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The Necessary and Sufficient Condition for a Set
of Matrices to Commute and Related Results

M. De la Sen

Abstract -This paper investigates the necessary and sufficient
condition for a set of (real or complex) matrices to commute. It
is proved that the commutator [A, B ]z 0 for two matrices A

and B if and only if a vector v (B) defined uniquely from the
matrix B is in the null space of a well- structured matrix defined

as the Kronecker sum A @ (—A* , which is always rank

defective. This result is extendable directly to any countable set
of commuting matrices. Complementary results are derived
concerning commutators of certain matrices with functions of

matrices f (A) which extends the well- known sufficiency — type
commuting result [A, f(A)]=0.

Index Terms- Commuting matrices, Jordan canonical form,
Kronecker product, Kronecker sum, Function of a matrix.

AMS Classification Subjects: 15A30, 11C20

I. INTRODUCTION
The problem of commuting matrices is very relevant in
certain problems of Engineering and Physics . In particular,
such a problem is of crucial interest related to discrete Fourier
transforms, normal modes in dynamic systems or commuting
matrices dependent on a parameter (see, for instance, [1-3]).
It is well-known that commuting matrices have at least a
common eigenvector and also, a common generalized
eigenspace, [4-5]. A less restrictive problem of interest in the
above context is that of almost commuting matrices, roughly
speaking, the norm of the commutator is sufficiently small,
[5-6]. A very relevant related result is that the sum of
matrices which commute is an infinitesimal generator of a
C, - semigroup. This leads to a well-known result in

Systems Theory establishing that that the matrix function
g ArtitAsts A2tz js a fundamental (or state
transition) matrix for the cascade of the time invariant
differential systems x,(t)=A, x,(t), operating on a time
t,, and X, (t)=A, x,(t), operating on a time t,,
provided that A; and A, commute (see, [7-11] ).The

problem of commuting matrices is also of relevant interest in
dynamic switched systems, namely, those which possess
several parameterizations one of each is activated at each
current time interval. If the matrices of dynamics of all the
parameterizations commute then there exists a common
Lyapunov function for all those parameterizations and any
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arbitrary switching rule operating at any time instant
maintains the global stability of the switched rule provided
that all the parameterizations are stable, [7]. However, in the
case that there is no common Lyapunov function for all the
parameterizations, a minimum residence time at each active
parameterization is needed to maintain the global stability of
the switched system so that the switching rule among distinct
parameterizations is not arbitrary, [12-13]. Parallel results
apply for switched time-delay systems subject to point delays
under zero or sufficiently small delays when the matrices
defining the delay-free dynamics of the various
parameterizations commute, [10-11]. This paper formulates
the necessary and sufficient condition for any countable set
of (real or complex) matrices to commute.

1.1. Notation

[A, B ] is the commutator of the square matrices A and B.

A® B::(aij B) is the Kronecker (or direct) product of
A:=(aij) and B.

A®B:=A®I ,+1,®B is the Kronecker sum of the square
matrices A::(aij) and both of order n, where | is the n-th
identity matrix.

A Tis the transpose of the matrix A and A *is the conjugate

transpose of the complex matrix A. For any matrix A, ImA and

Ker A are its associate range (or image) subspace and null space,
respectively. Also, rank (A) is the rank of A which is the dimension
of Im (A) and det (A) is the determinant of the square matrix A.

v(A):(a I,a{,....,aI)TeC”Z if a iT::(ailnaizv----vain)
is the i-th row of the square matrix A.

o(A) isthe spectrum of A; M:={1,2,..,n}.If XieG(A)
then there exist positive integers [Lj and v < which are,

respectively, its algebraic and geometric multiplicity; i.e. the times
itis repeated in the characteristic polynomial of A and the number of
its associate Jordan blocks, respectively. The integer u<nis the

number of distinct eigenvalues and the integer m j, subject to
1<m ;< pj, is the index of A j EG(A); Vienw, that is, its
multiplicity in the minimal polynomial of A.

A ~ B denotes a similarity transformation from Ato B=T AT

forgiven A, Be R ™" forsomenon-singular Te R ™" A
~ B = E A F means that there is an equivalence transformation for

given A, Be R ™" for some non-singular E, Fe R ™".

