
 
 

 

  
Abstract -This paper investigates the necessary and sufficient 
condition for a set of (real or complex) matrices to commute. It 
is proved that the commutator [ ] 0B,A =  for two matrices A 
and B if and only if a vector v (B) defined uniquely from the 
matrix B is in the null space of a well- structured matrix defined 

as the Kronecker sum ( )*AA −⊕ , which is always rank 
defective. This result is extendable directly to any countable set 
of commuting matrices. Complementary results are derived 
concerning  commutators of certain matrices with functions of 
matrices ( )Af which extends the well- known sufficiency – type 

commuting result ( )[ ] 0Af,A = . 
 
Index Terms-  Commuting matrices, Jordan canonical form, 
Kronecker product, Kronecker sum, Function of a matrix. 
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I.  INTRODUCTION 
The problem of commuting matrices is very relevant in 
certain problems of Engineering and Physics . In particular, 
such a problem is of crucial interest related to discrete Fourier 
transforms, normal modes in dynamic systems or commuting 
matrices dependent on a parameter (see, for instance, [1-3]). 
It is well-known that commuting matrices have at least a 
common eigenvector and also, a common generalized 
eigenspace, [4-5]. A less restrictive problem of interest in the 
above context is that of almost commuting matrices, roughly 
speaking, the norm of the commutator is sufficiently small, 
[5-6]. A very relevant related result is that the sum of 
matrices which commute is an infinitesimal generator of a 

0C - semigroup. This leads to  a well-known result in 
Systems Theory establishing that that the matrix function 

22112211 tAtAtAtA eee =+ is a fundamental (or state 
transition) matrix for the cascade of the time invariant 
differential systems ( ) ( )txAtx 111 =& , operating on a time  

1t , and ( ) ( )txAtx 222 =& , operating on a time 2t , 
provided that 1A and 2A  commute (see, [7-11] ).The 
problem of commuting matrices is also of  relevant interest in 
dynamic switched systems, namely, those which possess 
several parameterizations one of each is activated at  each 
current time interval.  If the matrices of dynamics of all the 
parameterizations commute then there exists a common 
Lyapunov function for all those parameterizations and any 
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arbitrary switching rule operating at any time instant 
maintains the global stability of the switched rule provided 
that all the parameterizations are stable, [7]. However, in the 
case that there is no common Lyapunov function for all the 
parameterizations,  a minimum residence time at each active 
parameterization is needed to maintain the global stability of 
the switched system so that the switching rule among  distinct 
parameterizations is not arbitrary, [12-13]. Parallel results 
apply for switched time-delay systems subject to point delays 
under  zero or sufficiently small delays when the matrices 
defining the delay-free dynamics of the various 
parameterizations commute, [10-11]. This paper formulates 
the necessary and sufficient condition for any countable set 
of (real or complex) matrices to commute.  
1.1. Notation 
[ ]B,A  is the commutator of the square matrices A and B. 

( )Ba:BA ji=⊗  is the Kronecker (or direct) product of 

( )jia:A =  and B. 

BIIA:BA nn ⊗+⊗=⊕  is the Kronecker sum of the square 

matrices ( )jia:A =  and both of order n, where nI is the n-th 

identity matrix.  
TA is the transpose of the matrix A and *A is the conjugate 

transpose of the complex matrix  A. For any matrix A, AIm and 
Ker A are its associate range (or image) subspace and null space, 
respectively. Also, rank (A) is the rank of A which is the dimension 
of Im (A) and  det (A) is the determinant of the square matrix A. 

( ) ( ) 2nTT
n

T
2

T
1 a,....,a,aAv C∈=  if ( )ni2i1i

T
i a,....,a,a:a =  

is the i-th row of the square matrix A. 
( )Aσ  is the spectrum of A ;  { }n,...,2,1:n = . If ( )Ai σ∈λ  

then there exist positive integers iμ and ii μ≤ν  which are, 
respectively, its algebraic and geometric multiplicity; i.e. the times 
it is repeated in the characteristic polynomial of A and the number of 
its associate Jordan blocks, respectively. The integer n≤μ is the 

number of distinct eigenvalues and the integer im , subject to 

iim1 μ≤≤ , is the index of ( )Ai σ∈λ ; μ∈∀ i , that is, its 
multiplicity in the minimal polynomial of A.  

A ∼ B denotes a similarity transformation from A to TATB 1−=  

for given nnB,A ×∈ R   for some non-singular nnT ×∈ R . A 
≈  B = E A F means that there is an equivalence transformation for 

given nnB,A ×∈ R   for some non-singular nnF,E ×∈ R . 

A  linear  transformation from  nR to nR , represented by  the 

matrix nnT ×∈ R , is denoted identically to such a matrix in order 

to simplify the notation. If nTDomV R≡≠  is a subspace of 
nR then ( ) { }Vz:zT:VTIm ∈=  and 
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( ) { }n0zT:Vz:VTKer R∈=∈= . If nV R≡ , the notation 

is simplified to { }nz:zT:TIm R∈=  and 

{ }nn 0zT:z:TKer RR ∈=∈= . 
The symbols “ ∧ ” and “ ∨ ” stand for logic conjunction and 
disjunction, respectively. 
The abbreviation “iff ” stands for “ if and only if”. 
The notation card U stands for the cardinal of the set U. 
 

II. COMMUTING AND NON – COMMUTING 
MATRICES WITH A GIVEN ONE 

Consider the sets [ ]{ } ∅≠=∈= × 0X,A::C nn
A RX , of 

matrices which commute with A,  and 
[ ]{ }0X,A::C nn

A ≠∈= ×RX , of matrices which do not 

commute with A; nnA ×∈∀ R  . Note that A
nn C0 ∩∈ ×R ; 

i.e. the zero n- matrix commutes with any n-matrix  so that, 
equivalently, A

nn C0 ∩∉ ×R  and then ∅=∩ AA CC ; 
nnA ×∈∀ R . The following two basic results follow 

concerning commutation and non- commutation of two 
matrices: 
 
Propositions 2.1. (i)  

( ) ( )( ){ }Tnn
A AAKerXv::C −⊕∈∈= ×RX  , and 

equivalently,  
[ ] ⇔= 0X,A ( ) ( )( )TAAKerXv −⊕∈ . 
 (ii) 

( ) ( )( ){ }Tnn
A

nn
A AAKerXv:C\:C −⊕∉∈== ×× RXR  

( ) ( )( ){ }Tnn AAImXv: −⊕∈∈≡ ×RX , and , 
equivalently,  
[ ] ⇔≠ 0X,A ( ) ( )( )TAAImXv −⊕∈ .    

