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Abstract— Functional iteration plays a significant role in 

various fields of applied and theoretical mathematics. Amongst 

its many applications are the iterative equations of complex 

numbers in fractal geometry, recursive algorithms in computer 

science, difference equations for discrete processes in 

engineering sciences, recursive sequences in Number Theory, 

and iterative methods for solving equations in Numerical 

Analysis. In a large number of its applications, functional 

iteration is non-continuous, and is defined only for discrete 

values of the iteration variable. In this paper, we use the Taylor 

series method to define continuous/partial functional iteration 

and to prove a new theorem that relates the derivative of a 

function with respect to the independent variable on the one 

hand, and the function’s derivative with the respect to the 

continuous iteration variable on the other hand. The theorem is 

shown to be complete and sufficient when given a function g(n, 

x) to determine if a function f(x) exists such that g(n, x) is a 

closed form expression of f(x) iterated n times. We also present 

the concept of iterators and show that the mapping between 

functions, f(x), and their respective iterators, denoted h(x), is 

strictly a one-to-one mapping. Both theorems are shown to 

simplify the study of iterated functions considerably by 

converting problems or questions that are typically discrete in 

nature into simple problems of calculus. The theorems can also 

be used to derive quickly famous results in functional iteration 

such as the Abel equation and its properties with regard to 

iterated functions. Further corollaries and lemmas related to 

continuous functional iteration are also presented. 

 
Index Terms— Iterative Methods, Partial Functional 

Iteration, Recursion, Functional Equations .  

I. INTRODUCTION 

 The subject of iteration or recursion plays a very important 

role in applied and theoretical mathematics. It is often used in 

computer science to generate compact algorithms without 

delving into mathematical details [2]. For instance, a simple 

algorithm that generates Fibonacci sequence can be quickly 

built using the recursive property of Fibonacci sequence itself 

without having to build a closed-form formula for generating 

such sequence. Iterated functions are also a method of 

constructing fractals, which has led to important implications 

and applications in several areas including Chaos Theory, 

computer graphics, art, and even security [5] [9]. In addition, 

iteration is of vital importance to engineering sciences, where 

iterative difference equations are used to describe discrete 

processes and can be used to approximate solutions to 

ordinary differential equations [6]. In the field of Numerical 

Analysis, several iterative methods such as Newton’s Method 

can be used, under certain conditions, to calculate the root of 
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an equation [1]. Moreover, iterated functions give rise 

naturally to the study of recursive sequences in Number 

Theory, where some of the most famous examples of 

recursive sequences are Fibonacci sequence and the Logistic 

Map [7].   

Iteration is often synonymous to recursion except in a few 

places such as in Algorithmics where iteration and recursion 

refer to two different methods [8] [4]. In this paper, both terms 

will be used differently, however. A recursive function is 

defined in this paper to be any function that references itself 

within its definition. Iterative or iterated functions, on the 

other hand, are strictly a subset of recursive functions that 

adhere to a strict formal definition and subsequent properties. 

In iterated functions, the output of a function is fed back as 

input to exactly the same function, constituting what is 

referred to as an iteration. To construct a second iteration, the 

new output is fed back as input to the same function again, and 

so on. An example of an iterated/recursive function is given in 

(1). One example of a recursive function, that is not an 

iterated function, is the well-known Fibonacci function. Note 

that the Fibonacci function does not satisfy the strict 

definition of iterated functions given below, and as such it is 

not an iterated function. Throughout this paper, it is important 

to distinguish between the two terms because all results and 

conclusions of this paper are applicable to iterated functions 

only.  

knfnf  )1()(                (1) 

Iteration is typically represented the same way 

exponentiation is represented; that is, the nth iterate of a 

function f is denoted as nf . This representation might lead to 

confusion, especially when both iteration and exponentiation 

are present in the same equation. To avoid this confusion, a 

different representation of iteration is used in this paper. In 

this paper, the nth iterate of a function f is denoted 

as fn
instead. This representation permits the use of both 

iteration and exponentiation without causing any potential 

confusion to readers.  

