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Abstract—This paper is concerned with a mathe-
matical and numerical study of the effect of gas en-
trapment on liquid dynamics in a closed-end horizon-
tal capillary. This problem is important in order to
understand how the presence of a gas inside the cap-
illary can influence the dynamics of capillary flows
and the non destructive test procedures carried out
through liquid penetrant testing. In this context, by
considering the most relevant approaches in model-
ing the gas entrapment inside a cylindrical capillary,
some numerical simulations are carried out in order
to deduce peculiar features arising in such a problem.
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1 Introduction

Capillarity is a well known physical phenomenon directly
related to the free energy present at the interface liquid-
air. Whenever the liquid gets in touch with a solid capil-
lary, the motion of the air-liquid interface meniscus takes
place, according to the wettability of the liquid. The force
responsible for such motion is just the so-called surface
tension.

The first ones to study the surface tension and capil-
larity, at the beginning of the nineteenth century, were
Laplace and Young. In particular, their work started
from the awareness that the static pressure on the liq-
uid side of a liquid-air interface is reduced by the ef-
fect of the surface tension. Some time later, Hagen and
Poiseuille, studying the flow of viscous liquids in circu-
lar pipes (and capillary tubes in particular), derived the
well-known Poiseuille flow profile for a, fully developed,
Newtonian fluid. Then Reynolds tested experimentally
the stability of the Poiseuille profile, finding that it is
valid in the case of laminar flow.

The first ones to set up a model for the dynamics of liquid
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flow into a capillary, dating from the early twentieth cen-
tury, were Bell and Cameron [2], Lucas [20], Washburn
[33] and Rideal [25]. From these works it was derived
the well-known Washburn solution. The Washburn so-
lution was derived by considering that the motion of a
liquid penetrating a capillary is determined by a balance
among capillarity, gravitational, and viscous forces un-
der the assumption of a Poiseuille profile as the velocity
profile.

For sufficiently long time, the Washburn solution de-
scribes excellently the dynamics of capillary flow and this
is also proved by experimental results. Moreover, a fur-
ther validation of the Washburn solution has been given
by, both simulations of molecular dynamics, see for in-
stance Martic et al. [23, 22, 21], and the lattice-Boltzman
statistical-mechanical description, mainly used by physi-
cists, see Chibbaro [6]. Unfortunately, the Washburn
solution is defective in describing the initial transient,
because of the fact that the model neglects the inertial
effects. On the contrary, those inertial effects were con-
sidered in a model proposed by Bosanquet [3]. The SNC
model, introduced by Szekely et al. [30], takes into ac-
count the outside flow effects including an apparent mass
parameter within the inertial terms.

Recently, many experimental and theoretical studies on
liquids flowing under capillary action have pointed out
the limitations of the Washburn solution and its validity
only as an asymptotic approximation. For example, liq-
uids flowing in thin tubes were considered by Fisher and
Lark [14]. Nonuniform cross-sectional capillaries have
been studied, for instance by Erickson et al. [12] and
by Young [32]. As far as surface grooves are concerned,
see, for instance, Mann et al. in [16], Romero and Yost
in [26], Rye et al. [27], and Yost et al. in [35], Micro-
strips were investigated by Rye et al. [28]. On the other
hand, several studies have been devoted to capillary rise,
dynamics of menisci, wetting and spreading, see, for in-
stance, the papers by Clanet and Quéré [7], Zhmud et al.
[36], Xiao et al. [34], Chebbi [5], Fries and Dreyer [15]
and the recent books by de Gennet et al. [9] or by Kar-
niadakis et al. [17] and the plenty of references quoted
therein. Moreover, useful reviews appeared within the
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specialized literature, made by: Dussan [11], de Gennes
[8], and Leger and Joanny [19].

Our main concern is devoted to report and test the math-
ematical modeling of entrapped gas action in a horizontal
closed-end capillary. In this context the effect of the en-
trapped gas on the liquid dynamics was first studied by
Deutsch [10] from a theoretical viewpoint and more re-
cently by Pesse et al. [24] from an experimental one.

This study is of interest for the non-destructive technique
named “liquid penetrant testing” used in the production
of airplane parts, for instance, as well as in many indus-
trial applications where the detection of open defects is
of crucial interest.

