1,Γ2n+1)n∈N of period
k, k ≥ 1. For example, a cycle of period one is character-
ized by the existence of two different durations between
two successive switchings times and corresponds to a con-
stant suite (σ2n,Γ2n, σ2n+1,Γ2n+1).

So, like in [1], introducing notation U i
n = U2kn+i, n ≥ 0,

k being the period of the cycle, for any suite (Un)n∈N

and applying to our system given by (4), (6), we obtain
∀i = 1, ..., 2k:{

Γi
n+1 − eσ

i
n+1AΓi−1

r −ΔqiA
−1B = 0,

L(Γi
n+1 −A−1(qiB + C))− qiθ1 − qi−1θ2 = 0,

(7)

with r = n if i = 1, r = n + 1 otherwise, Γ0n = Γ2kn ,
qi = q0 if i is even and qi = q1 if i is odd.

It is from system (7) that we will study switchings con-
ditions only considering period-one cycle (k = 1).

3.1 Dimension one

In dimension one, system (1) becomes:{
ẋ(t) = −ax(t) + q(x(t))b+ c,
ξ(t) = x(t)

where X(t) = x(t), A = −a, B = b, C = c, L = 1.

As mentioned in [3], system (7) becomes here ∀n ≥ 0:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ1n+1 = − 1
a ln

(
γ1n+1+Δq1a

−1b
γ2n

)
σ2n+1 = − 1

a ln
(

γ2n+1−Δq1a
−1b

γ1
n+1

)
γ1n+1 + a−1(q1b+ c)− q1θ1 − q0θ2 = 0
γ2n+1 + a−1(q0b+ c)− q0θ1 − q1θ2 = 0,

where Γi
n+1 = γi

n+1 for i = 1, 2.

Switchings exist if the first switching exists and if dura-
tions between different switching times σi

n+1, i = 1, 2,
n ≥ 0 also exist. Considering case q0 = 0, q1 = 1 or
q0 = 1, q1 = 0, we finally obtain like in [3] following
conditions for switchings existence.

If the necessary condition of the σi
n+1, i = 1, 2, n ≥ 0

that is a−1c < θ1 < θ2 < a−1(b + c) is satisfied and,
moreover, if the condition of the first switching existence
given by (q0 = 1 and x0 < θ2 < a−1(b + c)) or (q0 = 1
and x0 > θ1 > a−1c) is also satisfied, then, the hybrid
system ẋ(t) = −ax(t) + qb + c has for unique solution a
cycle.

For the application, we consider a convector in direct ex-
change with the outside fluid. System is given here by:

Qcẋ(t) = − 1
Rc

x(t) + qPc +
θe

Rc
,

where x (in K) is the convector temperature, Rc (in
K.W−1) is the convector resistance, Qc = mcCc with
mc (in kg) its mass, Cc (in J.kg−1.W−1) its heat capac-
ity, Pc (in W) is its power and θe (in K) is the outside
temperature. We choose the following numerical values

Rc Qc Pc θe q0
10 100 5 273 1

So, we have a = 1
RcQc

= 10−3, b = Pc

Qc
= 0.05, c =

θe

RcQc
= 0.273. To ensure switchings existence, we must

choose 273 = a−1c < θ1 < θ2 < a−1(b + c) = 323 and
x0 < θ2 < a−1(b+ c).
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Figure 2: convector temperature simulation for θ1 = 290
K, θ2 = 295 K, x0 = 280 K

• For example, if we set θ1 = 290 K, θ2 = 295 K, x0 = 280
K, all conditions are satisfied then switchings exist as
figure 2 shows.

• However, if we choose θ1 = 290 K, θ2 = 295 K, x0 = 300
K, the first switching does not exist since x0 > θ2 (see
figure 3 on the left).

• Finally, if we set θ1 = 272 K, θ2 = 295 K, x0 = 280 K,
the first switching exists since the condition is satisfied
but not the others since θ1 < a−1c = 273 (see figure 3 on
the right).