A linear transformation from R"Mto R™, represented by the
matrix T € R ™" is denoted identically to such a matrix in order
to simplify the notation. If V =DomT =R Nisa subspace of

R" then ImT(V):={Tz:zeV} and
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KerT(V)::{zev :Tz=0eR" } IfV =R ", the notation
is simplified to ImT ::{TZ: zeR" } and

KerT::{ZER” :Tz=0eR" }

The symbols “ A ” and “ Vv ” stand for logic conjunction and
disjunction, respectively.

The abbreviation “iff ” stands for “ if and only if”.

The notation card U stands for the cardinal of the set U.

I1. COMMUTING AND NON - COMMUTING
MATRICES WITH A GIVEN ONE

Consider the sets C ,: {Xe R™™:[A,X]=0 }¢@ , of
matrices ~ which  commute  with A, and
C A:z{Xe R™:[A,X]#0 } of matrices which do not
commute with A; VAeR ™" Note that 0e R™" " C 5 ;
i.e. the zero n- matrix commutes with any n-matrix so that,
equivalently, 0gR"™ ™~ C, and then C,Nn C =T ;
YAeR™" . The following two basic results follow

concerning commutation and non- commutation of two
matrices:

Propositions 2.1. (i)

Cai={XeR™Mv(X)cker(A® (-AT))} | and
equivalently,

[A,X]=0c v(X)e Ker(A@ (—AT)).

(ii)

C A:=R™MCa={Xe R™M: v(X) e Ker(a® (- AT)) |

= xeR™ " v(x)em(ae -AT))} . and
equivalently,

[AX]#0e v(X)eim(a® (- AT))

(i) BeC a:= xER”X” v(X)ekerlao (- AT

e AeC B:={XeRnxn:v(X)eKer(B®(—BT))}
Proof: (i) —(ii) First note by inspection that
@#Ca>{0,A}; VAR™" . Also,
[A,X]:AX—XA:(A@ln—ln@AT)v(x)
~(a@(-AT))v(x)=0

:>V(X)eKer(A®(—AT)) and Propositions  2.1(i)-(ii)
have been proved since there is an isomorphism
f:R" «>R™" defined by f(v(X))=X ; ¥XeR ™"
for vX)=(x T, xT, ... xT)TerR™ if
x T=(x1, X1, ....,xin) is the i-th row of the square matrix

X.

(iii) It is a direct consequence of Proposition 2.1 (iii) and the
symmetry property of the commutator of two commuting
matrices BeC p <[A,B]=[B,A]=05AcCg .0

Proposition 2.2.

rank(A® (- AT))<n 2 Ker(A® (- AT))20 C 5
e0co(A® (- AT)) o 3X(20); VAR
Proof: [A,A]=0; VAR "=
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IR 502V (A)cKer(A® (- AT)); YACR™" | As

a result,

Ker(A® (- AT))20eR™ ; VAeR™" &
rank(A@(—AT))<n2; VAeR™"

so that Oec(A® (— AT)) :

Also, 3X(#0)eR™" :[A X]=0 < XeCp
Ker(A® (- AT))20erR ™.

Then, Proposition 2.2 has been proved. O

since

The subsequent result is stronger than Proposition 2.2.

Theorem 2.3. The following properties hold:

(i The spectrum of A® (— A T) is
oA (-AT))={7;=2-1 ;2,2 €0 (A); Vi jerl |
and possesses v Jordan blocks in its Jordan canonical form
of, subject to the constraints

]sz(o) :

Oco (A@ (— AT)) with an algebraic multiplicity
1 (0)and with a geometric multiplicity v(0) subject to the

constraints:
2 5 u
[z ni J >7i(0)2 ¥ uf=v(0)=3% v?
i=1 i=1 i=1

where:
a) S:=span {zi ®xj,vi,jeﬁ}, wi=p(%i) and

and

n2>v=dimS= [z V.
=1

2.1)

vi=v(Aj) are, respectively, the algebraic and the
geometric multiplicities of A je o (A), Vien; u<n isthe
number of distinct A ;ec(A) (iep), Hi:H(Xij) and
Vij=Vv (Xij), are, respectively, the algebraic and the
geometric multiplicity of
%i=(i-2 e o (A® (- AT)), vi,jen; u<n, and
b) x j and z; are, respectively, the right eigenvectors

of Aand AT with respective associated eigenvalues % ;
and A ;Vi,jen .