 (iii) ( ) ( )( ){ }Tnn
A AAKerXv::CB −⊕∈∈=∈ ×RX  

          
( ) ( )( ){ }Tnn

B BBKerXv::CA −⊕∈∈=∈⇔ ×RX  
Proof:  (i) –(ii) First note by  inspection that 

{ }A,0C A ⊃≠∅ ; nnA ×∈∀ R . Also,  

[ ] ( ) ( )XvAIIAXAAXX,A T
nn ⊗−⊗=−=  

( )( ) ( ) 0XvAA T =−⊕=  

( ) ( )( )TAAKerXv −⊕∈⇒  and Propositions 2.1(i)-(ii) 
have been proved since there is an isomorphism   

nnn 2
:f ×↔ RR  defined by ( )( ) XXvf = ; nnX ×∈∀ R  

for ( ) ( ) 2nTT
n

T
2

T
1 x,....,x,xXv R∈=  if 

( )ni2i1i
T
i x,....,x,x:x =  is the i-th row of the square matrix 

X.   
(iii) It is a direct consequence of Proposition 2.1 (iii) and the 
symmetry property of the commutator of two commuting 
matrices    [ ] [ ] BA CA0A,BB,ACB ∈⇔==⇔∈   .  
 
Proposition 2.2.  

( )( ) ( )( ) A
T2T C0AAKernAArank ∈≠−⊕⇔<−⊕  

( )( ) ( )0XAA0 T ≠∃⇔−⊕σ∈⇔ ; nnA ×∈∀ R .     

Proof: [ ] ⇒∈∀= ×nnA;0A,A R   

( ) ( )( )Tn AAKerAv0
2

−⊕∈≠∋∃ R ; nnA ×∈∀ R . As 
a result, 

( )( ) 2nT 0AAKer R∈≠−⊕ ; nnA ×∈∀ R  ⇔  

( )( ) 2T nAArank <−⊕ ; nnA ×∈∀ R  

 so that ( )( )TAA0 −⊕σ∈  .  

Also, ( ) nn0X ×∈≠∃ R [ ] 0X,A: = ACX∈⇔ since

( )( ) 2nT 0AAKer R∈≠−⊕ . 
Then,  Proposition 2.2  has been proved.                                               
 
The subsequent result is stronger than Proposition 2.2.  
  
Theorem 2.3. The following properties hold: 
 (i) The spectrum of ( )TAA −⊕  is 

( )( ) ( ){ }nj,i;A,:AA jijiji
T ∈∀σ∈λλλ−λ=λ=−⊕σ  

and possesses ν  Jordan blocks in its Jordan canonical form 
of, subject to the constraints 

( )0Sdimn
2

1i
i

2 ν≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ν==ν≥ ∑

μ

=
, and 

( )( )TAA0 −⊕σ∈  with an algebraic multiplicity 
( )0μ and with a geometric multiplicity ( )0ν  subject to the 

constraints: 

( ) ( ) n00n
1i

2
i

1i
2
i

2

1i
i

2 ≥ν=ν≥μ≥μ≥
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ= ∑

μ

=
∑
μ

=
∑
μ

=
            (2.1) 

where: 
         a) { }nj,i,xzspan:S ji ∈∀⊗= , ( )ii λμ=μ  and 

( )ii λν=ν are, respectively,  the algebraic and the 
geometric multiplicities of ( )Ai σ∈λ , ni∈∀ ; n≤μ  is the 

number of distinct ( )Ai σ∈λ ( )μ∈i ,  ( )jii λμ=μ  and 

( )jiji λν=ν , are, respectively,  the algebraic and the 
geometric multiplicity of 

( ) ( )( )T
jiji AA −⊕σ∈λ−λ=λ , nj,i ∈∀ ; n≤μ  ,  and  

         b) jx and iz  are, respectively,  the right eigenvectors 

of  A and TA  with respective  associated      eigenvalues jλ  

and iλ  nj,i; ∈∀ .   
 (ii) 

( )( ) ( )( ) ( )0nAArankAAImdim 2TT ν−=−⊕=−⊕     

                                 ( )( ) ( )0AAKerdim T ν=−⊕⇔ ; 
nnA ×∈∀ R                                                              (2.2)      

Proof: (i) Note that  
( ) ( )TAA σ=σ      

⇒
( )( ) ( ){ }n,k;A,;:AA kk

T ∈∀σ∈λλ∀λ−λ=η∋=−⊕σ lllC     

                ( )( ) ( )( )T
0

T
0 AAAA −⊕σ∪−⊕σ=  

where   
 

( )( ) ( )( ){ }0:AAAA TT
0 =λ−⊕σ∈λ=−⊕σ  
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( )( ) ( )( ){ }0:AAAA TT
0 ≠λ−⊕σ∈λ=−⊕σ    

( )( ) ( )( )T
0

T AA\AA −⊕σ−⊕σ=  
Furthermore, 

( )( ) ( ){ }nj,i;A,::AA jiij
T ∈∀σ∈λλλ−λ=λ∋=−⊕σ C  

and ji xz ⊗ is a right eigenvector of  ( )TAA −⊕  

associated with its eigenvalue  ijij λ−λ=λ  . 

( )( )T
ij AA −⊕σ∈λ−λ=λ  has algebraic and 

geometric multiplicities ijμ and ijν , respectively ; 

nj,i ∈∀  , since jx and iz  are, respectively,  the right 

eigenvectors of  A and TA  with  associated eigenvalues jλ  

and iλ  nj,i; ∈∀ .  
Let AJ  be the Jordan canonical form of A.  It is first proved 

that there exists a non-singular 
22 nnT ×∈R  such that 

( )( )TAATJJ T1
AA T −⊕=⎟

⎠
⎞⎜

⎝
⎛−⊕ − . The proof is 

made by direct verification by using the properties of the 
Kronecker product, with TPPT ⊗= for  a non-singular  

nnP ×∈R  such that PAPJA 1
A

−=∼ , as follows: 
 

( )( ) ( ) 1TT1 PPTAAT −− ⊗=−⊕  

( )( ) ( ) ( ) ( )TT
n

1TT
n PPAIPPPPIA ⊗⊗⊗−⊗⊗× −

 
( ) ( ) ( ) ( )TTT

n
1T

n
T1 PAPPIPPIPPAP −−−− ⊗−⊗=

 
  ( ) ( )TTT

nn
1 PAPIIPAP −− ⊗−⊗=  

                                 TAnnA JIIJ ⊗−⊗=  

⎟
⎠
⎞⎜

⎝
⎛ −⊗+⊗= TAnnA JIIJ ⎟

⎠
⎞⎜

⎝
⎛ −⊕= TAA JJ  

and the result has been proved. Thus,  

( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −⊕=−⊕ TAA

T JJrankAArank  .  It turns out 

that P is, furthermore, unique except for multiplication by 
any nonzero real constant. Otherwise, if  TPPT ⊗≠ , then 

there would exist a non-singular nnQ ×∈R with 

R∈α∀α≠ ;IQ n  such that ( ) QPPQT 1T −⊗=  so that 

( )( ) ⎟
⎠
⎞⎜

⎝
⎛ −⊕≠−⊕−

TAA
T1 JJTAAT  provided that 

 

( ) ( )( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −⊕=⊗−⊕⊗ −

TAA
TT1T JJPPAAPP  

 
Thus, note that: 

