
 

 

  
Abstract—We proposed a technique to identify road traffic 

congestion levels from velocity of mobile sensors with high 
accuracy and consistent with motorists’ judgments. The data 
collection utilized a GPS device, a webcam, and an opinion 
survey. Human perceptions were used to rate the traffic 
congestion levels into three levels: light, heavy, and jam. Then 
the ratings and velocity were fed into a decision tree learning 
model (J48). We successfully extracted vehicle movement 
patterns to feed into the learning model using a sliding 
windows technique. The model achieved accuracy as high as 
91.29%. By implementing the model on the existing traffic 
report systems, the reports will cover on comprehensive areas. 
The proposed method can be applied to any parts of the world. 
 

Index Terms—intelligent transportation system (ITS), traffic 
congestion level, human judgment, decision tree (J48), 
geographic positioning system (GPS). 
 

I. INTRODUCTION 
Traffic reports in real-time are essential for congested and 
overcrowded cities such as Bangkok or even in sparse and 
remote areas during a long holiday period. Without these, 
commuters might not choose the proper routes and could get 
stuck in traffic for hours. Intelligent Transportation System 
(ITS) with automated congestion estimation algorithms can 
help produce such reports. Several initiatives from both 
private and government entities have been proposed and 
implemented to gather traffic data to feed the ITS. 
According to our survey, most efforts focus on limited 
installation of fixed sensors such as loop-coils and 
intelligent video cameras with image processing capability. 
However, the costs of such implementations are very high 
due to the high cost of the devices, installation, and 
maintenance. Moreover, these fixed sensors are vulnerable 
to extreme weather typical in certain areas. Additionally, the 
installation of fixed sensors to cover all roads in major cities 
is neither practical nor economically feasible. An alternative 
way to collect traffic data at a lower cost with wider 
coverage is therefore needed. 
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Recently, mobile sensors or probe vehicles appeared as a 

complementary solution to fixed sensors for increasing 
coverage areas and accuracy without requiring expensive 
infrastructure investment. Two popular types of mobile 
sensors are GPS-based and cellular-based. GPS-based 
sensors are sensors with GPS capability and cellular-based 
sensors are sensors that use information from cellular 
networks as traffic sensors. 

Cellular-based sensors are low in cost due to the large 
number of mobile phones and their associated 
infrastructures already in service. According to recent 
statistics, the mobile phone penetration rate in Thailand is 
expected to grow to 90% in 2009 [1]. However, GPS-based 
sensors are far more efficient to pinpoint vehicle locations, 
thus they can provide highly accurate vehicle movement 
information.  Moreover, recent mobile phones have 
integrated GPS capability, such as Apple iPhone and several 
other smart phones. 

In this paper, we explored a model that can automatically 
classified traffic congestion levels for traffic reports.  The 
model can be further implemented in the system that 
combines advantages of GPS-based sensors, in that they are 
highly accurate, and of cellular-based sensors, in that they 
are highly available.  This model, combine with mobile 
sensors, can generate traffic reports that virtually cover all 
of the areas that vehicles and mobile networks can reach. 

This paper is organized as follows:  In Section II, we 
describe related works concerning traffic congestion reports. 
The methodology of the research is presented in Section III. 
Section IV provides results and evaluations, and Section V 
offers a conclusion and the possibilities of future work. 

 

II. RELATED WORKS 
Congestion level estimation techniques for various types 

of the collected data are our most related field. Traffic data 
could be gathered automatically from two major types of 
sensors: fixed sensor and mobile sensor. The study in [2] 
applied the neural network technique to the collected data 
using mobile phones. It used Cell Dwell Time/CDT, the 
time that a mobile phone attaches to a mobile phone service 
antenna, which provides rough journey speed. Our work 
employed another machine learning technique that was 
better suit with the characteristics of the data.  The GPS data 
would provide more precise traffic information than that 
roughly provided by the CDT.  The studies in [3] and [4] 
estimated the congestion level using data from traffic 
camera by applying fuzzy logic and hidden Markov model, 
respectively. Our work applied decision tree (J48) technique 
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on mobile sensors.  Using data collected from mobile 
sensors would cover far greater traffic ranges. The 
algorithm would learn over movement patterns of a vehicle. 
Sliding window technique with fixed window size was also 
used. The works of [5], [6] and [7] also investigated various 
alternative techniques related to our work. 