(i)

dim Im(A@ (— AT))zrank(Aea (— AT))z n?-v(0)

< dim Ker|A® —AT))z V(O) ;

vAeRMN (2.2)
Proof: (i) Note that

G(A)ZG(AT)

=

G(A(-B (— AT))::{Can:xk ~Ap Vi by ec(A); VK, Ll |

_ =oolnel-aT)ueolne(-aT)

G O(Aea (— AT))z{x EG(A@ (—AT)): x:o}
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GO(A@(—AT)) :{KEG(A(-B(—AT)):X;tO}
—s(Ae(-AT)\o,lre(-AT))

Furthermore,

olae (- AT)):={con=r j-2;:21, 2 jec(A) Vi jen)
and z;®x j is a right eigenvector of A® (—AT)

associated with its eigenvalue

kzkj—kiec(A@) (—AT)) has  algebraic and

geometric multiplicities Eji and Vji , respectively ;

}\‘JI:A‘J_KI

Vi,jen , since x; and z; are, respectively, the right
eigenvectors of A and AT with associated eigenvalues A
and A ;Vi,jen.

Let J a be the Jordan canonical form of A. It is first proved
2
n

2
that there exists a non-singular TeR" * such that

Ja® (—JAT):T_l (A@ (—AT))T. The proof is

made by direct verification by using the properties of the
Kronecker product, with T=P ® P Ttor a non-singular

PeR"™" suchthat A~Jo=P LAP,as follows:

T (A@ (— AT))Tz(P P T )*1

x(A®|n)(P®PT)—(P®PT)‘1(|n®AT)(P®PT)

:(P‘lAP)@)(P‘TlnPT)—(P‘lln P )®(P‘TATPT)

=(P‘1AP)®|n . @(P‘TATPT)
=IA®Ip — 1y ® 1,1
=Ia®I, +1, ®(—JAT):JA@ (—JAT)

and the result has been proved. Thus,

rank(A@ (—AT)):rank(JA ® (—JATD . It turns out

that P is, furthermore, unique except for multiplication by
any nonzero real constant. Otherwise, if T#P ® P T , then
there would exist a non-singular QeR"*" with

Q#al n;VYaeR such that T:Q(P ®P T)_lQ so that

7! (A@ (—AT))T¢ Ia® (—\]AT) provided that

(P ®P T)‘l(A@(—AT))(P ®P T):JA ® (—\]AT)

Thus, note that:
card G(Aea (— AT)) =n?= % Wi =
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_ B B pop_ )2
ZV(O)=Z Vii=ZVi2= > ZVij
i=1 i=1 i=1j=1
pooop _ pooop
-23 > Vij=V—2Z X vijZn
i=1j(=i)=1 i=1j (i )=1

Those results follow directly from the properties of the
Kronecker sum A@® B of n- square real matrices A and

B=— A since direct inspection leads to:

(1) Oe c(A@(—AT)) with algebraic multiplicity

viz >n since there are at
1

Hii= ZHiZZ_

0(0)> % = uf> 5
=1 i=1 i=

n
least = Hiz zeros in c(A@(—AT)) (i.e. the algebraic

i=1
n
multiplicity of Oec(A® (- AT)) is at least > u? ) and
1=
since vi=1; Vien. Also, a simple computation of the
A® (— AT) yields
p u 2
card c(A@(—AT)):n 2_ ¥ Wii = Zwijl| -
i=1 i=1
(2) The number of linearly independent vectors in S is

number of eigenvalues of

_ookhop p 2 B _ B
v=3% ¥ Vijj=| ZVvj|°2 X Vijj=2X vi since the
i=1j=1 i=1 i=1 i=1
total number of Jordan blocks in the Jordan canonical form of
.om
Ais X vj.
i=1
©)] The number of Jordan blocks associated with
Oec(A@ (—AT)) in the Jordan canonical form of