( )( ) =μ==−⊕σ ∑
μ

=1i
ii

2T nAAcard  

( ) ν≥μ=μ=μ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ ∑∑∑

μ

=

μ

=

μ

= 1i
2
i

1i
ii

2

1i
i 0  

           ( ) 2

1i 1j
ji

1i
2
i

1i
ii0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ν=ν=ν=ν≥ ∑ ∑∑∑

μ

=

μ

=

μ

=

μ

=
 

             
( ) ( )

n22
1i 1ij

ji
1i 1ij

ji ≥ν−ν=ν ∑ ∑∑ ∑
μ

=

μ

=≠

μ

=

μ

=≠
−  

Those results follow directly from the properties of the 
Kronecker sum BA⊕ of n- square real matrices A and 

TAB −=  since direct inspection  leads to: 

   (1) ∈0 ( )( )TAA −⊕σ  with algebraic multiplicity  

( ) n0
1i

2
i

1i

2
i

1i
ii ≥ν≥μ=μ≥μ ∑

μ

=
∑
μ

=
∑
μ

=
since there are at 

least ∑
=

μ
n

1i
2
i  zeros in ( )( )TAA −⊕σ  (i.e. the algebraic 

multiplicity of ( )( )TAA0 −⊕σ∈  is at least ∑
=

μ
n

1i

2
i  ) and 

since 1i ≥ν ; ni∈∀ . Also, a simple computation of the 

number of eigenvalues of  ( )TAA −⊕  yields 

( )( ) 2

1i
i

1i
ii

2T nAAcard
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ=μ==−⊕σ ∑

μ

=
∑
μ

=
. 

   (2) The number of linearly independent vectors in  S is 

∑
μ

=
∑
μ

=
∑
μ

=
∑
μ

=
∑
μ

=
ν=ν≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ν=ν=ν

1i
2
i1i

ii
2

i
1i1i 1j

ji  since the 

total number of Jordan blocks in the Jordan canonical form of 

A is ∑
μ

=
ν

1i
i .  

   (3)   The number of Jordan blocks associated with 
( )( )TAA0 −⊕σ∈  in the Jordan canonical form of  

( )( )TAA −⊕  is ( ) ν≤=ν ∑
μ

=1i
2
iv0 , with 2

iiii ν=ν ; 

ni∈∀ . Thus: 

( )( ) ∑
μ

=
∑
μ

=
μ=μ=−⊕σ

1i
2
i1i

ii
T

0 AAcard , 

( )( ) ∑
μ

=

μ−=−⊕σ
1i

2
i

2T
0 nAAcard  

( )( ) ( ) ∑
μ

=

−=ν−=−⊕
1i

2
i

22T vn0nAArank ,   

( )( ) ( ) ∑
μ

=
=ν=−⊕

1i
2
i

T v0AAKerdim  

   (4)  There are at least ( )0ν  linearly independent vectors  

in { }nj,i,xzspan:S ji ∈∀⊗=  . Also, the total number 
of Jordan blocks in the Jordan canonical form of 

( )( )TAA −⊕  is  

( )
( )

( )020Sdim
1i 1ij

ji
2

1i
i

1i 1j
ji ν≥ν+ν=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ν=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ν==ν ∑

μ

=
∑
μ

=≠
∑
μ

=
∑
μ

=
∑
μ

=
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Property (i) has been proved.   Property (ii) follows directly 

from the orthogonality in 
2nR of its  range and null 

subspaces.                                                                           
Expressions which calculate the sets of matrices which 
commute and which do not commute with a given one are 
obtained in the subsequent result: 
 
Theorem 2.4.  The following properties hold: 
(i)  ACX ∈ iff ( )( ) ( ) 0XvAA T =−⊕ ⇔ ACX ∈ iff 

( ) ( ) ( ) T
2

TTT
2

T Xv,AAXvFXv
11

⎟
⎠
⎞⎜

⎝
⎛−= −

12
  

for any ( ) ( )12
1

1121222 AAAAKerXv −−∈ , where 
22 nnF,E ×∈R are permutation matrices and nnX ×∈ R  and 

( ) 2nXv R∈ are defined such that: 

(a) ( ) ( )XvF:Xv 1−=  ,  

 ( ) ( )( ) FAAE:AAA TT −⊕=≈−⊕ ; ACX ∈∀     (2.3) 

where ( ) ( ) ( ) 2nT
2

T
1

T )Xv,Xv(Xv R∈=  with 

( ) ( )0
1Xv ν∈R and ( ) ( )0n

2
2

Xv ν−∈ R  
 
  (b) The matrix ( ) ( )00

11A ν×ν∈R is non-singular in the 

block matrix partition ( )2j,i;AmatrixBlock:A ji ∈=  

with ( ) 2n0
12A ×ν∈R , ( )( ) ( )00n

21
2

A ν×ν−∈R and 

( )( ) ( )( )0n0n
22

22
A ν−×ν−∈R . 

 (ii) ACX ∈ , for any given ( ) nn0A ×∈≠ R , iff   
 

( )( ) ( ) ( )MvXvAA T =−⊕                                        (2.4)                                               

for some ( ) nn0M ×∈≠ R such that : 

( )( ) ( ) ( )( ) ( )0nMv,AArankAArank 2TT ν−=−⊕=−⊕
                                                                                        (2.5) 
Also, 

( )( ) ( ) ( ){ MvXvAA:X:C Tnn
A =−⊕∈= ×R  for any  

( ) nn0M ×∈≠ R  satisfying  
            

( )( ) ( ) ( )( ) ( )}0nMv,AArankAArank 2TT ν−=−⊕=−⊕
                                                                                        (2.6) 
Also, with the same definitions of E , F and X in (i), 

ACX ∈ iff 

( ) ( ) ( ) ( )( ) T
2

TT
11

T
2

TT
111

T Xv,AAXvAMvFXv −− −=
12

    
                                                                                         (2.7) 
where ( )2Xv  is any solution of the compatible algebraic  
system  
 
( ) ( ) ( ) ( )1

1
11122221

1
111222 MvAAMvXvAAAA −− −=−   

                                                                                         (2.8) 
for some ( ) nn0M ×∈≠ R such that nnM,X ×∈ R   and are 

defined according to  ( ) ( )XvFXv =   and 

( ) nn0MFMEM ×∈≠≈= R  and 

( ) ( ) ( ) ( )( )TT
2

T
1 Mv,MvEMvEMv ==  .      

Proof: First note from Proposition 2.1 that ACX ∈ iff 
( )( ) ( ) 0XvAA T =−⊕   since  

( ) ( )( )TAAKerXv −⊕∈ . Note also from Proposition 

2.1 , that    ACX ∈  iff        ( ) ( )( )TAAImXv −⊕∈ .Thus, 

ACX ∈ iff ( )Xv is a solution to the algebraic compatible 
linear system: 

( )( ) ( ) ( )MvXvAA T =−⊕    

for any ( ) nn0M ×∈≠ R such that : 

( )( ) ( ) ( )( ) ( )0nMv,AArankAArank 2TT ν−=−⊕=−⊕

 From Theorem 2.3, the nullity and the rank of ( )TAA −⊕  

are, respectively,  ( )( ) ( )0AAKerdim T ν=−⊕  

( )( ) ( )0nAArank 2T ν−=−⊕ . Therefore, there exist 

permutation matrices
22 nnF,E ×∈R such that there exists 

an equivalence transformation: 
( ) ( )( ) ( )2j,i;AmatrixBlockFAAE:AAA ji

TT ∈=−⊕=≈−⊕

such that 11A is square non-singular and of order 0ν . 