In some countries, for example, as in the study of [8] and 
[9] found out that the main parameters used to define the 
traffic congestion levels are time, speed, volume, service 
level, and the cycles of traffic signal that the motorists have 
to wait. Our work would focus only on interpretation of 
vehicle velocity since our work needs to determine the 
congestion levels with minimal parameters. Vehicle velocity 
could be collected by almost all types of sensors. This made 
it easier, broader and more versatile for the model to be 
used.  The congestion levels that we studied were limited to 
three levels: free-flow, heavy and jam, which was enough 
and appropriate according to the study of [10].  After we 
successfully derived the congestion classification model, the 
GPS data were planned to be collected through mobile 
phones attached by GPS device.  The data would be sent 
through the data network, such as GPRS, EDGE, and so on.  
The next section described the methodology of the research.  

 

III. METHODOLOGY 

A. Collection of Empirical Data 
The traffic data were collected from several highly 

congested roads in Bangkok, e.g., Sukhumvit, Silom, and 
Sathorn. A notebook attached with a USB GPS device is 
used to collected date, time, latitude, longitude, and vehicle 
velocity from GPS’s GPRMC sentences. We captured 
images of road traffic condition by a video camera mounted 
on a test vehicle’s dash board. Our vehicle passed through 
overcrowded urban areas approximately 30 kilometers 
within 3 hours. 

In our experiment, we gathered the congestion levels from 
11 subjects with driving experience up to 10 years. They 
watched a 3-hour video clip of road survey and rated the 
congestion levels into three levels, light, heavy, and jam. 
Then, the concluded congestion levels from 11 subjects 
were calculated using majority vote. The judged congestion 
levels were then synchronized with velocity collected by the 
GPS device. We observed that the data were wildly 
fluctuated and also non-uniform, as shown in Fig. 1. To 
alleviate this oscillation, the traffic data was treated before 
feeding into a learning algorithm, i.e., decision tree model, 
which will be explained in detail in the next section. 

B.  Data Preparation 
We minimized a set of attributes by concentrating only on 

the vehicle velocity and the moving pattern of a vehicle, 
which can infer different levels of congestion. Then, we 
applied three steps to prepare the data: 1) smoothening out 
instantaneous velocity, 2) extracting moving pattern of a 
vehicle using sliding windows technique, and 3) balancing 
the distribution of sampling data on each congestion level. 
Next, we will explain each procedure in details. 

1) Smoothening Out Instantaneous Velocity 
Instantaneous vehicle velocity from the GPS data usually 

fluctuated widely, as shown in Fig. 1 as the dotted line. This 
fluctuation made the learning algorithm difficult to 
determine the pattern and classify the congestion level, as in 
[11]. Therefore, we needed to smoothen out the fluctuation 
of instantaneous velocity. We applied moving average 
algorithm by averaging the previous ξ  samples as shown in 
Eq. 1. MVt represents the moving average velocity at time t. 
In our experiment, ξ  was set to 3. The results of the average 
velocity are shown as the thick line in Fig. 1. 
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Fig. 1. Instantaneous velocity vs. moving average velocity  

(ξ = 3) 
 

2) Extracting Vehicle’s Moving Patterns 
When the instantaneous velocity was less fluctuated by 

the smoothening algorithm, it was easier to investigate 
vehicle’s moving patterns.  We successfully extracted 
moving patterns that were practical to be efficiently learned 
by the learning algorithm, which can be explained as 
follows. Our previous work suggested we can use velocity 
to estimate congestion levels. For example, Fig. 2 illustrates 
the vehicle moving patterns corresponding to the congestion 
levels. To make the graph readable, we scale the congestion 
scores (1, 2 and 3) by 10, i.e., 10 = jam, 20 = heavy and 30 
= light.  
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Fig. 2. Vehicle moving pattern and deduced congestion 
level 

From Fig 2, when a vehicle is moving with high velocity 
for a while, it means that the road traffic is light, e.g., the 
velocity between the time of 10 and 14. If the velocity 
decreases to a moderate range, it means that the road traffic 
is heavy, e.g., the velocity at the time of 15. And if the 
velocity decreases to low velocity, it means that the road 
traffic is jam. 