W

(A@(-AT)) is V(0)= 3 vZ<v, with vi=v?;
i=

Vien. Thus:

u N
cardogae(-aT))= & = a2,

rank(A@ (—AT)):n 2_v(0)=n Z—Z“: vZ,

dim Ker(A@ (—AT))zv(o)z 5 v2
i=1

(4) There are at least v (O) linearly independent vectors
in S:=span { zj®xj,Vi,jen } . Also, the total number

of Jordan blocks in the Jordan canonical form of

(A@(-AT))is

v =dim s_[ > §V,J]_[ > v,]zzv(0)+22 & vij=v(0)
i=1j=1 i=1 i=1j(=i)=1
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Property (i) has been proved. Property (ii) follows directly

2
from the orthogonality in R" of its range and null

subspaces. O
Expressions which calculate the sets of matrices which
commute and which do not commute with a given one are
obtained in the subsequent result:

Theorem 2.4. The following properties hold:
() XeCg iff (A@(—AT)S)V(X)zo & XeCp iff
v(X):—F(vT(Y 2) A L A ;T, vl (Yg)j T
for any V(Yz)e Ker(K » —Kﬂﬂl‘fﬂm) ,  where
E,FeR" ™ are permutation matrices and X e R "*" and
V(Y)e R " are defined such that:

@ v(X)=Fv(X)

Ae(-AT)~A=E(A® (- AT))F; vXeCa (23)
vX)=(vT(X,),vT(X,)) TerR ™ with
v(?l)eRv(O)and v(?z)eR nf-v(o)

where

(b) The matrix Ay eR "(9*¥(%)js non-singular in the
block matrix partition A:=Block matrix(Kij; i,jei)
with  Ap,eR¥O AR 0*-¥(9))<5(0)  4nq
A, cR 0750 *5(0)),

ii) X eC 4, forany given A (=0)eR ™", iff
(if) A y g

(A@ (— AT) )v(x)z v(M)
for some M(=0)eR "*" such that :

(2.4)

rank(A@ (— AT)):rank(Aea (— AT), v(M))zn 2-v(0)

(2.9)
Also,

Ca={XeR™™(A® (- AT))v(X)=v(M) for any
M(=0)eR ™" satisfying

rank(A@B (— AT))zrank(A® (— AT), v(M ))=n 2—V(O)}

(2.6)
Also, with the same definitions of E , F and X in (i),
X eC 4 iff
V(X)=F(vT (M) AT-VI(X,)AT AL vT(X,))T
2.7
where V(Yz) is any solution of the compatible algebraic
system

(K 22 _K21K111K12)V(Y2)=V(M2)_K21Kﬁl V(Ml)

2.8)
for some M(#0)eR "*" such thatX, Me R"™" and are
defined  according to v(X)= Fv(?) and
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M=EMF~M(#0)eR ™" and
v(M)=Ev(M)=E (v] (M), vI(m)|T .

Proof: First note from Proposition 2.1 that X eC 4 iff
(A@ (- AT))v(x)=0
v(X)e Ker(A@ (— AT)) . Note also from Proposition

21,that XeC, iff  v(X)eim(A® (- AT)).Thus,

X eC , iff v(X)is a solution to the algebraic compatible
linear system:
(a® (— ATV (X)=v(M)

forany M(#0)eR "*" such that :

rank(A@ (— AT)):rank(AGa (— AT), v(M) ):n 2-v(0)
From Theorem 2.3, the nullity and the rank of A® (— A T)
are,  respectively, dim Ker(A@ (— A T)):V(O)
rank(A@ (— A T))zn 2-v(0) . Therefore, there exist

since

permutation matrices E,FeR" 1 such that there exists
an equivalence transformation:

A® (— AT)zK::E(Aca (— AT))F:BIock matrix(A i} ; i,j2)
such that KM is square non-singular and of order v .
Define M=EMF~M(#0)eR™" .Then, the linear
algebraic systems (A@ (— AT)) v(X)=v(M), and

