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Abstract—A chaotic orbit generated by a nonlin-
ear system is irregular, aperiodic, unpredictable and
has sensitive dependence on initial conditions. How-
ever, the chaotic trajectory is still not well enough
to be a crypto system in digital secure communica-
tion. Therefore, we propose a Modified Logistic Map
(MLM) and give a theoretical proof to show that the
MLM is a chaotic map according to Devaney’s defin-
ition. Based on the MLMs, we establish a Modified
Logistic Hyper-Chaotic System (MLHCS) and apply
MLHCS to develop a symmetric cryptography algo-
rithm, Asymptotic Synchronization of Modified Lo-
gistic Hyper-Chaotic System (ASMLHCS).
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1 Introduction

Logistic map of the form

x = γx(1− x) (1.1)

is an essential quadratic map in discrete dynamics which
has been extensively studied, not only theoretically but
also numerically, by mathematicians, physicists and biol-
ogists. It is well-known that the logistic map has chaotic
behavior for 3.57 < γ ≤ 4 [7, 8, 10]. However, the set of
chaotic windows is open and dense [4]; that is, the set of
visualized chaos is small and sparse for γ ∈ (3.57, 4). On
the other hand, logistic map is also proved to be chaotic
on an invariant Cantor set for all γ > 4 which is unstable
[12, 18].

Pecora and Carrol [15] have shown that a chaotic system
(respond system) can be synchronized with a separated
chaotic system (drive system), provided that the condi-
tional Lyapunov exponents of the difference equations be-
tween the drive and response systems are all negative.
In secure communication, the chaotic signals are used as
masking streams to carry information which can be re-
covered by chaotic synchronization behavior between the
transmitter (drive system) and receiver (respond system).

∗Department of Applied Mathematics, National Chiao Tung

University, Hsinchu, 300, Taiwan. This research was supported

in part by the National Science Council, NSC 97-2115-M-009-003-

MY2 and the National Center for Theoretical Sciences, Taiwan.

Email: smchang@math.nctu.edu.tw

Sobhy and Shehata [22] attacked the chaotic secure sys-
tem by reconstructing the map with the output sequence.
Because of the unique map pattern of each single-chaotic
system, it is easy to distinguish from the other chaotic
systems and rebuild the equations. MATLAB routines
are used to approximate the parameters. Once the para-
meters are found, the secure information is recovered.

Therefore, many papers focus in enhancing the complex-
ity of the output sequence. Heidari-Bateni and McGillem
[9] use a chaotic map to initialize another chaotic map.
Utilizing a multi-system with serval chaotic maps are
switched by the specific mechanism [11] or combined into
a chaotic system chain [24]. Peng et al. [16] combine the
above two approaches.

In this paper, we propose a robust map, Modified Lo-
gistic Map (MLM). The MLM is a chaotic map by the
definition of Devaney and invariant in [0, 1]. Further-
more, the MLM has no window. In numerical compu-
tation, we compute Poincaré recurrences to indicate the
chaotic phenomena of the MLM. Basing on two MLMs,
we establish a Modified Logistic Hyper-Chaotic System
(MLHCS). We then develop a symmetric cryptography
algorithm, Asymptotic Synchronization of Modified Lo-
gistic Hyper-Chaotic System (ASMLHCS), consisting of
two MLHCSs. There are two parts in the ASMLHCS,
namely the asymptotic synchronization phase and the
Encrtyption/Decryption phase. The details will be in-
troduced in later sections.

2 Modified Logistic Map (MLM)

For γ > 0, we define the Modified Logistic Map (MLM)
fγ(x) : [0, 1]→ [0, 1] by

fγ(x) =

{
γx(1− x) (mod 1), if x ∈ [0, 1] \ (η1, η2),
γx(1−x) (mod 1)

γ

4
(mod 1) , if x ∈ (η1, η2),

(2.1)

where η1 = 1
2 −

√
1
4 −

[ γ

4
]

γ
, η2 = 1

2 +
√

1
4 −

[ γ

4
]

γ
and [z] is

the greatest integer less than or equal to z.