2 Mathematical modeling

Firstly, let us consider a horizontal cylindrical capillary
put in touch with a reservoir, as it is depicted in figure
1. We assume that the only physical entities active on

L
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`

Figure 1: Physical setup and notation.

bulk of liquid are: the surface tension, the viscosity, the
pressure of the trapped gas and the atmospheric pres-
sure. For the validity of our one-dimensional analysis we
must assume that the fluid has a quasi-steady Poiseuille
velocity profile. This consists in assuming that the fluid
motion is a laminar flow, i.e. the liquid is considered
to be moving in circular concentric circles (for a cylin-
drical geometry) with a parabolic velocity profile null at
the wall (no-slip boundary condition). Moreover, it is
assumed that Re = 2RU/µ � 1, Bo = ρgR2/γ � 1,
Ca = µU/γ � 1, and We = 2ρRU2/γ � 1, where U ,
R, ρ, γ, µ and g are the average velocity, the capillary
radius, the liquid density, the surface tension, the vis-
cosity and the acceleration due to gravity, respectively.
Before going on, it is worth explaining the meaning of
these assumptions:

• A very low Reynolds number Re expresses the phys-
ical condition for laminar flow.

• The lower is the Bond number Bo the less is the de-
formation induced by the gravitational acceleration

on the spherical shape of the meniscus interface due
to the surface tension, in a horizontal cylinder.

• A low capillary number Ca expresses that the sur-
face tension is predominant over the viscous effect
for slow fluid motion.

• A low Weber number We means that the inertia of
fluid is negligible with respect to its surface tension.

Finally, we assume also as a further simplification that
contact angle is constant. Such a simplification fits
well the assumption of low capillary numbers and/or
R/L � 1, where L is the length of the capillary. A
detailed discussion of the dynamic contact angle simplifi-
cation is provided elsewhere, see for instance Tokaty [31]
or Adamson [1]. A more complex model, involving two
different liquids can be found by the interested reader in
[4].

Assuming that the above assumptions are fulfilled, our
mathematical model is given by the Newtonian equation
of motion plus natural initial conditions:

ρ(`+ cR)
d2`

dt2
+ ρ

(
d`

dt

)2

= 2
γ cosϑ
R

− 8
µ`

R2

d`

dt

`(0) =
d`

dt
(0) = 0 .

(1)

Here we have taken into account the coefficient of appar-
ent mass c = O(1), introduced by Szekely et al. [30] in
order to get a well-posed problem, see [13]. The model
(1) accounts for the displacement of a liquid due to the
surface tension action inside a closed end horizontal cap-
illary. The prescribed initial conditions are discussed at
length by Kornev and Neimark [18]. As far as the au-
thors knowledge is concerned, no analytical solutions are
available for the model (1).

Moreover, in the case of a vertical capillary, the gravity
action should be taken into account, by adding to the left
hand side of equation (1) the term

±(ρ`)g , (2)

where the plus or minus sign have to be used when the
liquid reservoir is over or below the cavity, respectively.
Furthermore, for a closed-end capillary the entrapped gas
action should be taken into account, by adding to the
right hand side of equation (1) a term

Ω(`, L) ,

depending on the lengths involved.
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2.1 Entrapped gas modeling

Two different ways to model the entrapped gas action are
available in literature: the first, given by the following
formula

Ω(`, L) = pa − pa
L

L− `
, (3)

is due to Deutsch [10], here pa is the atmospheric pres-
sure; the second, according to Zhmud et al. [36] and
Chibbaro [6], takes into account only the viscous drag
produced by the entrapped gas as follows

Ω(`, L) =
8µe(L− `)

R2

d`

dt
, (4)

where µe is the viscosity of the entrapped gas.

By getting closer to the physics of the phenomenon, the
gas action occurring inside the capillary can be seen as
an adiabatic compression. This implies the assumption
of no heat exchange during the liquid penetration. Under
this assumption, we can use the adiabatic equation of gas
expressed by

p V λ = constant ,

where p is the pressure, V is the gas volume, and λ > 0
is the well known gas constant (λ = 1.4 for bi-atomic
gases). In order to deduce the value for the constant, we
can assume that pa is the pressure at time t = 0 when
the volume occupied by the gas is equal to A · L, where
A = πR2 denotes the cross sectional area of the capillary.
As a result, we have that the constant is equal to paAλLλ

and the adiabatic equation becomes

p(t)(L− `)λAλ = paL
λAλ .