Define ( ) nn0MFMEM ×∈≠≈= R .Then, the linear 

algebraic systems ( )( ) ( ) ( )MvXvAA T =−⊕ , and 
 

( )( ) ( ) ( )
( )

( )
( )⎥⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=−⊕

2

1

2

1

2221

1211T

Mv
Mv

Xv
Xv

AA
AAXvFAAE       

( ) ( ) ( )( )
( ) ( ) ( ) ( )1

1
11212221

1
112122

2211
1

111

MvAAMvXVAAAA
XvAMvAXV

−−

−

−=−

−=
⇔

                                                                                     (2.9) 
are identical if X and M are defined according to 

( ) ( )XvFXv =  and ( ) ( )MvEMv = .As a result, Properties 

(i)-(ii) follow directly from (2.9) for 0MM ==  and for any 
M satisfying : 

( )( ) ( ) ( )( ) ( )0nMv,AArankAArank 2TT ν−=−⊕=−⊕
, respectively.                                                           

 
III.  PAIR-WISE COMMUTING MATRICES 

Consider the following sets: 
    (1) A set of nonzero 2p ≥  distinct  pair-wise commuting 

matrices [ ]{ }pj,i;0A,A:A: ji
nn

iC ∈∀=∈= ×RA  
    (2)   The set of matrices 

[ ]{ }Cii
nn A;0A,X:X:CM

C
ARA ∈∀=∈= × which 

commute with the  set CA  of  pair-wise commuting 
matrices. 
    (3)  A set of matrices 

[ ]{ }ARA ∈∀=∈= ×
ii

nn A;0A,X:X:C  which 
commute with a   given set of nonzero p matrices 

{ }pi;A: nn
i ∈∀∈= ×RA which are not necessarily  

pair-wise commuting. 
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The complementary sets of 
C

CM A  and AC  are 

C
CM A and AC , respectively, so that 

C
CMBnn

AR ∈∋×  if 
C

MCB A∉ and 

AR CBnn ∈∋× if ACB∉ . Note that 
CC ACMC =A  

for a set of  pair-wise commuting matrices CA  so that the 
notation 

CACM is directly referred to a set of matrices 
which commute with all those in a set of  pair-wise 
commuting matrices. The following two basic results follow 
concerning commutation and non- commutation of two 
matrices: 
 
Proposition 3.1. The following properties hold: 
(i) ( ) ( )( )

( )
pi;AAKerAv

pij

T
jji ∈∀−⊕∈⇔

∈≠
I  

          ( ) ( )( ) pi;AAKerAv
pj1i

T
jji ∈∀−⊕∈⇔

≤≤+
I  

(ii) Define ( ) =:N Ci A  
( ) ( ) ( ) ( )[ ]T

p
T
p1i

T
1i1i

T
1i1

T
1 AAAAAAAA −⊕−⊕−⊕−⊕ ++−− LL

( ) 22 nn1p ×−∈ R . Then pi;A Ci ∈∀∈ A  iff 
( ) ( ) pi;NKerAv Cii ∈∀∈ A  

 
(iii) 

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

×
I

pi
Ci

T
ii

nn A;AAKerXv:X:CM
C

ARA

( ) ( ){ } { } nn
CC

nn 0CNKerXv:X
C

×× ∈⊃⊃⊃∈∈= RAAR A

where  
( ) =:N CA  

( ) ( ) ( )[ ] Ci
nnp

p
T
p2

T
21

T
1 A,AAAAAA

22T
AR ∈∈−⊕−⊕−⊕ ×L

 (iv) 

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

× U
pi

Ci
T
ii

nn A;AAImXv:X:CM
C

ARA

                   ( ) ( ){ }C
nn NImXv:X AR ∈∈= ×  

 (v) 

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

× ARA i
pi

T
ii

nn A;AAKerXv:X:C I

    ( ) ( ){ }AR NKerXv:X nn ∈∈= ×  
where  

( ) =:N A  

( ) ( ) ( )[ ] 22T nnp
p

T
p2

T
21

T
1 AAAAAA ×∈−⊕−⊕−⊕ RL  

A∈iA,  
(vi) 

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−⊕∈∈=
∈

× U
pi

i
T
ii

nn A;AAImXv:X:C ARA

           ( ) ( ){ }AR NImXv:X nn ∈∈= ×  
Proof: (i)The first part of Property (i)  follows directly from 
Proposition 2.1 since all the matrices of CA  pair-wise 
commute and any arbitrary matrix commutes with itself ( thus 
j = i may be removed from the intersections of kernels of the 

first double sense implication). The last part of Property  (i)  
follows from the anti-symmetric property of the commutator 
[ ] [ ] Cjiijji A,A;0A,AA,A A∈∀==  what implies  

pi;A Ci ∈∀∈ A

( ) ( )( ) Cji
pj1i

T
jji A,A;AAKerAv A∈∀−⊕∈⇔

≤≤+
I

 (ii) It follows from its equivalence with Property (i) since 
( ) ( )( )

( )
I

pij

T
jjCi AAKerNKer

∈≠
−⊕≡A . 

(iii) Property (iii) is similar to Property (i) for the whose set 

C
M A  of matrices which commute with the set CA  so that 

it contains CA and, furthermore ,  

( ) ( )( )I
pi

T
iiC AAKerNKer

∈
−⊕≡A . 

 (iv) It follows from 

( )( ) ( )( )U I
pj

Cj
pj

T
jj

T
jj A;AAKerAAIm

∈ ∈
∈−⊕=−⊕ A

and ( )( ) ( )( )T
jj

T
jj

n AAImAAKer0
2

−⊕−⊕∈∋ IR  

but  0 Xnn =∋×R commutes with any matrix in nn×R  so 

that 
CC

CM0CM0 nnnn
AA RR ∉∋⇔∈∋ ×× for 

any given CA . 
(v)-(vi) are similar to (ii)-(iv) except that the members of A 
do not necessarily commute.                                             
 
Concerning Proposition 3.1 (v)-(vi), note that if ACX ∈   

then  0X ≠  since AR C0nn ∈∋×  . The following result is 
related to the rank defectiveness of the matrix ( )CN A  and 
any of their sub-matrices since CA  is a set of  pair-wise 
commuting matrices: 
 
Proposition 3.2. The following properties hold:  

( ) ( ) ( )( )T
jjCiC

2 AArankNrankNrankn −⊕≥≥> AA  ; 

pj,i;A Cj ∈∀∈∀ A  
and, equivalently,  

( ) ( )( ) ( ) ( )( ) ( )( ) 0AAdetNNdetNNdet T
jjCiC

T
iCC

T =−⊕== AAAA

; nj,i;A Cj ∈∀∈∀ A . 