2.9)
are identical if X and M are defined according to
v(X)= FV(Y) and v(ﬁ)z Ev(M).As a result, Properties
(i)-(ii) follow directly from (2.9) for M=M=0 and for any
M satisfying :
rank(A@ ?— AT)):rank(AGa (— AT), v(M) ):n 2-v(0)
, respectively. O
I11. PAIR-WISE COMMUTING MATRICES

Consider the following sets:
(1) A set of nonzero p >2 distinct pair-wise commuting

matrices AC:={AieR”X”:[Ai,Aj]:O; Vi,jeﬁ}
2 The set of matrices
MCAC:={xeR”X”:[x,Ai]:0; VAieAC} which

commute with the set A¢ of pair-wise commuting
matrices.

(3) A set of matrices
CA:={xeR”X”:[x,Ai]:0; VAieA} which

commute with a given set of nonzero p matrices
A::{AieR””‘;vi eﬁ}

pair-wise commuting.

which are not necessarily
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The complementary sets of MCp . and Cp are

Ca
R™"5BeMCa if

MCp c and respectively, so  that

BgéMCAC and

nxn ~ —
R 3B€CAIfBéCA.NOtethatCAC—MCAC
for a set of pair-wise commuting matrices A ¢ so that the
notation MCp . is directly referred to a set of matrices

which commute with all those in a set of pair-wise
commuting matrices. The following two basic results follow
concerning commutation and non- commutation of two
matrices:

Proposition 3.1. The following properties hold:
(i) =Vv(Aj)e : m) Ker(A,—@(-AJT));Vieﬁ
jlzi)ep

€p
=v(Aj)e n Ker(Aj®(—AT)) Viep
i+1<j<p .
(ii) Define Nj(A¢):=
lAlT@(*Al) - Al (’Ai—l) AiT+1®(*Ai+1) AE®(*Ap)JT

eR(P-Dn?xn? Then
V(Aj)e KerNj(Ac);Viep

AjeAc;Viep iff

(iii)

MCAC:_{XGR”X":v(x)e_nKer(Aiea(AiT));AieAC}
iep

={X6Rnxn:V(X)eKerN(AC)}DCACDACD{O}eRan

where

N(Ac)=

[AI@(—Al) ATe(-A,) -~-A§@(—Ap)]TERP”ZX“Z,AieAC

(iv)

MCAC::{XGR ”X”:v(X)eUIm(Ai@(—AiT));AieAC }
iep

—{XeR™:v(X)eImN(A, )}
(v)
CA::{XeRnxn:V(X)e_ﬂ Ker(Ai@(—AiT)); AieA}
iep

:{xeR . v(x)eKerN(A)}
N

2

[AI@(—Al) ATo(-A,) —Ale(-A, )]TeRP”ZX”

y Ai cA

(vi)

EA::{ X eR™": v(x)eU|m(Ai o(-AT)):A, GA}
iep

~{XxeR™": v(X)elmN(A)}
Proof: (i)The first part of Property (i) follows directly from
Proposition 2.1 since all the matrices of A ¢ pair-wise

commute and any arbitrary matrix commutes with itself ( thus
j = i may be removed from the intersections of kernels of the
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first double sense implication). The last part of Property (i)
follows from the anti-symmetric property of the commutator

[Ai.Ajl=[Aj Ai] =0;vA A A ¢ what implies

AjeAc;Viep
ov(Aj)e n Ker(AjGB(—AT));VAi,AjeAC
i+1<j<p )

(ii) It follows from its equivalence with Property (i) since
T
KerNj(Ac)= N 7Ker(Aj @(—Aj ))
j(zi)ep
(iii) Property (iii) is similar to Property (i) for the whose set
M A . of matrices which commute with the set A ¢ so that

it contains A ¢ and, furthermore ,

KerN(Ac)= N Ker(Ai @(-AiT ))
icp

(iv) It follows from
U n(ajel-aT )l n kerlajel-a])) iajeac
iep iep

2
and R" 50¢ Ker(Aj@(—AjT)) N Im(AjEB(—AJ-T))
but R"*" 5 X =0 commutes with any matrix in R """

nxn nxn T
that R 50eMCp . =R 50¢MCp . for

SO

any given A ¢.
(v)-(vi) are similar to (ii)-(iv) except that the members of A
do not necessarily commute. a