A formal definition of iterated functions can be constructed 

as follows: Given a set X and let f: X→X be a function, the nth 

iterate of the function f, denoted as fn , 

satisfies )( 11 fffff nnn    . Using this definition, 

several important properties of iterated functions can be 

quickly proven including the following:  

Property 1:  )())(( xfxff baba   

Property 2:  )())(( xfxf abba   

Property 3:  xxIdxf  )()(0  

Property 4:  )()(1 xfxf   

Property 5:  )(1 xf
is the inverse function of )(xf . 

The third property is very important for iteration to be 

mathematically consistent. Consider, for instance, the 
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function )(xfn . Using property 1 mentioned above, 

)(xfn
can always be rewritten as ))((0 xffn . 

Thus, )())((0 xfxff nn  , which implies xxf )(0
. Note that 

the constant function f(x) = k, although satisfies the formal 

definition of iterated functions, does not satisfy the properties 

mentioned above. For instance, it violates property 3 because 

it is a constant function, and it violates property 5 because it 

does not have an inverse function. Thus, constant functions 

are not considered as a subset of iterated functions in this 

paper.  

Some iterated functions can be expressed in closed form in 

terms of both the independent variable x and the iteration 

variable n. For instance, the iterated form of the addition 

function kxxf )(  is simply nkxxfn )( . Similarly, the 

multiplication function kxxf )(  leads to the iterated 

function xkxf nn )( . However, many iterated functions 

cannot be expressed in closed form such as the iterated sine 

function, )sin()( xxf nn  , which can only be represented by 

repeating the sine function n times. 

In this paper, we propose new theorems regarding iterated 

functions and present several examples that illustrate how 

such theorems simplify the study of continuous/partial 

functional iteration considerably. The first theorem relates the 

derivative of an iterated function, )(xfn , with respect to the 

independent variable, x, on the one hand, and its derivative 

with respect to the continuous/partial iteration variable, n, on 

the other hand.  This theorem allows us to determine quickly if 

an arbitrary function g(n, x) is a closed-form expression of an 

iterated function )(xfn . In other words, given an arbitrary 

function g(n, x), the new theorem permits us to determine if 

there is a function f(x) such as )(),( xfxng n and to 

determine what f(x) is. Furthermore, using this theorem, 

problems of iterated functions, that typically belong to the 

realm of discrete mathematics, can be converted into simple 

problems of calculus. In the second theorem, we present the 

concept of iterators and show that the mapping between 

functions, f(x), and their respective iterators, denoted h(x), is 

strictly a one-to-one mapping. Such theorem provides 

short-cut solutions to many problems/questions related to 

functional iteration as will be illustrated in this paper.  

The paper starts by showing how to generalize iteration to 

non-discrete values of the iteration variable using Taylor 

series, and uses an example, the sine function, to illustrate this 

method. After that, the same method is used to prove the first 

theorem that relates a function’s derivative with respect to the 

independent variable x on the one hand, and its derivative 

with respect to the continuous iteration variable n on the other 

hand. This theorem is next proved to be complete and 

sufficient to determine if an arbitrary function of two 

variables x and n is, in fact, a closed form expression of an 

iterated function. Next, the iterator, h(x), of a function, f(x), is 

defined and is shown to be a unique property of any given 

function. Such iterator uniqueness theorem, subsequently, 

gives rise to a new one-to-one mapping, f(x)↔h(x), in the 

functions domain. Last, well-known results in functional 

iteration such as the Abel equation are shown to be easily 

provable using the new theorems presented in this paper.   

II. DEFINING PARTIAL FUNCTIONAL ITERATION 

Assume a function f(x) has a Taylor series and that the range 

of f(x) is a subset of the radius of convergence of its Taylor 

series,  f(x) can be written in the form given in (2) for any 

value of x that belongs to the radius of convergence, where 

ia are arbitrary constants. Because the range of f(x) is a subset 

of the radius of convergence of its Taylor series, its iterated 

function )(xfn  also has a Taylor series with the same radius 

of convergence. Thus, )(xfn  can be rewritten in the form 

given in (3) for any value of x that belongs to the radius of 

convergence.  