For γ ≤ 4, we can easily observe that fγ(x) is equiv-
alent to the classical logistic map (1.1) at γ = 4. It
is well-known that the classical logistic map has chaotic
behavior for 3.57 < γ ≤ 4. Consequently, the sequence
generated by the MLM never settles down to a fixed point
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or a periodic orbit, instead of the aperiodic long-time be-
havior. However, from the bifurcation diagram [5], we see
that the attractors generated by the classical logistic map
route from period doubling to chaos (strange attractor).
The range of the strange attractors becomes larger and
larger, as γ increases from 3.57 to 4. For γ = 4, the length
of the strange attractor is one. In fact, the attractor of a
chaotic window visually forms periodic points which has
been proved to be open and dense.

As the MLM has no chaotic windows for γ < 4 which
is suitable as a chaotic mask in secure communication,
in the following we shall show that the MLM has also
chaotic behavior according to Devaney’s definition [7] for
γ ≥ 4. In these cases the lengths of strange attractors
are always one and the chaotic behavior is topologically
equivalent to that of γ = 4. In other words, for γ > 0,
the MLM has no chaotic windows which produce a large
key space in secure communication.

Theorem 2.1. [6] If γ ≥ 4, then fγ exhibits Devaney’s

chaos on [0, 1].

3 Numerical study of MLM

In this section, we present the numerical experiments on
MLM by computing spectra of waveforms to observe that
no chaotic window occurs and orbits form uniform distri-
butions in [0, 1]. On the other hand, we compute Poincaré
recurrences to verify that the MLM possesses the posi-
tive topological entropy, which shows that the MLM is a
chaotic map.

3.1 Spectra of waveforms

In order to characterize the motion of MLM, we compute
spectra of waveforms of the system (2.1) with different γ.
The spectrum of a waveform is computed using the FFT
subroutine in MATLAB and the spectrum distribution is
displayed by plotting the frequency versus log10(|fft(·)|2).
Here the FFT subroutine is the discrete Fourier trans-
form, sometimes called the finite Fourier transform, is a
Fourier transform widely employed in signal processing
and related fields to analyze the frequencies contained in
a sampled signal. Therefore, we generate a sequence from
the MLM, sampling data at 1,000 Hz.

Figures 3.1 and 3.2 present attractors of (2.1) and plot the
spectra of waveforms at γ = 5.9 and 10.8, respectively.
Note that we observe that all attractors form uniform
distributions in [0, 1] at the other values of γ ≥ 4. The
spectra of waveforms revealed to have contained no defi-
nite frequency in the signals [14]. Moreover, numerically
speaking, there is no chaotic window for the MLM.

3.2 Poincaré recurrences

Poincaré recurrences are main indicators and character-
istics of the repetition of behavior of dynamical systems
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Figure 3.1: The attractor {fγ(x)} and the spectra of
waveforms of MLM for γ = 5.9.
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Figure 3.2: The attractor {fγ(x)} and the spectra of
waveforms of MLM for γ = 10.8.

in time. We need to study the statistical properties of
the quantity τ(x, U), the first return time of the orbit
through x into a set U (see [23] and references therein).
Typical motions in dynamical systems repeat their be-
havior in time. Simplicity or complexity of orbits often
can be displayed in terms of Poincaré recurrences. Fur-
thermore, Poincaré recurrences could also be to describe
what happens for the map in the regions of the phase
space with regular or chaotic motions [19].

Instead of looking at the mean return time or at the re-
turn time of points, we now adopt another point of view.
We define the smallest possible return time into U by
taking the infimum over all return times of the points
of the set [6]. We consider a dynamical system (Rd, f)
with f being continuous and d ∈ N. Let A ⊂ R

d be an
f -invariant subset. We follow the general Carathéodory
construction and consider covers of A by open balls. We
denote by Bε the class of all finite or countable open cov-
ering of A by balls of diameter less than or equal to ε.
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Let the Poincaré recurrence for an open ball U ⊂ R
d be

τ(U) = inf{τ(x, U) : x ∈ U},

where τ(x, U) = min{n ∈ N : fn(U) ∩ U �= ∅} is the first
return time of x ∈ U . By convention, we set the return
time τ(x, U) to be infinity if the point x never comes back
to U . Given C ∈ Bε and α, q ∈ R, we consider the sum

M(α, q, ε, C) =
∑
U∈C

exp (−qτ(U)) |U |α, (3.1)

where |U | stands for the diameter of the set U . Now,
define

M(α, q, ε) = inf{M(α, q, ε, C) : C ∈ Bε}.