Concerning Proposition 3.1 (v)-(vi), note that if X eCp

then X=0 since R"*"50eC 5 . The following result is
related to the rank defectiveness of the matrix N (A C) and

any of their sub-matrices since A ¢ is a set of pair-wise
commuting matrices:

Proposition 3.2. The following properties hold:

n?>rankN(Ac)zrankN i(AC)zrank(Aj @(—A JT)) ;

‘V’AjeA c:Vi,jep

and, equivalently,

det(N T(AC)N(AC)):det(N T(AG)N i(AC)) :det(Aj @(—A J—T))=0
: VAjeAc;Vi,jeﬁ.

Proof: It is a direct consequence from Proposition 3.1 (i) —(ii)
since the existence of nonzero pair-wise commuting matrices

(all the members of A ) implies that the above matrices
N(Ac),Ni(Ag), Aj@(—AjT) are all rank defective

and have at least identical number of rows than that of

columns. Therefore, the square matrices
T T

N (AcIN(AC), N (Ac)Ni(Ac) and

Aj @(—A JT) are all singular. O

Results related to sufficient conditions for a set of matrices to
pair-wise commute are abundant in the literature. For
instance, diagonal matrices are pair-wise commuting. Any
sets of matrices taking via multiplication by real scalars with
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any arbitrary matrix consist of  pair-wise commuting
matrices. Any set of matrices obtained by linear
combinations of one of the above sets consist also of
pair-wise commuting matrices. Any matrix commutes with
any of its matrix functions etc. In the following, we discuss a
simple, although restrictive, sufficient condition for rank
defectiveness of N(A) of some set A of p square real n-

matrices which may be useful as a test to elucidate the
existence of a nonzero n- square matrix which commutes
with all matrices in this set. Another useful test obtained from
the following result relies on a necessary condition to
elucidate if the given set consists of pair-wise commuting
matrices.

Theorem 3.3: Consider any arbitrary set of nonzero
n-square real matrices A:={ A1 A 2,...,Ap} for any

0=V(A)eKerN(A) so that A=diag(A A ...A)eC a, for
any A(20)eR what contradicts (i) Also,

xecAi@v(x)eKer(Aiea(—AiT)); Viep so that

XeCa e v(X)e n Ker(Ai@(—AiT)) what s
iep

equivalent to its contrapositive logic

XeCpev(X)e U Im(Ai®(—AiT)).

iep
(i) A=A @AieCAj;Vj(ii)eﬁ,vieﬁ

proposition

@AieCAj;Vj,ieﬁ since
AjeCp, Viep

v(Ai)e n Ker(Aj@(—AjT)) Viep

|
integer p>1 and define matrices: €p . o
Ni(A):z <:>V(Ai)e_ n_ Ker(Aj®(—Aj )) ;Viep
T T T T T le p\{l}
[aTe(-a) - alielan) aluebai) - Afe(-A )I" o e other hand,

N(Ak=|aTe(-A1) AT®(-Ay) - ATe(-a,)[T
Then, the following properties hold:
(i) rank(Ai @(—Ai ))srankNi(A)s rank N (A )<n? ;
Viep.
i n Ker(Ai®(—AiT))¢{0} s that:

iep
IX(£0)eCA + xecp e v(X)e n Ker[a;@(-AT))

iep
and XeC p o v(X)e U |m(Ai@(—AiT))
iep

(iif) If A=A ¢ is a set of pair-wise commuting matrices
then
v(Aij)e n Ker(Aj@(—AT)) Viep
jep\i J
ev(Aj)e n Ker(Ai@(—AiT)) Viep
iep

ov(Aj)e N Ker(Ai@(—AiT));Vieﬁ
iep\{i}
(iv)

MAC:={XeRnxn:V(X) n Ker(AiGr)(—AiT)),VAieAC

iep
SAc U{O}e RN
with the above set inclusion being proper

Proof: (i) Any nonzero matrix A=diag(A A ..%) ,
M#0)eR is such that A(#0)eCa  (vieD) so
that Ae C p . Thus,
0#v(A)eKerN(A)<n?>rankN(A)

>rank N (A)> rank(A; ©(-A; )); viep

and any given set A. Property (i) has been proved.