0

)(

i

i
i xaxf                 (2) 








0

)()(

i

i
i

n xnaxf               (3) 

Using the recursive property of iterated functions, equation 

(4) holds true as well.  

)()1())(()(

00

1 xfnaxfaxf

i

i

i

in
i

n 








       (4) 

Equating equations (3) and (4), the values of )(nai can, 

sometimes, be obtained. For instance, if we assume that 

)sin()( xxf  , then  


!7!5!3

)(
753 xxxxxf          (5) 

Also,  









...sin)1(

sin)1(sin)1()1())((

...)()()()()(

3
3

2
210

1

3
3

2
210

xna

xnaxnanaxff

xnaxnaxnanaxf

n

n

 (6)

 

As a result, the values of )(nai can be calculated as follows: 

)45)(120/1(

)1()!5/1()1()!3/3()1()(

6/

!3/1)1()1()!3/1()1()(

,1)1()(

,0)(,0)(,0)(,0)(

2

1355

3133

11

6420

nn

nananana

n

nananana

nana

nananana













 

The same procedure can be used to calculate the values of 

the rest of the coefficients. Consequently, the iterated sine 

function can be computed using equation (7).  

 523 )120/)45(()6/()sin( xnnxnxxn     (7) 

The expression in equation (7) can be tested for small 

values of x as follows. When n=0, we obtain  

xx )sin(0
                  (8) 

, which is expected from property 3 mentioned above. Also, 

when n=1, we obtain  

 531 )120/1()6/1()sin( xxxx         (9) 

, which is indeed the Taylor series for the sine function. 

Moreover, from equation (7), the half-sine function can be 

computed using equation (10). Note that using equation (10), 

))sin(sin( 2/12/1 x  is indeed equal to )sin(x as expected from 

property 1. Interestingly, the Taylor series in (7) can also be 

used to compute the inverse sine function, which is a direct 
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result of property 5 of iterated functions mentioned earlier. 

That is, when n = -1, the iterated sine function in (7) does 

indeed yield the well-known Taylor series of the inverse sine 

function. It is vital to keep in mind, however, that equation (7) 

is valid for small values of x and n when only the first six 

terms of the Taylor series are used. To achieve a higher 

degree of precision, further terms should be included.  

 532/1 )160/1()12/1()sin( xxxx        (10) 

 

 
Figure 1: The continuous iterated function  

f(x) = nsin(π/8) plotted against the continuous iteration variable. 

 

The continuous iterated sine function given in (7) permits 

us to view how iteration changes the value of )sin(xn , which 

is plotted in figure 1 for x=π/8. In this figure, the iterated sine 

function for integer values of n was computed using the 

well-known discrete definition of the iterated sine function; 

e.g. 
2
sin(π/8)=sin(sin(π/8) and so on. The best fitted curve was 

plotted using polynomial regression of degree 6. The 

non-integer values of the iterated sine function, computed 

using equation 7, were, in turn, inserted into the figure. Note 

that the latter values do indeed fit into the curve as expected, 

which implies that equation (7) does produce a consistent 

definition of the iterated sine function.   

Accordingly, functional iteration can be defined for 

continuous values of the iteration variable using Taylor series. 

It is important to note that while the method discussed above 

could be used to define the continuous functional iteration for 

the sine function, it may not be effective for other functions. 

However, the Taylor series method allows us to prove 

important theorems regarding functional iteration such as the 

theorems discussed next. 

III. ITERATORS AND THE DERIVATIVE OF ITERATED 

FUNCTIONS 

Assume a function f(x) has a Taylor series and the range of 

f(x) is a subset of the radius of convergence of its Taylor 

series, then )(xfn
 can always be written in the form given in 

(3) for any value of x that belongs to the radius of convergence 

of f(x). The derivative of )(xfn
with respect to the continuous 

iteration variable n is given in (11).  








