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Abstract—Multi-layer neural networks have been used in this 
paper for modeling nonlinear behaviour of concrete gravity 
dams under earthquake excitation. Koyna dam which has been 
studied extensively by other authors in the past has been 
studied as test example in this paper too, where the nonlinear 
response of its crest has been modelled by the proposed 
algorithm. The main steps of the algorithm are as follows: First 
the concrete gravity dam has been numerically analyzed for its 
nonlinear behaviour under earthquake excitation to generate 
numerical data to be used in the training of the neural 
networks.  To this end the dam has been subjected to a white 
noise excitation so that the generated data could be rich 
enough for the training of a general neuro-modeller of the dam 
response. The neuro-modeller has then been trained on the 
generated data to learn the hysteretic behaviour of the dam 
implicitly. Then the neural network has been tested on a 
number of earthquakes including near field as well as very 
strong earthquakes for verification. The results obtained in 
this study prove that the method has been successful regarding 
the generalization capabilities of the trained neuro-modeller 
where other earthquakes than those used in its training have 
been used in its testing. In the tests, the neuro-modeller could 
predict the response with high precision. One significant 
benefit of using this algorithm is in cases where it is desired to 
use  collected data from tests on experimental models or 
through monitoring of the response of a dam to prepare a 
suitable model for predicting its response under any 
earthquake. Another benefit is the time of analysis which can 
be reduced by this method. Once the neuro-modeller is trained, 
it can predict the response of the dam to any earthquake 
without the need to be updated. 
 
Index Terms—Concrete Gravity Dams, Dam Model, 
Earthquake, Neural networks, Neuro-modeller, Nonlinear 
Hysteresis.  
 

I. INTRODUCTION 
    The behaviour of concrete gravity dams subject to 
earthquakes is complicated because dams might 
experience cracking at places where the induced tensile 
stresses are higher than the tensile strength of concrete. 
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Cracking and also material nonlinearity result in nonlinear 
behaviour which is hysteretic too. The nonlinear hysteretic 
response of concrete gravity dams can be modelled using 
any of the commercially available finite element analysis 
softwares or especial computer programs which have been 
developed for the modelling of this type of dams. 
Nonlinear analysis by conventional methods are time 
consuming though very helpful. Also when it is desired to 
provide a precise numerical model for the nonlinear 
behaviour of a dam, it is necessary to identify the 
parameters of the material. To this end, it is required to 
collect data on the real response of the dam and then try to 
determine the parameters of the material to be used in the 
computer programs, so that the simulated response to be as 
close to the observed response as possible. The material 
model obtained from the identification is often 
approximate and hence the analysis based on the model 
will not be precise either.  Noticing neural networks have 
been successful in many other applications in modelling 
materials with high nonlinearity and hysteresis [1-7], it is 
expected that they could be helpful for modelling the 
nonlinear response of concrete gravity dams too.  
Multilayer neural networks which are sometimes referred 
to as perceptrons, are simple models of several connected 
neurons similar to what is seen in the natural neural 
networks of animals. The main objective of building these 
artificial models of brain has been to design systems which 
can show some learning capabilities like the natural brain. 
A simple model of perceptrons can be seen in Fig.1. The 
network is generally comprised of an input, an output and 
one or more inside layers of neurons. The neurons are 
connected in a feed-forward manner, i.e. the neurons in 
each layer are connected to the neurons in its immediate 
previous and next layers. Mainly the connections of a 
neural network are the adaptive adjustable parts of it. Each 
neuron is a processing unit. Given an input vector to its 
input layer, the input signals propagate forward inside the 
neural network until it reaches the output layer. The vector 
of signals which appears in the output layer is considered 
as the output vector of the neural network, associated with 
the given input. The training of a neural network is the 
procedure of gradual modification of the connection 
weights until the output from a given input vector is close 
to the desirable target output vector. When it is desired to 
build a neural network to learn an ordered set of many 
input-output vectors, the training and learning procedure 
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can be very complicated and might even diverge or 
converge to a set of connection weights for which the 
neural network can not produce desirable predictions, in 
which case the modelling fails. The training of the neural 
networks on data representing nonlinear behaviour of 
materials and systems, like the problem of this paper, is 
generally challenging. 
 
 
 

 
Fig. 1 Architecture of a perceptron 

 
 

II   NON-LINEAR MODELS FOR CONCRETE 
    Since the dynamic response of dam crest is hysteretic, 
the model for concrete should be capable of representing 
cyclic behaviour. In 1984 Bazant and his co-workers 
proposed a nonlinear model to represent the stress-strain 
relationship of concrete during the repeated cycles of 
opening and closure of cracks. De Borst and Nauta in 1985 
and Gambarova and Valente in 1990 have also proposed 
simple models. Dahlblom and Ottosen in 1990 has  
proposed the following relationship for closing and 
reopening cycles of partially fractured concrete : 
 

 
                                           (1) 

 
where λ  is the ratio between the residual strain upon 
closing of cracks and the strain of its opening. It appears 
that the techniques applied by de Borst and Nauta in 1985  
and Gambarova and Valente in 1990 are subsets of this 
generalized model with λ =0.0 and 1.0 respectively [8-10]. 
 