Proof: It is a direct consequence from Proposition 3.1 (i) –(ii) 
since the existence of nonzero  pair-wise commuting matrices 
(all the members of CA ) implies that the above matrices  

( ) ( ) ( )T
jjCiC AA,N,N −⊕AA  are all rank defective 

and have at least identical number of rows than that of 
columns. Therefore, the square matrices  

( ) ( ) ( ) ( )CiC
T
iCC

T NN,NN AAAA and  

( )T
jj AA −⊕  are all singular.                                                              

Results related to sufficient conditions for a set of matrices to 
pair-wise commute are abundant in the literature. For 
instance, diagonal matrices are  pair-wise commuting. Any 
sets of matrices taking via multiplication by real scalars with 
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any arbitrary matrix consist of  pair-wise commuting 
matrices. Any set of matrices obtained by linear 
combinations of one of the above sets consist also of  
pair-wise commuting matrices. Any matrix commutes with 
any of its matrix functions etc. In the following, we discuss a 
simple, although restrictive, sufficient condition for rank 
defectiveness of ( )AN  of some set A of p square real n- 
matrices which may be useful as a test to elucidate the 
existence of a nonzero n- square matrix which commutes 
with all matrices in this set. Another useful test obtained from 
the following result relies on a necessary condition to 
elucidate if the given set consists of pair-wise commuting 
matrices. 
 
Theorem 3.3: Consider  any arbitrary set of nonzero 
n-square real matrices { }p21 A,...,A,A:=A  for any 
integer 1p≥  and define matrices: 

( ) =:N i A  
( ) ( ) ( ) ( )[ ]T

p
T
p1i

T
1i1i

T
1i1

T
1 AAAAAAAA −⊕−⊕−⊕−⊕ ++−− LL

 
( ) ( ) ( ) ( )[ ]T

p
T
p2

T
21

T
1 AAAAAA:N −⊕−⊕−⊕= LA  

Then, the following properties hold: 
(i) ( )( ) ( ) ( ) 2

iii nNrankNrankAArank <≤≤−⊕ AA ; 
pi ∈∀ . 

 (ii) ( )( ) { }0AAKer
pi

T
ii ≠−⊕

∈
I  so that: 

 ( ) AC0X ∈≠∃  , ( ) ( )( )I
pi

T
ii AAKerXvCX

∈
−⊕∈⇔∈ A  

and ( ) ( )( )U
pi

T
ii AAImXvCX

∈
−⊕∈⇔∈ A  

 (iii)  If CAA =  is  a set of pair-wise commuting matrices 
then  

( ) ( )( ) pi;AAKerAv
i\pj

T
jji ∈∀−⊕∈

∈
I

( ) ( )( ) pi;AAKerAv
pi

T
iii ∈∀−⊕∈⇔

∈
I  

        ( ) ( )( )
{ }

pi;AAKerAv
i\pi

T
iii ∈∀−⊕∈⇔

∈
I  

 (iv) 

( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

∈∀−⊕∈=
∈

×
Ci

pi
T
ii

nn
C A,AAKerXv:X:M ARA I

{ } nn
C 0 ×∈∪⊃ RA  

with the above set inclusion being proper 
 
Proof: (i) Any nonzero matrix ( )λλλ=Λ ...diag , 

( ) R∈≠λ 0  is such that ( )
iAC0 ∈≠Λ ( )pi∈∀ so 

that AC∈Λ . Thus,  

( ) ( ) ( )AA NranknNKerv0 2 >⇔∈Λ≠
( ) ( )( )iii AArankNrank −⊕≥≥ A ; pi ∈∀  

and any given set A.  Property (i) has been proved.     
 (ii) The first part follows by contradiction. Assume 

( )( ) { }0AAKer
pi

T
ii =−⊕

∈
I then 

( ) ( )ANKerv0 ∉Λ≠ so that ( ) AC...diag ∉λλλ=Λ , for 
any ( ) R∈≠λ 0  what contradicts (i) . Also, 

( ) ( )( )T
iiA AAKerXvCX

i
−⊕∈⇔∈ ; pi ∈∀  so that 

( ) ( )( )I
pi

T
ii AAKerXvCX

∈
−⊕∈⇔∈ A  what is 

equivalent to its contrapositive logic proposition 
( ) ( )( )U

pi

T
ii AAImXvCX

∈
−⊕∈⇔∈ A . 

(iii)  CAA = ( ) pi,pij;CA
jAi ∈∀∈≠∀∈⇔  

                    pi,j;CA
jAi ∈∀∈⇔ since 

iAi CA ∈ pi; ∈∀   

( ) ( )( ) pi;AAKerAv
pi

T
jji ∈∀−⊕∈

∈
I

( ) ( )( )
{ }

pi;AAKerAv
i\pi

T
jji ∈∀−⊕∈⇔

∈
I  

On the other hand,  
( ) ( )( )I

i\pj

T
jji AAKerAv(

∈
−⊕∈

( ) pj;CAv
jAi ∈∀∈⇔ ) ( ) ppianyfor ∈< .  

This assumption implies directly that: 
 
 ( ) pj;CAv

jAi ∈∀∈  

( ) I
1ij

A1i j
CAv

+∈
+ ∈∧ ( ) ppianyfor ∈<  

which together with  
( ) ( )( )I

1i\pj

T
jj1i AAKerAv

+∈
+ −⊕∈  implies that 

( ) pj;CAv
jA1i ∈∀∈+  

( ) ( )( ))AAKerAv
1i\pj

T
jj1i( I

+∈
+ −⊕∈⇒ ( ) p1ifor ∈+  

Thus, it follows by complete induction that 

CAA = ( ) ( )( )
{ }

pi;AAKerAv
i\pi

T
jji ∈∀−⊕∈⇔

∈
I  

and Property (iii) has been proved.  
 
(iv) The definition of CM A  follows from Property  (iii) in 
order to  guarantee that [ ] 0A,X i = ; A∈∀ iA . The fact 
that such a set contains properly { }0C ∪A   follows 
directly from 

( ) ( ) { }0CMdiag C
nn

C
∪≠∈λλλ=Λ∋× AR AL for 

any 0≠λ∋R .                                                               
Note that Theorem 3.3 (ii) extends Proposition 3.1 (v) since it 
is proved that { } ∅≠0\C A because all nonzero 

( ) AR Cdiagnn ∈λλλ=Λ∋× L for any 0≠λ∋R and 
any set of matrices A . Note that Theorem 3.3 (iii) establishes 
that ( ) ( )( )

{ }
pi;AAKerAv

i\pi

T
jji ∈∀−⊕∈

∈
I  is a 

necessary and sufficient condition for the set  to be a set of 
commuting matrices A  being simpler to test (by taking 
advantage of the symmetry property of the commutators) 
than the equivalent condition 
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( ) ( )( ) pi;AAKerAv
pi

T
jji ∈∀−⊕∈

∈
I . Further results 

about pair-wise commuting matrices or the existence of 
nonzero commuting matrices with a given set are obtained in 
the subsequent result based on the Kronecker sum of relevant 
Jordan canonical forms: 
 