0

)]([)(

i

i
i

n xna
n

xf
n 






          (11) 

Obtaining the derivative by definition and using the 

properties of iterated functions, the function )(xf
n

n




can be 

computed as shown in (12), which can be rewritten in the form 

given in (13) by using equation (11) and L’Hospital’s  rule.  

h

xfxff
xf

n

nhn

h

n )()(
lim)(

0







        (12) 
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
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
















1

1

0

1
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)()([lim

)()([lim)(

i

hih
i

h

i

ih
i

h

n

xf
h

fnia

xf
h

naxf
n













       (13) 

Using property 3 of iterated functions, we know that 

xxfh

h



)(lim

0
. Therefore, equation (13) can be rewritten as 

shown in (14).  

])([)](lim[)(

1

1

0










i

i
i

h

h

n xniaxf
h

xf
n 






     (14) 

Because 






1

1)()(

i

i
i

n xniaxf
x


, equation (14), in turn, 

implies: 

)()](lim[)(
0

xf
x

xf
n

xf
n

nn

n

n















       (15) 

Equation (15) relates the derivative of any iterated function 

)(xfn with respect to the continuous iteration variable n on 

the one hand, and the function’s derivative with respect to the 

independent variable x on the other hand. It shows that the 

ratio of the two derivatives at any point (x, n) is a function of 

the independent variable x only. This latter function will be 

called the iterator, and will be denoted h(x) in this paper. 

Thus, the iterator of a function )(xf is given by equation 

(16).  

)](lim[)(
0

xf
n

xh n

n 




              (16) 

Note that throughout the proof of (15), the only condition 

that is assumed valid is property 3 of iterated functions, which 

was shown earlier to be true for mathematical consistency. 

Thus, the following corollary holds true with regard to all 

iterated functions.  

Corollary 3.1: Any iterated function )(xfn
, where f(x) has 

a Taylor series and the range of f(x) is a subset of the radius of 

convergence of its Taylor series, must meet the following two 

conditions:  

(1) xxf )(0 ,  

(2) and )()](lim[)(
0

xf
x

xf
n

xf
n

nn

n

n















.  

This corollary can be tested using well-known closed form 

expressions of iterated functions, which is shown to be true in 

table 1. Corollary 3.2, proved next, shows that any function of 

two variables x and n is a closed-form expression of an 

iterated function if it satisfies the conditions mentioned in 

Corollary 3.1.  
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Table 1: Closed-form expressions of some iterated 

functions 

)(xf  )(xfn  )(0 xf  
)()](lim[

)(

0
xf

x
xf

n

xf
n

nn

n

n
















 

 

kxxf )(  nkxxfn )(  x k 

kxxf )(  xkxf nn )(  x kxk n ln  

kxxf )(  
nkxxf )(  x )(ln)(ln kkxx nkn

 

 

Corollary 3.2: Any function g(n, x) that has a Taylor series 

with respect to the independent variable x and the range of 

g(1, x) is a subset of the radius of convergence of its 

respective Taylor series is an iterated function if it meets the 

following two conditions:  

(1) xxg ),0( ,  

(2) and ),()],(lim[),(
0

xng
x

xng
n

xng
n n 













.  

Proof: If the range of g(1, x) is not a subset of its Taylor 

series radius of convergence, then its Taylor series could 

diverge during iteration and, thus, its iterated function does 

not have a Taylor series representation. Otherwise, if g(n, x) 

has a Taylor series, g(n, x) can be written in the form given in 

(17).  








0

)(),(

i

i
i xnaxng              (17) 

Using equation (17) and the two conditions, equation (18) 

holds true.  














 







]),()([)],([lim),(

1

1

0
i

i
i

h
xhgniaxhg

h
xng

n 






  (18) 

Equation (18) can be rewritten as shown in (19), which is 

equivalent to equation (20). 














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




]),()([lim),(

1
0

i

i
i

h
xhgna

h
xng

n 






     (19) 

 )),(,(lim),(
0

xhgngxng
n h





         (20) 

Using condition 1 and L’Hospital’s  rule, equation (21) 

holds true, which, in turn, implies that equation (22) holds 

true as well.  