Figure 3: convector temperature simulation for θ1 = 290
K, θ2 = 295 K, x0 = 300 K (on the left) and for θ1 = 272
K, θ2 = 295 K, x0 = 280 K (on the right)

3.2 Dimension two

In dimension two, we consider a thermostat which con-
trols a convector located in the same room. System (1)
becomes:(

ẋ(t)
ẏ(t)

)
= A

(
x(t)
y(t)

)
+ q(x)

(
0
pc

)
+
(

dθe

0

)
(8)

where x is the room temperature and y is the convec-

tor temperature, A =
( −(b+ d) b

c −c

)
, b = 1

RcmpCp
,

c = 1
RcmcCc

, d = 1
RmmpCp

, pc = Pc

mcCc
, L = ( 1 0 ).

Coefficients Rc, Rm (in K.W−1) are thermal resistances,
Cc, Cp (in J.kg−1.K−1) are heat capacities and mc, mp

(in kg) are masses according to indices c, p, m which
respectively represent the convector, the room and the
house wall. Moreover, Pc (in W) is the convector power
and θe (in K) is the outside temperature.

As in dimension one, for some values of the parameters,
the system does not switch since the room temperature
never reaches its upper or lower threshold. Moreover, for
other values, the system can only switch once because
the room temperature reaches a first time its lower (or
upper) threshold but then, it never reaches its upper (or
lower) threshold.

The reasoning to determine switchings conditions is the
same than in dimension one. The only difference which
introduces more difficulties, is that each component of
Γi

n+1, i = 1, 2, n ≥ 0 noted Γij
n+1, j = 1, 2 can not only be

expressed as a function of system parameters. To simplify
calculuses, let us consider B a basis of eigenvectors of
matrix A. According to this basis, system in dimension
two is written Ẋ = AX + qB + C where:

A =
(

A1 0
0 A2

)
, B =

(
B1

B2

)
=

(
−pc(c+A2)

A1−A2
(c+A1)(c+A2)pc

c(A1−A2)

)

C =
(

C1

C2

)
=

(
cdθe

A1−A2

− (c+A2)dθe

A1−A2

)
, L =

(
c+A1

c
1

)t

where Ai, i = 1, 2 correspond to A eigenvalues, A1 =
− 1
2 (b + c + d − √Δ), A2 = − 1

2 (b + c + d +
√
Δ) < 0,

Δ = (b+ c+ d)2 − 4cd.

System (7) is explicitly given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ11 − eA1σ
1
Γ21 −Δq1A

−1
1 B1 = 0

Γ12 − eA2σ
1
Γ22 −Δq1A

−1
2 B2 = 0

Γ21 − eA1σ
2
Γ11 +Δq1A

−1
1 B1 = 0

Γ22 − eA2σ
2
Γ12 +Δq1A

−1
2 B2 = 0

L1Γ11 + L2Γ12 −A−11 L1(q1B1 + C1)−A−12 L2(q1B2 + C2)
−q1θ1 − q0θ2 = 0
L1Γ21 + L2Γ22 −A−11 L1(q0B1 + C1)−A−12 L2(q0B2 + C2)
−q0θ1 − q1θ2 = 0

(9)
where Γij is the limit of Γij

n , i, j = 1, 2 and σi is the limit
of σi

n, i = 1, 2 when n → +∞.

From the first four equations of (9), we can write:

⎧⎨
⎩

σ1 = 1
A1

ln
(
Γ11−Δq1A

−1
1 B1

Γ21

)
= 1

A2
ln
(
Γ12−Δq1A

−1
2 B2

Γ22

)
σ2 = 1

A1
ln
(
Γ21+Δq1A

−1
1 B1

Γ11

)
= 1

A2
ln
(
Γ22+Δq1A

−1
2 B2

Γ12

)
.