Theorem 3.4. The following properties hold for any given 
set of n-square real matrices { }p21 A,...,A,A=A  : 

(i) The set AC  of matrices nnX ×∈ R which commute with 
all matrices in A is defined by: 

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ⊗−⊕∈∈=

=

−−×
I
p

1i

T
i

1
i

T
AA

nn PPJJKerXv:X:C
ii

RA

                                                                                         (3.1) 

( ) ( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∀−⊕∈∧⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ⊗∈∈=

=

−×
I
p

1i
T

AAii
1

ii
nn pi;JJKerYYPPImXv:X

ii
R

                                                                                         (3.2) 
 

( ) ( ) ( )( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⊕∈⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ⊗∈∈=

= =

−×
I I
p

1i

p

1i
T

AA
1

ii
nn

ii
JJKerY,YPPImXv:X R

                                                                                         (3.3) 
where nn

iP ×∈R is a non-singular transformation matrix 

such that ii
1

iAi PAPJA
i

−=∼ , 
iAJ being the Jordan 

canonical form of iA . 
 (ii) 

( ){ } ( )( )( )T
AA

pi
ii

JJKerdimminCX:Xvspandim −⊕≤∈
∈

A

      ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ν=ν= ∑

ρ

=∈∈

i

1j
2
ji

pi
i

pi
min0min        

                  ( )( )0minmin i
pi1i

2
ji

pi

i
μ≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ≤

∈
∑
ρ

=∈
 

where )0(iν and jiν  are, respectively, the geometric 

multiplicities of ( )( )T
ii AA0 −⊕σ∈  and ( )iji Aσ∈λ  

and )0(iμ and jiμ  are, respectively, the algebraic 

multiplicities of ( )( )T
ii AA0 −⊕σ∈  and ( )iji Aσ∈λ ; 

ij ρ∈∀ ( the number of  distinct eigenvalues of 

iA ), pi ∈∀ . 
 (iii) The set A consists of  pair-wise commuting matrices, 
namely AA CMC = , iff 

( ) ( )( )
( )
I
p

1ji

T
i

1
i

T
AAj PPJJKerAv

ii
=≠

−− ⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ⊗−⊕∈ ; 

pj∈∀ .  Equivalent conditions follow from the second and 
third equivalent definitions of AC in Property (i). 

Proof: If ii
1

iAi PAPJA
i

−=∼ , with 
iAJ being the 

Jordan canonical form of iA  then  

( ) ( ) ( )( ) i
T
ii

1
i

T
AA

T
ii TAATJJAA

ii
−⊕=−⊕∼−⊕ −

 with 
22 nnT

iii PPT RR ×∈⊗=  (see proof of Theorem 

2.3)  being non-singular ; pi ∈∀ . Thus , 

( )( ) ( )( ) 1
i

T
AAi

T
ii TJJTAA

ii
−−⊕=−⊕ so that:  

( ) ( ) ( ) ( ) T
p

T
2

T
1

T
1 ApAA2AAAN ⎥⎦

⎤
⎢⎣
⎡ −⊕−⊕−⊕= LA

[ ] aTJT=⎥⎦
⎤

⎢⎣
⎡ −=

TT
2

T
1np WWUI 2              (3.4) 

where 
22 npnp

p21 T...TTDiagBlock: ×∈⎥⎦
⎤

⎢⎣
⎡= RT ;   

22 nnpTT
p

T
2

T
1 TTT: ×−−− ∈⎥⎦

⎤
⎢⎣
⎡= RT a L  (3.5)   

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ −⊕−⊕= T

AA
T

AA pp11
JJJJDiagBlock: LJ       

22 npnp ×∈ R                                                        (3.6) 
Then,  

( ) ( )( )[ ] ( )aTJA KerAAKerNKer
p

1i
T
ii =−⊕=

=
I  

( )( ) ( )[ ]( )I
p

1i

T
i

1
i

T
AA PPJJKer

ii=

−− ⊗−⊕≡  

since T is non-singular. Thus, ( )
2nDomX RA ⊂∈∀ :  

( ) ( )AA NKerXvCX ∈⇔∈  

           ( ) ( )( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⊕∈⇔

=
I
p

1i
T
ii AAKerXv  

( ) ( )( ) ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗−⊕∈⇔

=

−−
I
p

1i

T
i

1
i

T
AA PPJJKerXv

ii  

( ) ( ) ( )( )( )( ) pi;JJKerPPImXv T
AA

1
ii ii ∈∀−⊕⊗∈⇔ −  

               ( ) ( ) ( )( )( ) ( )I
p

1i

1
ii XvYPPImXv

=

− ⇔⊗∈⇔  

( ) ( )( )( )I
p

1i
i

1
ii YPPIm

=

−⊗∈  

where ( )( )T
AAi ii

JJKerY −⊕∈  ; pi ∈∀  and 

( )( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⊕∈

=
I
p

1i
T

AA ii
JJKerY .  Property (i) has been 

proved. The first inequality of Property (ii) follows directly 
from Property (i). The results of  equalities and inequalities in 
the second line of Property (ii)  follow by the first inequality 
by taking into account  and Theorem 2.3. Property (iii) 
follows from the proved equivalent definitions of AC in 

Property (i) by taking into account that [ ] 0A,A jj = ; 

pj ∈∀  so that: 

( ) ( )( )I
p

1i

T
i

1
i

T
AAj PPJJKerAv

ii
=

−− ⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ⊗−⊕∈   

  ( ) ( )( )
( )
I
p

1ji

T
i

1
i

T
AAj PPJJKerAv

ii
=≠

−− ⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ⊗−⊕∈⇔  

; pj ∈∀                                                                          

Theorem 3.3 are concerned with { } nn0CM ×∈≠ RA  for 
an arbitrary set of real square matrices A and for a 
pair-wise-commuting set , respectively. 
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IV. FURTHER RESULTS AND SOME EXTENSIONS 
The extensions of the results for commutation of  complex  
matrices  is direct in several ways. It is first possible to 
decompose the commutator in its real and imaginary part and 
then apply the results of Sections 2-3 for real matrices to both 
parts as follows. Let mier AAA i+= and 

mier BBB i+= be complex matrices in nn×C  with erA , 

and reB  being their respective real parts , and miA  and 

imB , all in nn×R their respective imaginary parts and 

1−=i  is  the imaginary complex unity. Direct 
computations with the commutator of A and B yield: 
 
[ ] [ ] [ ]( )mimirere B,AB,AB,A −=  

[ ] [ ]( )mierremi B,AB,A ++ i                             (4.1) 
The following three results are direct and allow to reduce the 
problem of commutation of a pair of complex matrices to the 
discussion of four real commutators: 
 
Proposition 4.1. ⇔∈ ACB  

[ ] [ ]( ) [ ] [ ]( )( )ermiremimimirere A,BB,AB,AB,A =∧=

.Proposition 4.2. 
( ) ( )( )

ermimier AAmiAAre CCBCCB ∩∈∧∩∈       

                        ACB∈⇒  
Proposition 4.3. 