The entrapped gas action can be taken into account by
adding to the right-hand side of equation (1) the pressure
that this gas applies to the penetrant liquid meniscus,
that is

Ω(`, L) = pa − pa
(

L

L− `

)λ
. (5)

It is evident that the model by Deutsch is a specific case
of the adiabatic model obtained by fixing λ = 1, that is
about the value for dry air.

Let us consider here equation (5), and remark that the
entrapped gas pressure

pe = pa

(
L

L− `

)λ
verifies the initial condition pe(` = 0) = pa, the asymp-
totic condition

lim
L→∞

pe = pa ,

and the limit condition

lim
`→L

pe = +∞

corresponding to the common intuition that no action
is expected if the capillary is not closed and that the
internal pressure will increase if we let ` increase for a
closed capillary.

If we consider the case λ = 1, then the velocity can be
found to be

u(r, z) = f(r)
2γ cosϑ(L− z)− pazR

LR(L− z)
(6)

with

f(r) =
R2

4µ
(1− r2/R2) (7)

Equations (6) and (7) show that the flow develops slowly
enough to retain the parabolic profile of Poiseuille flow,
while continuously adjusting its magnitude (and flow
rate) in proportion to a constantly diminishing pressure
gradient. From equation (6) we note that the flow will
cease when

`max

L
=

2γ cosϑ
R pa + 2γ cosϑ

. (8)

According to Deutsch [10], for pa equal to 1 atmosphere
(≈ 1 × 106 dyncs/cm2), R = 102 µm and an air-water
interface with γ = 71.8 mN/m and ϑ = 0◦, equation (8)
shows that the flow will cease at

`max

L
≈ 1.5% , (9)

and there will be about 98.5% of the capillary depth left
to be filled.

3 Numerical results

As a simple test case, figure 2 shows the numerical solu-
tion corresponding to a closed-end capillary and water,
obtained for the same values used by Deutsch [10] and
reported in the end of the previous section.

Figure 3 shows a sample behavior for the inclusion veloc-
ity (first derivative of the front length).

The case λ = 1 was treated already in [4]. We remark
that the obtained result `max/L ≈ 1.4% is thinly differ-
ent from Deutsch one, because we have taken into account
also the effect due to the apparent mass, that is c 6= 0,
which is related to the outside flow dynamics. Depending
on the values used for R and L, we have also observed
the occurrence of oscillatory damped solutions. The pos-
sibility to obtain this kind of solution was pointed out
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Figure 2: Water simulation in a close-end capillary. We used the equation (5) with different values of λ.

t
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(t)

Figure 3: Transitory of the first derivative of `(t) for λ = 1.
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Figure 4: Water meniscus oscillations inside a close-end capillary for λ = 1, and R = 0.005 m.

also by Zhmud et al. [36]. In particular, such solutions
oscillate just around the stationary level reached by the
liquid. A sample of this behavior is depicted in figure
4. From a qualitative viewpoint, the term responsible for
the presence, of the damped oscillations observed in fig-
ure 4 rather than the non oscillatory behavior in figure
2, is the viscous term, i.e. the one in (1) containing the
constant µ. Indeed, having fixed a finite capillary length
L, from numerical experiments it can be deduced the ex-
istence of a threshold on the capillary radius, so that, for
higher values there is a non oscillatory behavior instead
of the oscillatory one obtained for lower values. As a spe-
cific case, for a capillary long L = 0.1 m it is observed a
threshold radius R = 7.2 10−5 m below which we have
non oscillatory solutions whereas above it the solutions
start to oscillate.

The numerical results reported in this section were ob-
tained by the ODE45 solver of the MATLAB ODE suite
developed by Shampine and Reichelt [29].
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Capillarity and Wetting Phenomena. Springer, New
York, 2004.

[10] S. Deutsch. A preliminary study of the fluid me-
chanics of liquid penetrant testing. J. Res. Natl.
Bur. Stand., 84:287–292, 1979.

[11] E. B. Dussan. On the spreading of liquids on solid
surfaces: static and dynamic contact angles. Ann.
Rev. Fluid Mech., 11:371–400, 1979.

[12] D. Erickson, D. Li, and C. B. Park. Numerical simu-
lations of capillary-driven flows in nonuniform cross-
sectional capillaries. J. Colloid Interf. Sci., 250:422–
430, 2002.