(10)
We conclude that σi, i = 1, 2 exist if:

{
0 <

L1Γ
11−Δq1L1A

−1
1 B1

L1Γ21
< 1, 0 <

L1Γ
21+Δq1L1A

−1
1 B1

L1Γ11
< 1

0 <
L2Γ

12−Δq1L2A
−1
2 B2

L2Γ22
< 1, 0 <

L2Γ
22+Δq1L2A

−1
2 B2

L2Γ12
< 1.
(11)

Sixteen possibilities come from system (11) combining all
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these following cases:

1a

{
L1Γ

11 −Δq1L1A
−1
1

B1 > 0

L1Γ
21 > 0 or

L1Γ
11 −Δq1L1A

−1
1

B1 < L1Γ
21

1b

{
L1Γ

11 −Δq1L1A
−1
1

B1 < 0

L1Γ
21 < 0

L1Γ
11 −Δq1L1A

−1
1

B1 > L1Γ
21

2a

{
L2Γ

12 −Δq1L2A
−1
2

B2 > 0

L2Γ
22 > 0 or

L2Γ
12 −Δq1L2A

−1
2

B2 < L2Γ
22

2b

{
L2Γ

12 −Δq1L2A
−1
2

B2 < 0

L2Γ
22 < 0

L2Γ
12 −Δq1L2A

−1
2

B2 > L2Γ
22

3a

{
L1Γ

21 + Δq1L1A
−1
1

B1 > 0

L1Γ
11 > 0 or

L1Γ
21 + Δq1L1A

−1
1

B1 < L1Γ
11

3b

{
L1Γ

21 + Δq1L1A
−1
1

B1 < 0

L1Γ
11 < 0

L1Γ
21 + Δq1L1A

−1
1

B1 > L1Γ
11

4a

{
L2Γ

22 + Δq1L2A
−1
2

B2 > 0

L2Γ
12 > 0 or

L2Γ
22 + Δq1L2A

−1
2

B2 < L2Γ
12

4b

{
L2Γ

22 + Δq1L2A
−1
2

B2 < 0

L2Γ
12 < 0

L2Γ
22 + Δq1L2A

−1
2

B2 > L2Γ
12

To simplify notations, restrict us to the case q0 = 1, q1 =
0 since case q0 = 0, q1 = 1 is treated with the same way
and gives the same results. These sixteen possibilities are
not all possible. Explain this.

First, we can prove that cases 1a and 2a can not be true
simultaneously. Indeed, according to 1a, we have 0 <
L1Γ11+L1A

−1
1 B1 < L1Γ21. Identically, from case 2a, we

can write 0 < L2Γ12 + L2A
−1
2 B2 < L2Γ22. Thus, adding

these two expressions and using the two last equations
of system (9), we finally obtain LA−1(B + C) + θ2 <
LA−1(B+C)+θ1 i.e. θ2 < θ1, that is impossible because,
by definition, θ2 is the upper switching threshold and θ1
the lower so θ2 > θ1. Reasoning in the same way, we
also obtain this contradiction combining cases 3b and
4b, cases 1a and 4b and cases 2a and 3b.

Moreover, cases 1a and 3a are also incompatible because
the third inequation in 1a contradicts the one of 3a.
Same remark can be formulated with cases 2a and 4a,
cases 1b and 3b and cases 2b and 4b.

So, removing all these incompatibilities, we can eliminate
thirteen of the sixteen possibilities that can be summed
up in the following tree (gray branches represent impossi-

ble combinations and black branches the remaining com-
binations which are 1a-2b-3b-4a, 1b-2a-3a-4b, 1b-2b-
3a-4a).

These remarks were made independently of the system
parameters values. To continue to restrict the number of
possible combinations, let us prove that B2 = −L1B1 <

0. Recall that B2 =
(c+A1)(c+A2)pc

c(A1−A2)
. We already know

that pc

c(A1−A2)
> 0 (since A1 − A2 =

√
Δ > 0, pc > 0,

c > 0). So, it remains to study sign of (c+ A1)(c+ A2).

We have:

(c+A1)(c+A2) = c2 + c(A1 +A2) +A1A2,

where A1A2 = 1
4 ((b + c + d)2 − Δ) = cd, A1 + A2 =

−(b+ c+ d). We finally obtain:

(c+A1)(c+A2) = −c(b+ d) + cd = −bc < 0,

that permits us to conclude B2 = −L1B1 < 0. From this,
case 1a implies L1Γ11 > −L1A

−1
1 B1 = L2A

−1
1 B2 > 0

so case 3b is not compatible since it implies L1Γ11 < 0.
Identically, case 2b implies L2Γ12 < −L2A

−1
2 B2 < 0 that

is incompatible with case 4a (since it implies L2Γ12 > 0).