( ) ( )( )
ermimier BBmiBBre CCACCA ∩∈∧∩∈  

                     ACB∈⇒ . 
Proofs: Proposition 4.1 follow by inspection of (4.1). 
Proposition 4.2 implies that Proposition 4.1 holds with the 
four involved commutators being zero. Then the left 
condition of Proposition 4.2 implies that ACB ∈ , from 
Proposition 4.1, so that Proposition 4.2 holds. Proposition 4.3 
is equivalent to Proposition 4.2.                                           
 
Proposition 4.1 yields to the subsequent result 
 
Theorem 4.4. The following properties hold: 
(i)  Assume that the matrices A and erB  are given. Then, 

ACB∈  iff miB  satisfies the linear algebraic equation: 

( )
( ) ( ) ( )

( ) ( )miT
erer

T
mimi

erT
mimi

T
erer

Bv
AA

AA
Bv

AA

AA

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⊕

−⊕
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⊕

−⊕
    

                                                                                   (4.2) 
for which a necessary condition is:  

( )
( ) =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−⊕

−⊕
T
erer

T
mimi

AA

AA
rank  

( )
( )

( )
( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−⊕

−⊕

−⊕

−⊕
erT

mimi

T
erer

T
erer

T
mimi Bv

AA

AA

AA

AA
rank     

                                                                                   (4.3) 

(ii) Assume that the matrices A and imeB  are given. Then, 

ACB∈  iff erB  satisfies (4.2) for which a necessary 
condition is:  

( )
( ) =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−⊕

−⊕
T
mimi

T
erer

AA

AA
rank  

( )
( )

( )
( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−⊕

−⊕

−⊕

−⊕
imT

erer

T
mimi

T
mimi

T
erer

Bv
AA

AA

AA

AA
rank                    

 (iii) Also, 0B≠∃  such that ACB∈  with 0B re = and 
0B≠∃  such that ACB∈  with 0B im =  

Proof: (i) Eqn. 4.2 is a re-arrangement in an equivalent 
algebraic system of Proposition 4.1 in the unknown ( )miBv  

for given A and erB . The system is compatible if (4.2) holds 
from the Kronecker- Capelli theorem. The proof of Property 
(ii) is similar to that of (i) with the appropriate interchange of 
roles of erB  and miB . 

(iii) Since 
( )
( )

2
T
erer

T
mimi

n
AA

AA
rank <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⊕

−⊕
 from Theorem 3.3 

(i) then Aer CBB0 ∈=≠ iff  

( ) AAAer CCCB
mier

⊂∅≠∩∈ . The same proof 

follows for Aim CBB0 ∈=≠  since  

( )
( )

( )
( )

2
T
erer

T
mimi

T
mimi

T
erer

n
AA

AA
rank

AA

AA
rank <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⊕

−⊕
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⊕

−⊕
 

                                                                                       
A more general result than Theorem 4.4 is the following: 
 
Theorem 4.5. The following properties hold: 
(i) nn

ACB ×∩∈ C  iff  ( )Bv  is a  solution  to the linear 
algebraic system : 

( ) ( ) ( )
( ) ( ) ( )

( )
( ) 0
Bv

Bv

AAAA

AAAA

mi

er
T
erer

T
mimi

T
mimi

T
erer =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕       

                                                                                  (4.4) 
Nonzero solutions ACB∈  , satisfying 

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕
∈

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

T
erer

T
mimi

T
mimi

T
erer

mi

er

AAAA

AAAA
Ker

Bv

Bv , 

always exist since 

( ) ( ) ( )
( ) ( ) ( ) { }

2n2
T
erer

T
mimi

T
mimi

T
erer 0

AAAA

AAAA
Ker R∈≠

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕

, and equivalently, since 

( ) ( ) ( )
( ) ( ) ( )

2
T
erer

T
mimi

T
mimi

T
erer n2

AAAA

AAAA
rank <

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕           

                                                                                 (4.5) 
 (ii) Property (ii) is equivalent to  
 ACB∈ ( )( ) ( ) 0BvAA * =−⊕⇔                   (4.6) 
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which has always nonzero solutions  since 
( )( ) 2* nAA <−⊕  

Proof:  (i) It follows in the same way as that of Theorem 
4.4 by rewriting the algebraic system (4.3) in the form 
(4.4) which has nonzero solutions if (4.5) holds. But (4.5) 
always holds since nn

ACAB ×∩∈= C   is nonzero if A is 

nonzero and if nn0A ×∈= C  then                                 
nn

AC ×=C .   
 (ii) Direct calculations yield the equivalence of (4.4) with the 
separation into real and imaginary parts of the subsequent 
algebraic system:    
( ) ( )BvAIIA *

nn ⊗−⊗    

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⊗−⊗+= T

mi
T
ernnmier AAIIAA ii  

( ) ( )( ) 0BvBv mier =+ i                                                                                              
which is always solvable with a nonzero solution (i.e. 
compatible)  since ( ) 2*

nn nAIIArank <⊗−⊗   
(otherwise , ( ) AC0A ∈≠ ).                                                                                                                              
The various results of Section 3 for a set of distinct complex 
matrices to pair-wise commute and for characterizing the set 
of complex matrices which commute with those in a given set 
may be discussed by more general algebraic systems like the 
above one with  four block matrices 

( ) ( ) ( )
( ) ( ) ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕

T
ejrer2

T
mi2mji

T
mjimji

T
er2ejr

AjAAA

AAAA
 for each pj ∈ in 

the whole algebraic system. Theorem 4.5 extends directly for 
sets of complex matrices commuting with a given one and 
complex  matrices commuting with a set of   commuting  
complex matrices  as follows: 
 
Theorem 4.6. The following properties hold: 
(i) Consider the sets of nonzero distinct complex matrices 

{ }pi:A: nn
i ∈∈= ×CA  and 

⎭
⎬
⎫

⎩
⎨
⎧

∈∀∈=⎥⎦
⎤

⎢⎣
⎡∈= × pi,A;0A,X:X:C ii

nn ACA  for 

2p ≥ . Thus, erer XXXC iA +=∋  iff 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
( ) 0

Xv

Xv

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

mi

er

T
eprepr

T
mpimpi

T
mpimpi

T
eprepr

T
er2er2

T
mi2mi2

T
mi2mi2

T
er2er2

T
er1er1

T
mi1mi1

T
mi1mi1

T
er1er1

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕−−⊕

⊕−−⊕

⊕−−⊕

⊕−−⊕

⊕−−⊕

⊕−−⊕

M

    

                                                                                   (4.7) 
and a nonzero solution ACX∈ exists since the rank of the 

coefficient matrix of (4.7) is less than 2n2 .   
(ii) Consider the sets of nonzero distinct  commuting 
complex matrices { }pi:A: nn

iC ∈∈= ×CA  and 

⎭
⎬
⎫

⎩
⎨
⎧

∈∀∈=⎥⎦
⎤

⎢⎣
⎡∈= × pi,A;0A,X:X:CM ii

nn ACA  for 

2p ≥ . Thus, erer XXXCM iA +=∋  iff  )(X v re and 

 )(X v mi are solutions to (4.7). 