Although, the value of vehicle velocity can be used to 
determine the congestion level, we cannot say that only a 
value of the vehicle velocity at a moment can be used to 
accurately determine the congestion level. In a real driving 
situation, an instantaneous velocity can be reporated at any 
congestion levels. For example, a vehicle needs to slow 
down for turning or stopping for a traffic light. In this 
condition, the traffic might be light but the velocity is 
relatively low. Fig. 3 visualizes the data space between 
congestion levels and instantaneous velocity. For example,   
the reported congestion levles of the velocity near 0 km/h, 
they were mutally reported as either light, heavy or jam.  
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Fig. 3. Congestion levels vs. instantaneous velocity 
 

After carefully investigating the data, we succesfully 
mimicked humans’ judements on congestion levels based on 
moving patterns of a vehicle which was derived from the 
historical data. Sliding windows, a technique that could 
satisfy such moving pattern extraction, was employed. We 
applied fixed sliding windows of size δ  to capture moving 
patterns of a vehicle from the vehicle velocity. In our 
experiment, δ  was set to 3, which means we captured the 
moving patterns by a set of three consecutive moving 
average velocities. The moving pattern at time t with δ  
equals to 3 includes three consecutive samples of moving 
average velocity at time t (MVt), and two priori moving 
average velocities at time t-1 (MVt-1), and t-2 (MVt-2). We 
also introduced a new attribute to represent the average 
velocity of each sliding window (each moving pattern), 
called AMVt. For the moving pattern at time t with δ  and ξ  
set to 3, the value of AMVt can be computed by the value of 
MVt (ξ = 5). Table I demonstrates how to calculate the moving 
average at time t from instantaneous velocity (INSt), and 
how to extract moving patterns. 

The steps of how to calculate the values in Table I can be 
explained as follows. The moving average velocity by the 

time of 13:12 can be calculated by averaging the current 
instantaneous velocity, 42.06, with two priori velocity, 
27.79 and 44.66. AMVt is the average velocity which covers 
the moving pattern at time t. The value of AMVt at 13:14 
can be calculated by averaging instantaneous velocity 
beginning from 13:10, also a starting point of MVt-2, to 
13:14, also the end point of MVt.  Thus, the calculation of 
an AMVt with δ  and ξ  set to 3 equals to the calculation of 
an MVt with ξ set to 5. The last column, Level, indicates 
congestion levels rated by human. The values of 1, 2, and 3 
represent jam, heavy, and light traffic respectively. 

 
TABLE I 

AN EXAMPLE OF INSTANTANEOUS VELOCITY AND DERIVED ATTRIBUTES 
Time INSt MVt-2 MVt-1 MVt AMVt Level 
13:10 44.66 - - - - 3 
13:11 27.79 - - - - 3 
13:12 42.06 - - 38.17 - 3 
13:13 55.09 - 38.17 41.65 - 3 
13:14 29.83 38.17 41.65 42.33 39.89 3 
13:15 2.04 41.65 42.33 28.99 31.36 2 
13:16 1.11 42.33 28.99 10.99 26.03 1 
13:17 14.45 28.99 10.99 5.87 20.50 1 

 

3) Balancing Class Distributions 
In our experiment, we captured vehicle’s moving patterns 

every minute from 13:00 to 15:45. Since the calculations of 
MVt and AMVt depend on previous cascading calculations, 
the first four instances were omitted. Therefore, there were 
162 instances: 52 instances were in the class of jam traffic, 
74 instances were in the class of heavy traffic, and there 
were only 36 instances were in the class of light traffic. 
Class imbalance may cause inferior accuracy in data mining 
learners, as [12]. Generally, classification models tend to 
predict the majority class if class imbalance exists. In this 
case, the class of heavy traffic was the majority class while 
the minority classes, the classes of light and jam traffic, 
were also highly important. Therefore, we needed to balance 
the class distributions to avoid the problem.  

By this step, we applied a simple technique to alleviate 
the problem of class imbalance by applying a technique that 
was similar to the technique of finding a least common 
multiple number. The result of class balancing yielded 448 
instances with 156 instances on class jam, 148 instances on 
class heavy, and 144 instances on class light. Then, this data 
set was used to train the classification model, for which we 
explain the details in the next section. 

C. Data Classifications 
The preprocessed data set was used to train and evaluate 

the classification model. Our data set consisted of five 
attributes. The first three attributes were MV3t-2, MV3t-1, 
and MV3t, which were three consecutive moving average 
velocities that represented the moving pattern. The fourth 
attribute was AMV3t, which was the average velocity of the 
corresponding moving pattern. The last attribute was Level, 
which was the congestion level judged by human ratings. 
We chose the J48 algorithm, a well-known decision tree 
algorithm in the WEKA system, to generate a decision tree 
model to classify the Level. WEKA is a machine learning 
software developed by the University of Waikato. It is a 
collection of machine learning algorithms for data mining 
tasks. The goal attribute of the model was set to Level. The 
test option was set to 10-fold cross-validation.  