These two last remarks permit us to remove two combi-
nations on the three remaining. Finally, only one combi-
nation is possible: 1b-2a-3a-4b.

Switchings exist if and only if t1 exists and σi, i = 1, 2
exist. From system (10), as 0 > A1 > A2 i.e. A−11 <
A−12 < 0, we obtain:⎧⎨
⎩

0 > ln
(

L1Γ
11+L1A

−1
1 B1

L1Γ21

)
> ln

(
L2Γ

12+L2A
−1
2 B2

L2Γ22

)
0 > ln

(
L1Γ

21−L1A
−1
1 B1

L1Γ11

)
> ln

(
L2Γ

22−L2A
−1
2 B2

L2Γ12

)
i.e. ⎧⎨

⎩
L1Γ

21

L1Γ11+L1A
−1
1 B1

< L2Γ
22

L2Γ12+L2A
−1
2 B2

L1Γ
11

L1Γ21−L1A
−1
1 B1

< L2Γ
12

L2Γ22−L2A
−1
2 B2

or{
L1Γ21(L2Γ12 + L2A

−1
2 B2) > L2Γ22(L1Γ11 + L1A

−1
1 B1)

L1Γ11(L2Γ22 − L2A
−1
2 B2) > L2Γ12(L1Γ21 − L1A

−1
1 B1),
(12)

since L1Γ11 + L1A
−1
1 B1 < 0, L2Γ12 + L2A

−1
2 B2 > 0,

L1Γ21 − L1A
−1
1 B1 > 0, L2Γ22 − L2A

−1
2 B2 < 0.

From the first inequation of system (12) and using the
two last equations of system (9), we have:

(−L2Γ22 + LA−1(B + C) + θ1)(L2Γ12 + L2A
−1
2 B2) >

L2Γ22(−L2Γ12 − L2A
−1
2 B2 + LA−1(B + C) + θ2

⇒ (LA−1(B + C) + θ1)(L2Γ12 + L2A
−1
2 B2) >

L2Γ22(LA−1(B + C) + θ2).

If we suppose θ2 + LA−1(B + C) > 0, as 0 < L2Γ12 +
L2A

−1
2 B2 < L2Γ22, we obtain L2Γ22(θ2 + LA−1(B +

C)) > (L2Γ12+L2A
−1
2 B2)(θ2+LA−1(B+C)) that gives

us:

(θ1 + LA−1(B + C))(L2Γ12 + L2A
−1
2 B2) >

(θ2 + LA−1(B + C))(L2Γ12 + L2A
−1
2 B2) i.e. θ1 > θ2

since L2Γ12 + L2A
−1
2 B2 > 0. This is a contradiction

since θ1 is the lower switching threshold and θ2 the upper
threshold so, by defintion, θ1 < θ2. Finally, we conclude
that σ1 exists if and only if θ1 + LA−1(B + C) < θ2 +
LA−1(B + C) < 0.
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In the same way, from the second inequation of system
(12), we obtain: (LA−1C + θ2)(L2Γ22 − L2A

−1
2 B2) >

(LA−1C + θ1)L2Γ12. If we suppose LA−1C + θ1 > 0, as
L2Γ12 < L2Γ22 − L2A

−1
2 B2 < 0, we obtain L2Γ12(θ1 +

LA−1C) > (L2Γ22 − L2A
−1
2 B2)(θ1 + LA−1C) and:

(LA−1C + θ2)(L2Γ22 − L2A
−1
2 B2) >

(L2Γ22 − L2A
−1
2 B2)(θ1 + LA−1C) i.e. θ2 < θ1

since L2Γ22 − L2A
−1
2 B2 < 0. Yet we get a contradiction

with definitions of θ2 and θ1. We finally conclude θ2 +
LA−1C > θ1 + LA−1C > 0.