 
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





 

 h

xngxhgng

h

xngxhng

hh

),()),(,(
lim

),(),(
lim

00
  

(21) 

)),(,(lim),(lim
00

xhgngxhng
hh 

         (22) 

Equation (22) is equivalent to the definition of iterated 

functions at the limit h0. Thus, any function g(n, x) that 

satisfies the conditions stated in the corollary implies that 

there is a function f(x) such that:  

0
)]()()(),([



 
h

hnhnn xffxfxfxng      (23) 

Thus, g(n+m, x), where n and m are arbitrary real values, 

can be rewritten as g(n+m-h, g(h, x)), where h0, which, in 

turn, can be rewritten again as g(n+m-2h, g(2h,  x)), where 

h0 using equation (23).  The same process can be repeated 

so that g(n+m, x) is rewritten as g(n+m-kh, g(kh, x)), where 

h0 and k = m/h. As a result, g(n+m, x) can always be 

rewritten as g(n, g(m, x)) if g(n, x) satisfies the conditions 

stated in the corollary. Thus, g(n, m) is an iterated function.  

The two corollaries brings us to the following theorem.  

Theorem 3.1: Assuming g(n, x) has a Taylor series with 

respect to the independent variable x and that the range of g(1, 

x) is a subset of the radius of convergence of its respective 

Taylor series, then any function g(n, x) is an iterated function 

if and only if it meets the following two conditions:  

(1) xxg ),0( ,  

(2) and ),()],(lim[),(
0

xng
x

xng
n

xng
n n 













.  

Theorem 3.1 allows us to answer many questions regarding 

iterated functions quickly. For instance, we can quickly 

realize that the function xnxng  )cos(),(  is not a closed 

form expression of an iterated function because both 

functions g(n, x) and xxg  )1cos(),1(  have Taylor series 

with respect to the independent variable x with infinite radius 

of convergence, so they both meet the assumptions stated in 

the theorem, but the function g(n, x) does not satisfy the 

second condition of Theorem 3.1. As a result, there is no 

function f(x) that satisfies xnxfn  )cos()( .  

 

Lemma 3.1: the only functions f(x) that satisfy 

)()( nyxxfn   are kxxf )( , where k is an arbitrary constant. 

Proof: Since )(),( nyxxng  , both functions g(n, x) and 

)1(),1( yxxg   have Taylor series with respect to the 

independent variable x with infinite radius of convergence so 

they meet the assumptions stated in the theorem. From the 

second condition, we know that kxng
n

),(



, where k is an 

arbitrary constant, which, in turn, implies that y(n) must be of 

the form: knny )( . So, the only functions f(x) that satisfy 

)()( nyxxfn   are kxxf )( , where k is an arbitrary constant.  

 

Lemma 3.2: Given a function y(n), the function z(n) that 

makes )()()( nyxnzxfn   an iterated function can be 

solved by solving the differential equation 

0)()(  nbnza
n

z




, where b(n) and a are derived from 

y(n).  

Proof: Again, the assumptions of the theorem are satisfied. 

In order to meet the first condition, z(0)=1, and y(0)=0. To 

satisfy the second condition:  
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, which can rewritten into: 
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So, given a specific function y(n), z(n) can be solved by 

solving the following differential equation: 

0)()(  nbnza
n

z


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For instance, suppose that y(n) is given by the following 

equation:  
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We know from condition 1 that y(0)=0. So, q=1. Thus: 
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So, the general solution of z(n) is: 
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Because z(0)=1,  

1
)2ln/1(

1
1 




ax
c  

Thus,  

,
)2ln/1(

2
1

)2ln/1(

1
)(

ax
e

ax
nz

n
na














   

There are two more restrictions, however: 
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This gives us a quadratic polynomial. Thus, 

2ln)0( 
n

z
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
and )1)(2(ln 1 xa . By substituting these 

values into z(n), we obtain nnz 2)(   

Thus, the function 122)(  nnn xxf   is a closed form 

expression of an iterated function. The original function f(x) 

can be obtained using property 4 of iterated functions by 

simply substituting n=1 into the equation, which gives 

us 12)(  xxf . 

IV. THE ITERATOR UNIQUENESS THEOREM 

The subsequent theorem shows that the iterator h(x) of a 

function f(x) is a unique property of that specific function. In 

other words, the mapping between functions and iterators, 

f(x)↔h(x), is strictly a one-to-one mapping. This theorem has 

several implications and applications in iterated functional 

systems as the subsequent corollaries and lemmas illustrate.  
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strictly a one-to-one mapping in the functions domain.  