 

III  KOYNA DAM 
   In this study, the nonlinear response of the crest of 
Koyna dam under earthquake excitation has been modeled 
numerically. The dam was build from concrete in India 
during 1958 to 1962 and experienced a high magnitude 
earthquake in 1967, which caused severe damage to the 

dam. After the damage, the dam became a benchmark 
problem which has been studied extensively by many 
researchers both numerically and experimentally. More 
information can be obtained from [11]. 
 
    A.   Finite Element Analysis of Koyna Dam 
   Fig. 2 shows the finite element mesh used in numerical 
modeling of the dam. The model proposed in [12] was 
used in the finite element analysis. The dam was subjected 
to different ground excitations which included a white 
noise, Koyna, El Centro, sakaria and Tabas earthquakes. 
Response of the dam crest consisting of the time history of 
its acceleration, velocity and displacement was recorded 
throughout the time.  
Fig.3 shows the time history of the white noise used in the 
training of neuro-modeller.  
 
 

IV   NEURAL NETWORKS AND MODELLING HYSTERETIC 
BEHAVIOUR OF MATERIALS AND STRUCTURES 

    Generally perceptrons are not capable of learning 
hysteretic data because they lack memory. One way to 
compensate for this deficiency of perceptrons is to use the 
feeding back strategy where a number of the previous 
output vectors of the perceptron are fed back to its input 
layer to be used in its future prediction.  This strategy has 
been used in many studies on the modelling of different 
nonlinear problems by neural networks.     
 
 
 

 
 

Fig.2. Finite element model of Koyna dam 
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Fig.3. Time history of white noise earthquake 
 

 
    A. Training of Neuro-Modeller 
   After a number of trial and errors, the optimum 
architecture of the neuro-modeller was obtained as in Fig. 
4a, where the input layer consists of the history of 
response and excitation. In this figure iY =displacement, 

iY = velocity and iX = earth acceleration. Also Fig. 4b 
shows how the neuro-modeller has been trained and used 
for the modelling. 
   The neuro-modeller was trained on the data collected 
from the analysis of Koyna dam under white-noise 
excitation. Different techniques for training have been 
explained and used in many references and studies such as 
[13]. Since the training techniques used in this study were 
combinations of different older basic techniques, because 
of space limitations, their explanation are not included 
here.  
 
The training was stopped when the mean square error, 
calculated as: 
 

2
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reached 8E-4, where N= number of training pairs, jy  = 

the corresponding target output vector and 
j
y
∧  is the output 

vector of the neural network.  
 
   A comparison between the target and predicted response 
when the dam was subjected to the white noise excitation 
used in the training by the neuro-modeller is made in Fig. 
5 which shows the crest displacement both for 5 and 10 
seconds. Fig. 6 shows the mean square error during the 
training, where the error has monotonically reduced as 
training has advanced.  
 

 
 
 

 
 

(a) 

 
(b) 

 
Fig.4. (a) Neural network architecture of the example in 

this paper (b) neuro-modeller with its feedback loops 
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B. Testing Generalization Capabilities of Neuro-Modeller 
   After its successful training, the neuro-modeller was 
tested on some of the earthquakes including Koyna, 
El Centro, Sakaria and Tabas, where predictions by 
the emulator has been compared with the target 
values. The results corresponding to the above 

mentioned earthquakes are plotted in Fig.7. As can be 
seen the predictions by the neuro-modeller are very 
well representing the response of the dam crest. 
 

 

  
 

Fig.5. Comparing crest displacement obtained from analysis and predictions by NN for white noise earthquake 
 
 

V.  CONCLUSION 
   The application of a multi-layer feed forward neural 
network which receives feed back from its output layer, in 
the analysis of the response of Koyna dam, as a benchmark 
problem, proved successful. The neuro-modeller could 
predict with high precision the response of Koyna dam 
crest under several testing earthquakes. It could make 
predictions about the crest displacement and velocity 

throughout the time of excitation just by receiving input 
about earthquake acceleration.    
One of the benefits of this approach is that once the neuro-
modeller is trained, it can be used in the analysis directly 
to replace the integration methods and thus can 
significantly reduce the time required for analysis. 
However the method requires a considerable time for the 
training of the neuro-modeller. It is expected that the 
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method can be extended for application to the dynamic 
analysis of stress and strain inside the dams too.   
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Fig.6. Mean square error of training versus training cycles 
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Fig.7. Comparing response obtained from analysis with predictions by NN for (a) Koyna (b)El centro1940 (c) Sakaria (d) 
Tabas 
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