Existence of switchings from the second switching is en-
sured if and only if −LA−1C < θ1 < θ2 < −LA−1(B+C)
which is exactly the same conditions found in dimension
one (−a−1c < θ1 < θ2 < −a−1(b + c) because L = 1,
A = −a).

It remains now to search for existence conditions for the
first switching. First switching exists if and only if t1
or σ1 = t1 − t0 exists. Always considering case q0 = 1,
q1 = 0, from system (7) and equation (5), we obtain:

σ1 = A−11 ln
(

L1Γ1,1+L1A
−1
1 B1

L1Γ0,1

)
= A−12 ln

(
L2Γ1,2+L2A

−1
2 B2

L2Γ0,2

)
,

(13)

where Γi,j , i = 0, 1, j = 1, 2 represent the integration
constants components for n = 0 and n = 1 (here, we can’t
consider Γ1 = Γ1 because Γ1 is the limit when n → +∞).

Several cases must be taken into account for choices of
X(t0) = X0 = (X0,1 X0,2)t:

A).
{

L1X0,1 < −L1A
−1
1 (B1 + C1) i.e. L1Γ0,1 < 0,

L2X0,2 < −L2A
−1
2 (B2 + C2) i.e. L2Γ0,2 < 0,

B).
{

L1X0,1 > −L1A
−1
1 (B1 + C1) i.e. L1Γ0,1 > 0,

L2X0,2 < −L2A
−1
2 (B2 + C2) i.e. L2Γ0,2 < 0,

C).
{

L1X0,1 > −L1A
−1
1 (B1 + C1) i.e. L1Γ0,1 > 0,

L2X0,2 > −L2A
−1
2 (B2 + C2) i.e. L2Γ0,2 > 0,

D).
{

L1X0,1 < −L1A
−1
1 (B1 + C1) i.e. L1Γ0,1 < 0,

L2X0,2 > −L2A
−1
2 (B2 + C2) i.e. L2Γ0,2 > 0.

Case C). implies that the system never switches because,
from (13), we have L1Γ1,1 + L1A

−1
1 B1 > 0, L2Γ1,2 +

L2A
−1
2 B2 > 0 i.e. LΓ1 + LA−1B = θ2 + LA−1(B +

C) > 0 that is in contradiction with the found switchings
conditions.

Moreover, from case A)., we directly obtain that σ1 ex-
ists if 0 > L1Γ1,1 + L1A

−1
1 B1 > L1Γ0,1, 0 > L2Γ1,2 +

L2A
−1
2 B2 > L2Γ0,2, i.e. θ2 + LA−1(B + C) > LX0 +

LA−1(B + C) i.e. LX0 < θ2 < −LA−1(B + C).

From case B). and (13), we have:

1 >
L1Γ1,1 + L1A

−1
1 B1

L1Γ0,1
>

L2Γ1,2 + L2A
−1
2 B2

L2Γ0,2
> 0,

with 0 < L1Γ1,1 + L1A
−1
1 B1 < L1Γ0,1 and 0 > L2Γ1,2 +

L2A
−1
2 B2 > L2Γ0,2. So, we obtain:

L2Γ0,2(L1Γ1,1+L1A
−1
1 B1) < L1Γ0,1(L2Γ1,2+L2A

−1
2 B2)

⇒ (LX0 + LA−1(B + C))(L1Γ1,1 + L1A
−1
1 B1) <

L1Γ0,1(θ2 + LA−1(B + C)).

Since in this case L1Γ0,1 > L1Γ1,1 + L1A
−1
1 B1 > 0 and

θ2 + LA−1(B + C) < 0, we have L1Γ0,1(θ2 + LA−1(B +
C)) < (L1Γ1,1 + L1A

−1
1 B1)(θ2 + LA−1(B + C)) and we

conclude:

LX0 < θ2 < −LA−1(B+C) since L1Γ1,1+L1A
−1
1 B1 > 0.

It remains case D). to study. From (3) applied in t = t1,
we have:

X(t1) =
(

θ2
y(t1)

)
= Γ1 −A−1C.