[13] R. Fazio and A. Jannelli. Ill and well-posed one-
dimensional models of liquid dynamics in a horizon-
tal capillary. To appear: Communications to SIMAI
Congress, SIMAI2008 held in Rome, September 15-
19, 2008.

[14] L. R. Fisher and P. D. Lark. The transition from
inertial to viscous flow in capillary rise. J. Colloid
Interf. Sci., 69:486–492, 1979.

[15] N. Fries and M. Dreyer. Deformation of advancing
gas-liquid interfaces in capillary tubes. J. Colloid
Interf. Sci., 327:125–128, 2008.

[16] J. A. Mann Jr., L. Romero, R. R. Rye, and F. G.
Yost. Flow of simple liquids down narrow V grooves.
Phys. Rev. E, 52:3967–3972, 1995.

[17] G. Karniadakis, A. Beskok, and N. Aluru. Mi-
croflows and Nanoflows. Springer, New York, 2005.

[18] K. G. Kornev and A. V. Neimark. Spontaneous pen-
etration of liquids into capillaries and porous mem-
branes revisited. J. Colloid Interf. Sci., 235:101–113,
2001.

[19] L. Leger and J. F. Joanny. Liquid spreading. Reports
Progress Phys., 55:431–486, 1992.

[20] R. Lucas. Über das zeitgesetz des kapillaren Ausf-
stiegs von Flüssigkeiten. Kolloid Z., 23:15–22, 1918.

[21] G. Martic, T. D. Blake, and J. De Coninck. Dynam-
ics of imbibition into a pore with a heterogeneous
surface. Langmuir, 21:11201–11207, 2005.

[22] G. Martic, F. Gentner, D. Seveno, J. De Coninck,
and T.D. Blake. The possibility of different time
scales in the dynamics of pore imbibition. J. Colloid
Interf. Sci., 270:171–179, 2004.

[23] G. Martic, F. Gentner, D. Seveno, D. Coulon, J. De
Coninck, and T. D. Blake. A molecular dynam-
ics simulation of capillary imbibition. Langmuir,
18:7971–7976, 2002.

[24] A. V. Pesse, G. R. Warrier, and V. K. Dhir. An
experimental study of the gas entrapment process in
closed-end microchannels. Int. J. Heat Mass Transf.,
48:5150–5165, 2005.

[25] E. K. Rideal. On the flow of liquids under capillary
pressure. Philos. Mag., 44:1152–1159, 1922.

[26] L. A. Romero and F. G. Yost. Flow in an open
channel capillary. J. Fluid Mech., 322:109–129, 1996.

[27] R. R. Rye, F. G. Yost, and J. A. Mann Jr. Wet-
ting kinetics in surface capillary grooves. Langmuir,
12:4625–4627, 1996.

[28] R. R. Rye, F. G. Yost, and E. J. O’Toole. Capillary
flow in irregular surface grooves. Langmuir, 14:3937–
3943, 1998.

[29] L. F. Shampine and M. W. Reichelt. The MATLAB
ODE suite. SIAM J. Sci. Comput., 18:1–22, 1997.

[30] J. Szekely, A. W. Neumann, and Y. K. Chuang. Rate
of capillary penetration and applicability of Wash-
burn equation. J. Colloid Interf. Sci., 69:486–492,
1979.

[31] G. A. Tokaty. A History and Philosophy of Fluid
Mechanics. Dover, New York, 1994.

[32] W.-B.Young. Analysis of capillary flows in non-
uniform cross-sectional capillaries. Colloids and Sur-
faces A: Physicochem. Eng. Aspects, 234:123–128,
2004.

[33] E. W. Washburn. The dynamics of capillary flow.
Phys. Rev., 17:273–283, 1921.

[34] Y. Xiao, F. Yang, and R. Pitchumani. A generalized
analysis of capillary flows in channels. J. Colloid
Interf. Sci., 298:880–888, 2006.

[35] F. G. Yost, R. R. Rye, and J. A. Mann Jr. Solder
wetting kinetics in narrow V-grooves. Acta Materi-
alia, 45:5337–5345, 1997.

[36] B. V. Zhmud, F. Tiberg, and K. Hallstensson. Dy-
namics of capillary rise. J. Colloid Interf. Sci.,
228:263–269, 2000.

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009