The limit

M(α, q) = lim
ε→0

M(α, q, ε)

has an abrupt change from infinity to zero as, for a fixed
q, one varies α from zero to infinity. The transition point
defines a function αc(q) as follows,

αc(q) = inf{α : M(α, q) = 0}.

This function is said to be the spectrum of dimensions

for Poincaré recurrences. Moreover, we let q0 := sup{q :
αc(q) > 0}. Then, roughly speaking, q0 is the smallest
solution of the equation α(q) = 0. The number q0 is
called the dimension for Poincaré recurrences (see [3] and
references therein).

For computational purposes [2], we shall derive an asymp-
totic relation between τ(U), ln ε and q0. For the sake of
simplicity, we assume that M(αc(q), q) is a finite number.
Then the partition function (3.1) behaves as follows

M(αc(q), q, ε, C) =
∑
U∈C

exp(−qτ(U))|U |αc(q) ∼ 1,

i.e.,
1

N

∑
U∈C

exp(−qτ(U))|U |αc(q) ∼ 1

N
, (3.2)

where N is the number of elements in the cover C. But we
know that if ε is small enough then 1/N behaves like εb,
where b is the box dimension of the set A (provided that
it exists and is equal to the Hausdorff dimension [17]).

Therefore, we may rewrite the asymptotic equality (3.2)
as follows

〈exp(−qτ(U)|U |αc(q)〉 ∼ εb,

where the brackets 〈·〉 denote the mean value. For q = q0,
we have

〈exp(−qτ(U)〉 ∼ εb. (3.3)

Here (3.3) can be treated as the definition of the dimen-
sion q0 for Poincaré recurrences.

If (3.3) is satisfied, we may expect that the average value
〈τ(U)〉 for Poincaré recurrences satisfies the following as-
ymptotic equality

〈τ(U)〉 ∼ b

q0
(− ln ε), (3.4)

where |U | ≤ ε and ε  1. Our numerical simulations
later will confirm this conjecture, plotting 〈τ(U)〉 versus
(− ln ε) and evaluating the slope b

q0
.

Furthermore, the relation in (3.4) implies that the dy-
namical system (Rd, f) possesses positive topological en-
tropy [3]. On the other hand, in [21], it was proved that
the Lyapunov exponent of some class of f can be esti-
mated from the behavior of the first return times of a ball
as the diameter vanishes. More precisely, if f is a piece-
wise monotonic mapping with a derivative of bound p-
variation for some p > 0 and if μ is an ergodic f -invariant
measure with non-zero entropy, then for μ-almost every
x, we have

λμ ≥
(

lim
ε→0

τ(x, U)

− ln ε

)−1

, (3.5)

where λμ is the Lyapunov exponent of an invariant mea-
sure μ. Hence, from (3.4) and (3.5), if the slope b

q0

is
positive, it implies that the map f has a positive Lya-
punov exponent.

Figure 3.3 plots Poincaré recurrences of the system (2.1)
with γ = 4.7 and 11.9. The plot of 〈τ(U)〉 versus (− ln ε)
has the positive slopes 0.77 and 0.57, respectively. The
dispersion of the calculated values of the slopes is about
3%.
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Figure 3.3: Poincaré recurrences of MLM for γ = 4.7 and
11.9 with respect to the slopes 0.77 and 0.57, respectively.
The dispersion of the calculated values of the slopes is
about 3 %.

4 Synchronization in modified logistic
hyper-chaotic system

In Sections 2 and 3, from the theoretical and numerical
points of view, we have shown that MLM is a chaotic
map which has no window and is uniformly distributed
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in [0, 1]. These fine properties are essential in the ap-
plication to secure communication. In order to conform
to a high standard of secure communication [22], based
on MLMs in (2.1), we construct a multi-system F , called
the Modified Logistic Hyper-Chaotic System (MLHCS),
defined by

F(r,x,C) := C

[
fγ1

(x1)
fγ2

(x2)

]
, C =

[
1− c1 c1

c2 1− c2

]
,

where x = [x1, x2]
�, r = [γ1, γ2]

� and C is a coupling
matrix with coupling strengths c1, c2 ∈ [0, 1]. Note that
a hyper-chaotic system [20] means that it has at least
two positive Lyapunov exponents [13]. When γ1 and γ2

are arbitrary chosen to be larger than 4 together with
c1 and c2 arbitrarily chosen between 0 and 1, there is
no doubt that the resulting MLHCS could almost be a
hyper-chaotic system.