Proof: We know from property 3 of iterated functions that 

the following equation holds true for all iterated functions.  
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Assume there is two functions,  y(x) and z(x),  that are 

strictly different and that their respective iterators are 

equivalent, then: 
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Because the iterators of the two functions are assumed to be 

equivalent, the following equation holds true for any value x0:  
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We also know from property 1 of iterated functions that: 
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And similarly:  
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Because the two iterators are equivalent, we know that:   
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The same process can be repeated until 
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Thus, )()( 0
1

0
1 xzxy  , which contradicts the original 

assumption that the two functions are strictly different. 

Consequently, the mapping between functions and iterators is 

a one-to-one mapping.  

 

Table 2: Examples of iterators of common functions  

f(x) h(x) 
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Corollary 4.1: Given a function g(n, x), the partial 

differential equation 
x

g
xh

n

g








)( where xxg ),0( , has at 

most one solution.  

Proof: If the partial differential equation had two solutions, 

both solutions would be iterated functions and they both 

would share the same iterator h(x), which, in turn, violates the 

iterator uniqueness theorem. Thus, the partial differential 

equation with the condition that g(0, x)=x has no more than 

one solution.  

 

Lemma 4.1: The only combination of functions f(x) and 

z(x) that satisfy the differential equation )(xz
n

f n
n





 is 

xexzxf 1)()(  .  
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Proof: From the differential equation stated in the lemma, 

the iterator of f(x) is xxh f )( . From table 2, such iterator is 

a unique property of xexf 1)(  . Thus, the only combination 

of functions f(x) and z(x) that satisfy the differential equation 

)(xz
n

f n
n





 is xexzxf 1)()(  . 

 

Corollary 4.2: The iterator of )()( xfxg m is equal to m 

h(x), where h(x) is the iterator of f(x).  

Proof: A direct result of the definition of iterators and the 

chain rule.   

 

Theorem 4.2: The iterator h(x) of a function f(x) satisfies 

the autonomous differential equation ))(()( xfhxf
dn

d nn  .  

Proof: A direct result of the definition of iterators given in 

(16) and property 1 of iterated functions.  

 

Corollary 4.3: Given an iterated function )(xfn ,  

)()(lim
2

2

0
xhxh

n

fn

n
















 


 

Proof: Using theorem 4.2:  
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Lemma 4.2: 
)1/(11 )()( kkn xmnxf  is the only class of 

functions that satisfy the equation kmxxh )( , where h(x) is 

the iterator of f(x)?  

Proof: Using theorem 4.2:  
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Using property 3 of iterated functions:  
)1/(11 ))1(()( kkn xmnkxf   

This solution is tested for the two conditions given in 

theorem 3.1, which can be shown to be satisfied. Note that 

when m=k=1, h(x)=x, which is the iterator of xexf 1)(  , 

whose iterated function is xexf nn )( . Thus, the following 

equation holds true as well:  
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 Equation (24) illustrates the accuracy of the iterator 

uniqueness theorem since it has been proven so far using the 

theorems presented in this paper only. The equation, however, 

can be proven differently using the very well-known 

representation of the natural logarithmic base, e, as a limit of 

sequence.  

V. ABEL EQUATION AND ITERATED FUNCTIONAL SYSTEMS 

Using theorem 4.2 and property 3 of iterated functions:  

))(()( 1 xgngxfn 
             

(25) 

, where dnnhng 
 )()( 1  and )(1 xg is the inverse function 

of )(xg . The function )(xfn in (25) satisfies both conditions 

stated in theorem 3.1, which implies that the following 

theorem holds true as well.  

 

Theorem 5.1: A function )(xfn  is an iterated function if 

and only if it can be written in the form ))(()( 1 xgngxfn  , 

for a specific function g(x).  

Proof: The function )(xfn in the form given in the theorem 

satisfies the conditions stated in theorem 3.1. So, )(xfn must 

be an iterated function. On the other hand, any iterated 

function satisfies the differential equation given in theorem 

4.2, which implies that the iterated function can be written in 

the form ))(()( 1 xgngxfn  , where dnnhng 
 )()( 1 , and 

h(x) is the iterator of f(x).  