 (iii) Properties (i) and (ii) are equivalently formulated by 
from the algebraic set of complex equations: 
 

( ) 0XvAAAAAA
*

p
*
p2

*
21

*
1 =⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−⊕⎟

⎠
⎞⎜

⎝
⎛ −⊕⎟

⎠
⎞⎜

⎝
⎛ −⊕ L   

                                                                                     (4.8) 
Outline of Proof: (i) It is a direct extension of Theorem 4.5 
by decomposing the involved complex matrices in their real 
and imaginary parts since from Theorem 3.3 (i)  both left 
block matrices in the coefficient matrix of (4.7) have rank 
less than 2n . As a result, such a coefficient matrix has rank 

less than 2 2n so that  nonzero solutions exists to the 
algebraically compatible system  of linear equations (4.7) . 
As a result,  a nonzero n-square complex commuting matrix 
exists.  
 (ii) It is close to that of (i) but the rank condition  for 
compatibility of the algebraic system is not needed since the 
coefficient matrix of (4.7) is rank defective since 

( ) ( )( )T
mij

T
rej

T
Cj Av,AvA ⇔∈ A  is in the null 

space of the coefficient matrix; pj∈∀ .  
 (iii) Its proof is close to that of Theorem 4.5 (ii) and it is then 
omitted.                                                                             
 
Remark 4.7.  Note that all the proved  results of Sections 2- 3 
are directly extendable for complex commuting matrices, by 
simple replacements of transposes by conjugate transposes,  
without requiring a separate decomposition in real and 
imaginary parts as discussed in Theorem 4.5(ii) and Theorem 
4.6 (iii).                                                                            
Let CC→:f  be an analytic function in an open set 

( )Aσ⊃D  for some matrix nnA ×∈C and let ( )λp a 

polynomial fulfilling ( ) ( ) ( ) ( )k
i

k
i fp λ=λ ; ( )Ak σ∈∀ , 

{ }01mi k ∪−∈∀ ; μ∈∀ k (the number of distinct elements 
in ( )Aσ , where km is the index of kλ , that is its 
multiplicity in the minimal polynomial of A. Then, f (A) is a 
function of a matrix A if (A) p  (A) f = , [8]. Some results 
follow concerning the commutators of functions of matrices. 
 
Theorem 4.8. Consider a nonzero  matrix 

nn
ACB ×∩∈ C for any given  nonzero nnA ×∈C . Then, 

( ) nn
ACBf ×∩∈ C ,  and equivalently  

( )( ) ( )( )*AAKerBfv −⊕∈ , for any function 
nnnn:f ×× →CC   of the matrix B. 

Proof: For any nn
ACB ×∩∈ C : 

[ ] ( ) ( ) C∈λ∀−λ=−λ⇒= ;BIAABI0B,A nn  

( ) ( ) ( )B;BIAABI 1
n

1
n σ∩∈λ∀−λ=−λ⇒ −− C    (4.9) 

( )[ ] ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
λ−λλ∫

π
=⇒ − dBIf

2
1ABf,A 1

nCi
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                    ( ) ( ) λ−λλ∫
π

= − dABIf
2

1 1
nCi

 

 ( ) ( ) ( )[ ] 0A,BfAdBIf
2

1 1
nC ==⎥

⎦

⎤
⎢
⎣

⎡
λ−λλ∫

π
= −

i
 

where C  is the boundary of D  and consists in a set of 
closed rectifiable Jordan curves which contains no point of 

( )Aσ  since ( )Aσ∩∈λ C so that the identity 

( ) ( ) 1
n

1
n BIAABI −− −λ=−λ  is true. Then, 

( ) nn
ACBf ×∩∈ C  has been proved. From Theorem 3.5, 

this is equivalent to ( )( ) ( )( )*AAKerBfv −⊕∈ .          
The following corollaries are direct from Theorem 4.8 from 
the subsequent facts: 
  1)   nn

A A;CA ×∈∀∈ C .  
2)  [ ] ( )[ ] ( ) ( )[ ]Bg,Af0Bg,A0B,A ⇒=⇒=  

( ) ( )[ ] ( )[ ]∑
μ

=
α==

0i
i

i Bg,ABg,Ap  

( )[ ] ( ) ( )
nn

Af
0i

1i
i CBg0Bg,AA ×μ

=

− ∩∈⇔=α= ∑ C   

where (A) p  (A) f = , from the definition of f being a 
function of the matrix A, with ( )λp being a polynomial 

fulfilling ( ) ( ) ( ) ( )k
i

k
i fp λ=λ ; ( )Ak σ∈∀ , 

{ }01mi k ∪−∈∀ ; μ∈∀ k (the number of distinct 
elements in ( )Aσ , where km is the index of kλ , that is 
its multiplicity in the minimal polynomial of A. 
  3)  Theorem 4.8 is extendable for any countable set 

( ){ }Bf i of matrix functions of B. 
 
Corollary 4.9. Consider a nonzero matrix 

nn
ACB ×∩∈ C for any given  nonzero nnA ×∈C . Then, 

( ) ( ) nn
AfCBg ×∩∈ C  for any function 

nnnn:f ×× →CC   of the matrix A and any  function 
nnnn:g ×× →CC   of the matrix B.                                                                                                                        

Corollary 4.10. ( ) nn
ACAf ×∩∈ C , and equivalently  

( )( ) ( )( )*AAKerAfv −⊕∈ , for any function 
nnnn:f ×× →CC   of the matrix A.                                                                                                                    

Corollary 4.11. If nn
ACB ×∩∈ C  then any countable set 

of function matrices ( ){ }Bf i  is AC and in ACM .                                                                                                                                 
Corollary 4.12. Consider any countable set of function 
matrices ( ){ } AiF Cpi;Af:C ⊂∈∀= for any given 

nonzero nnA ×∈ C .  Then,  

( ) ( )( )( )( ) ( )( )*

C
ii AAKer

f
*AfAfKer

Fi

−⊕⊃−⊕
∈
I  .      

Note that matrices which commute and are simultaneously 
triangularizable through the same similarity transformation 
maintain  a zero commutator after such a transformation is 
performed. 

Theorem 4.12. Assume that nn
ACB ×∩∈ C , Thus, 

nn
B A

C ×
Λ ∩∈Λ C  provided that there exists a 

non-singular matrix nnT ×∈ C  such that 

TAT 1
A

−=Λ and TBT 1
B

−=Λ . 

Proof: [ ] 0GB,AFCB A =⇔∈ ; nnG,F ×∈∀ C being 

non-singular. By choosing TGF 1 ==− , it follows that  
[ ] ( ) ( ) [ ] 0,TATTBTTBTTATTB,AT BA

11111 =ΛΛ=−= −−−−−  
                                                                                          
A direct consequence of Theorem 4.12 is that if a set of matrices are 
simultaneously triangularizable to their  real canonical forms by a 
common transformation matrix then the pair-wise commuting 
properties are identical to those of their respective Jordan forms.  
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