Let G be another MLHCS defined by

G(r,y,C) := C

[
fγ1

(y1)
fγ2

(y2)

]
,

where y = [y1, y2]
� and the parameters r and C are the

same as in F .

Now we want to build up a communication system be-
tween F and G, called the Transmitter and Receiver,
respectively. We utilize simplex partial coupling to
reach synchronization between the Transmitter and Re-

ceiver. More precisely, for given initial datum x
(0)
1 , x

(0)
2 ,

y
(0)
1 , y

(0)
2 ∈ (0, 1), we define the communication sys-

tem (4.1)–(4.2):

x(i) = F(r,x(i−1),C), (4.1)

{
y(i) = G (

r,y(i−1),C
)
,

y(i) = [x
(i)
1 , ȳ2

(i)]�,
(4.2)

where x(i) = [x
(i)
1 , x

(i)
2 ]� and y(i) = [ȳ

(i)
1 , ȳ

(i)
2 ]� for

i = 1, 2, . . .. The vectors x(i) and y(i) of the Transmitter
and Receiver can be synchronized by the partial portion

x
(i)
1 with a suitable coupling strength C, as i is suffi-

ciently large. Under the usual metric on R/Z, we obtain
a sufficient condition for synchronization below.

Let | · |1 be the usual metric on R/Z defined by

|x− y|1 = min {|x− y|, 1− |x− y|} for x, y ∈ [0, 1).

For convenience, we define a function δ(γ),

δ(γ) := max
x∈[0,1]

|f ′γ(x)| =
{

γ, if γ = 4k,√
γ2−4γ[ γ

4
]

γ

4
(mod 1) , if γ ∈/ N,

where k ∈ N.

Theorem 4.1. If 1− 1
δ(γ2) < c2 < 1, then |x(i)

2 −y
(i)
2 |1 →

0 as i →∞.

With Theorem 4.1, we understand that both sides of the
communication system (4.1)–(4.2) can approach the same
state under the chord norm. However, by using Euclidian

norm, x
(i)
2 and y

(i)
2 can only be shown to be sufficiently

close for some i.

Theorem 4.2. Given any small ε > 0, if |x(0)
2 −y

(0)
2 |1 < ε

and 1− 1
δ(γ2) < c2 < 1, then there exists a positive integer

i such that |x(i)
2 − y

(i)
2 | < ε.

5 Application in secure communication
system

In this section, we propose a secure communication
system, called Asymptotic Synchronization of Modified
Logistic Hyper-Chaotic System (ASMLHCS), which is
based on the communication system (4.1)–(4.2). ASML-
HCS utilizes an important property of the communication
system (4.1)–(4.2); that is, the Transmitter and Receiver
can realize synchronization. In the ASMLHCS, there are
two phases — the asymptotical synchronization phase
and the Encryption/Decryption phase. First, we need to
make both sides (the Transmitter and Receiver) carry out
asymptotic synchronization. We then utilize asymptotic
synchronization to accomplish the secure communication.

The communication scheme is sketched in Figure 5.1. In-
formation is transmitted by the Transmitter through the
channel after Encryption. The Receiver recovers the in-
formation by Decryption.

Information
Source p(j)

Encryption

E(p,k)

c(i)

Decryption

D(c, k̃)p̃(j)
Information
Acquirement

Transmitter

Receiver

Figure 5.1: Communication scheme.

6 Conclusions

In conclusion, we show a robust chaotic map, the Modi-
fied Logistic Map, which not only exhibits no window but
is also uniformly distributed in [0, 1]. Based on this map,
we design a multi-system hyper-chaotic synchronization
system, the Asymptotic Synchronization of Modified Lo-
gistic Hyper-Chaotic System, for secure communication.
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The system can achieve, theoretically, asymptotical syn-
chronization between the Transmitter and Receiver after
finite times in simplex partial coupling transmission. Fur-
thermore, the implicit driving technique always guaran-
tees asymptotical synchronization between the drive and
respond systems during the plaintext transmission.
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