 

Using theorem 5.1, the iterator of a function f(x) can be 

computed by solving the following functional equation:  

)(1))(( xgxfg                (26) 

, where )(/1)( xgxh  and h(x) is the iterator of f(x).  

 Equation (26) is the famous Abel functional equation, 

which has been known to be closely tied to iterated functions 

[3]. The relationship between Abel equation and iterated 

functions can be proven using equation (25) to derive 

equation (27) for all real values of the iteration variable n.  

)())(( xgnxfg n               (27) 

Thus, to find a closed-form expression of an iterated 

function )(xfn
, a solution to Abel’s equation in (26) for g(x) 

needs to be found. The iterated function can then be computed 

using equation (25). Furthermore, using equation (26) and the 

fact that dnnhng 
 )()( 1 , the iterator h(x) itself of a 

function f(x) can be determined directly by solving the 

following functional equation:  
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Using corollary 4.2, the iterator of the inverse function, 
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f(x), is –h(x), where h(x) is the iterator of the function f(x). 

Thus, equation (28) implies that equation (29) holds true as 

well.  
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Equation (28) reveals a very interesting correlation between 

iteration and differentiation. To see it, let us assume first that 

z=g(x). Then, )()(lim
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, where h(x) is the iterator 

of f(x). Thus, h(f(x)), where h(x) is the iterator of f(x), is given 

by the following equation:  
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As a result, the derivative of a function f(x) is related to 

iteration by equation (31).  
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In qualitative terms, equation (31) states that the 

instantaneous derivative of a function f(x) as it transitions 
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towards 
∞
f(x) divided by the instantaneous derivative of the 

identity function, x, as it also transitions towards 
∞
f(x) is 

equivalent to the derivative f’(x). Thus, continuous iteration 

is, interestingly, closely tied to differentiation. It is worth 

noting that equation (31) can also be proven differently using 

theorem 3.1. In theorem 3.1, it was shown that any iterated 

function, )(xfn , satisfies equation (15). By taking the limit 

n1 in equation (15), we arrive directly at equation (31). 

Last remark, given the iterator h(x) of a function f(x), the 

iterated function )(xfn can be approximated using the 

approximation shown in (32).  

nxhxxfn  )()(                (32) 

  To find an approximate value of )(xfn using equation 

(32), we define y0=x. Then, yi is given by the iterative 

equation:    
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Then, nnmyxf m
n  /|)( . This result is straightforward 

given the definition of iterators in theorem 4.2 However, a 

much more interesting question is how to find the kth degree 

approximation to the iterated function )(xfn . To do this, we 

write )(xfn in the form shown in (34).  
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Because xxf )(0 , xxb )(0 . Similarly, by definition of 

iterators, )()(1 xhxb  . So, )(xfn can be rewritten in the 

form shown in (35).  
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and using theorem 3.1:  
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Equating terms, we obtain the following recursive definition 

of the coefficients bi(x):  

 xxb )(0  

 
m

xhxb
xb m

m

)()(
)( 1  

Consequently, the kth degree approximation can be 

computed using equation (34). For instance, the 2
nd

 degree 

approximation is giving by (36).  
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
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VI. CONCLUSION 

Iterated functions play crucial roles in countless fields of 

applied and theoretical mathematics. Typically, functional 

iteration is discrete in nature; defined only for integer values 

of the iteration variable. However, a systematic approach 

towards defining continuous iteration can be followed using 

Taylor series, which gives rise to several new theorems that 

simplify the study of iterated functions considerably. One 

theorem shows that the ratio between the derivative of an 

iterated function with respect to the independent variable and 

the derivative with respect to the iteration variable is solely 

determined by the independent variable. In another theorem, 

such ratio, called the iterator, is proved to be a unique 

property of any given function. Both theorems and their 

resultant corollaries can quicken the process of solving 

problems related to iterated functions. They can also be used 

to derive famous results such as the Abel equation and its 

properties with respect to iterated functions.  
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