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 

 

Fig. 4 shows the knowledge flow, steps of generation and 
evaluation of the classification model, of our experiment. 
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Fig. 4. Knowledge flow of our experiment 

 

IV. RESULTS AND EVALUATIONS 

A. Classification Model 
After successfully training the classification model, the 

derived decision tree is show in Fig 5. The size of our 
decision tree is 125 nodes, 63 of which are leave nodes. The 
time taken to build the model is about 0.08 seconds. The 
root node is AMV3t attribute. This means that the average 
of the moving average velocity is the most important factor 
to determine the level of road traffic congestion. 

B. Performance Evaluations 
The result shows a promising technique of determining 

congestion with an overall accuracy of 91.29%, a root mean 
square error of 0.2171, and a precision ranging from 0.882 
to 0.966. The result shows a true positive rate (TP Rate or 
sensitivity) ranging from 0.777 to 1.000, which is very high, 
and a false positive rate (FP Rate) ranging from 0.013 to 
0.068, which is very low. Table II shows the classifier’s 

performance for each class in details. Table III shows the 
result of the model evaluation by a confusion matrix. 

 
TABLE II 

THE CLASSIFIER’S PERFORMANCE 
Class TP Rate FP Rate Precision 

Jam (1) 0.962 0.068 0.882 
Heavy (2) 0.777 0.013 0.966 
Light (3) 1.000 0.049 0.906 
Average 0.913 0.044 0.918 

 
TABLE III 

THE CONFUSION MATRIX  

 Predicted 
Congestion Level

 

 Jam Heavy Light 
Jam 150 4 2 

Heavy 20 115 13 
Instances 

Light 0 0 144 

 
From Table II, the highest TP Rate is 1.000 on the Light 

class. This means that when the road traffic congestion level 
is light, our classifier will 100% correctly classify the 
traffic. The lowest TP Rate is 0.777 on the Heavy class. It 
can be interpreted that when the road traffic congestion 
level is heavy, our classifier will 77.7% correctly classify 
the traffic. In general outlier human perceptions could 
occur. Because the heavily congested level is at the middle 
between the light and jam level, some people may judge the 
traffic in the light class or in the jam class as being in the 
heavy class. When these judgments were fed into the 
classification algorithm, they were treated as noise and 
would be ignored. The number 20 and 13 in the confusion 
matrix, as per Table III, is the result of misclassification on 
the heavy traffic class. The number 20 represents the 
instances of heavy class which the model misclassified as 
jam traffic, and the number 13 represents the instances in 
heavy class which the model misclassified as light traffic.  

 

 
 

Fig. 5. The derived J48 decision tree
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Fig. 6 visualizes the classifier’s errors from the confusion 
matrix between predicted congestion levels and averages of 
moving average velocity, AMV3t. Cross symbols represent 
correctly classified instances, and square symbols represent 
the incorrectly classified instances. Red, yellow, and green 
colors represent instances of jam, heavy and light 
congestion levels respectively. 
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Fig. 6. Visualization of classifier’s errors 
 

Although the classification of heavy traffic is the worst 
by its TP Rate, it yields the lowest value of FP Rate with 
0.013, which is the best value. Moreover, it also yields the 
best precision score of 0.966. This means that when the 
classifier classifies traffic congestion patterns as a heavy 
traffic pattern, it will 96.6% correctly classify. 

 

I. CONCLUSION 
In this study, we investigated an alternative technique to 

automatically classify the road traffic congestion levels that 
was highly consistent with road users’ judgments. The 
technique minimally required data from GPS devices. GPS 
data can be collected from participants through mobile data 
networks. Vehicle velocity can be used to determine the 
congestion level but the instantaneous velocity fluctuated 
widely. We smoothened out the oscillated instantaneous 
velocity by averaging it with historical velocities, which was 
called moving average velocity. We applied a sliding 
windows technique to capture the consecutive moving 
average velocities, which was called a moving pattern. We 
derived a new attribute, AMV3t—represents the average 
velocity of the corresponding moving pattern.  Parameters 
δ  and ξ  were set to 3. The moving patterns were captured 
every minute. Then road users’ judgments and related 
information were learned utilizing a decision tree model 
(J48). The evaluations revealed that the decision tree model 
achieved an overall accuracy as high as 91.29% with a 
precision as high as 96.6%. The root mean square error was 
only 0.2171. 

In future study, we will optimize the δ , ξ, and time 
interval between two consecutive velocities, which might 
improve the accuracy of our model. Moreover, we plan to 
integrate such a model into the existing ITS system in 
Bangkok.  The technique will also be extended to apply to 

cover the whole country if possible. 
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