So, we can write Γ1,1 − A−11 C1 = θ2. Thus, σ1 exists
if 0 > Γ1,1 + A−11 B1 > Γ0,1 (since L1 > 0) and 0 <
L2Γ1,2 + L2A

−1
2 B2 < L2Γ0,2. From the first inequality,

we obtain 0 > θ2+A−11 (B1+C1) > X0,1+A−11 (B1+C1)
i.e. X0,1 < θ2 < −LA−1(B +C). Then, from the second
inequality, as L1Γ1,1 + L2Γ1,2 = θ2 + LA−1C, we obtain
X0,2 > θ2(1− L1).

To conclude, we can remark that the first switching con-
dition is the same than the one in dimension one ex-
cept for case D). (indeed, in dimension one, we have
x0 < θ2 < −a−1(b + c)). If we consider case q0 = 0,
q1 = 1, we obtain the same conditions for the existence
of σi

n+1, i = 1, 2 that is to say −LA−1C < θ1 < θ2 <
−LA−1(B + C). And, for the first switching, we obtain
LX0 > θ1 > −LA−1C except in one case where we find
X0,1 > θ1 > −LA−1C.

We can illustrate these results to the thermostat model
given at the beginning of the paragraph. We choose the
following numerical values:

Rc Rm Qc = RcCc Qp = mpCp Pc θe q0
2 1 1000 1000 30 283 1

So, we have b = 1
RcQp

= 5.10−4, c = 1
RcQc

= 5.10−4,

d = 1
RmQp

= 10−3, pc = Pc

Qc
= 0.03, θe

RcQc
= 0.283.

To ensure switchings existence, we must choose 283 =
−LA−1C < θ1 < θ2 < −LA−1(B+C) = 313 and LX0 <
θ2 < −LA−1(B+C) = 313 in cases A). and B). or X0,1 <
θ2 < −LA−1(B + C) = 313, X0,2 > θ2(1− L1) ≈ 171.05
in case D).

For example, we will illustrate results on case B).

• If we set X0,1 = 450 (we have L1X0,1 + L1A
−1
1 (B1 +

C1) ≈ 8.68 > 0), X0,2 = 100 (L2X0,2 + L2A
−1
2 B2 ≈
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−35.49 < 0), θ1 = 290, θ2 = 293, as LX0 ≈ 286.4 < θ2 <
−LA−1(B + C) and 283 < θ1 < θ2 < 313, all conditions
are satisfied and the system switches as figure 4 shows.

Figure 4: convector and room temperatures simulations
for θ1 = 290 K, θ2 = 293 K, X0,1 = 450 K, X0,2 = 100 K

• Now, if we change value of θ1, for example θ1 = 282 <
−LA−1C, the first switching exists because the condition
is still verified but the other switchings do not exist be-
cause the existence conditions on σi

n+1, i = 1, 2 are not
satisfied. Figure 5 illustrates this case.

Figure 5: convector and room temperatures simulations
for θ1 = 282 K, θ2 = 293 K, X0,1 = 450 K, X0,2 = 100 K

• Finally, if we change values of θ2 = 285 < LX0, θ1 =
284, the first switching existence condition is not satisfied
and the system does not switch (see figure 6).

Figure 6: convector and room temperatures simulations
for θ1 = 284 K, θ2 = 285 K, X0,1 = 450 K, X0,2 = 100 K

4 Conclusions and Future Work

This paper permits us to establish conditions on the
thresholds to ensure switchings existence. Dimension one

and two are treated and we find many similarities between
found results.

Moreover, if we add another dimension and if we consider
a thermostat with an anticipative resistance controlling
a convector located in the same room, it seems that we
still have the same conditions for the existence of switch-
ings i.e. −LA−1C < θ1 < θ2 < −LA−1(B + C). An
example for some numerical values with −LA−1C = 283,
−LA−1(B + C) = 300.3 is given on figure 7.

Figure 7: Thermostat, convector and room tempera-
tures simulations for θ1 = 292 K, θ2 = 294 K, X0 =
[283; 283; 283] (on the top) and with θ2 = 300.3 >
−LA−1(B + C) (on the bottom)

For the future, it would be interesting to prove these
switchings conditions in dimension three and then to gen-
eralize them for any dimension systems belonging to this
h.d.s. class.
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