(i) The first part follows by contradiction. Assume

n Ker(Ai @(—AiT )):{0} then
iep
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v(Aj)e n Ker(Aj@(—AjT ))
jep\i
@V(Ai)eCAj;vjeﬁ)foranyi(<p)eﬁ.

This assumption implies directly that:

V(Aj)eCa ;Viep

AV(Aji1)e N _Ca. foranyi(<p)ep
jeist !

which together with

v(Aja)e n_ Ker(Aj @(—AJ.T )) implies ~ that
jep\i+l

V(Ai+1)€CAJ-:VJ'€5

=>(v(Aig)e n_ker(a;@(-aT)) for (i+1)ep

jepli+l

Thus, it follows by complete induction that

A=Ac <:>V(Ai)e N Ker(Aj@(—A}-));vieﬁ
iep\{i}

and Property (iii) has been proved.

(iv) The definition of M A ¢ follows from Property (iii) in
order to guarantee that [X,A j]=0; YA eA. The fact
that such a set contains properly A c u{0} follows
directly from

R™M5A =diag(x & - x)(e MCAC);tA c uio} for
any Ra>A=#0. O

Note that Theorem 3.3 (ii) extends Proposition 3.1 (v) since it
is proved that Ca\{0}#@ because all nonzero

R™M5A =diag(x & --- 1)eCp for any R>A#0 and

any set of matrices A . Note that Theorem 3.3 (iii) establishes

that v(Aj)e n Ker(Aj @(—AT )) Viep is a
iep\{i} J

necessary and sufficient condition for the set to be a set of

commuting matrices A being simpler to test (by taking

advantage of the symmetry property of the commutators)
than the equivalent condition
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v(Aj)e n Ker(Aj@(—AjT)) ,Viep . Further results
iep

about pair-wise commuting matrices or the existence of
nonzero commuting matrices with a given set are obtained in
the subsequent result based on the Kronecker sum of relevant
Jordan canonical forms:

Theorem 3.4. The following properties hold for any given
set of n-square real matrices A= {A 1,A2,...,A p}

(i) The set C 5 of matrices X e R ™" which commute with
all matrices in A is defined by:

cA;_{XGR”X”:v(x)eiri(Ker[(JAi®(—JAiT))(Pi1®PiT)U}

3.1)

S (o (T ) SRR RN R

i=1
(3.2)

:{XER“X”: V(X)Eiri[ |m((Pi ®P ;1) (Y)j] : Yeirz]l(Ker(JAi @(—JAI)))}
(3.3)

R "*M is a non-singular transformation matrix

where Pje

such that Aj~J A, :Pi_l

canonical form of Aj.

(i)

dimspan {v(X): Xe C a}< min dim (Ker(J A ® (—
iep

=min Vi(O)zmin[Z v”J

iep iepli=1l

AiPj, Ja, being the Jordan

JAT)))

<min (Z HZJ]< min (;(0))
iep iep

where v ;(0) and vij are, respectively, the geometric

multiplicities of oec(Ai@(—AiT)) and Ljjec(Aj)

and 1 (0) and nij are, respectively, the algebraic

multiplicities of Oec(Ai@)(—AiT)) and Ajjec(Aj);

Vjepi ( the number of  distinct eigenvalues of

Aj),Viep.
(iii) The set A consists of pair-wise commuting matrices,
namely Ca=MCp , iff

vaj)e h (Ker[(JAi o(-1a7)) (Pi_1® p i_T)D :
i(2j)=1 '
Vv jep. Equivalent conditions follow from the second and
third equivalent definitions of C p in Property (i).
If Aj~dp =Pt
canonical

Proof: AjPj, with Ja, being the
Aj then

Ai@)(_Ar)N‘]Ai @(_JAiT)ZT i‘l(Ai@(—AiT))Ti

Jordan form of

2 2
with Tj=P; ®PiTeR” xR™ (see proof of Theorem
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2.3) being non-singular ; Viep

-1
(Aio(-aT))-Tilia e [-0aT))7;
N(A)z[AI@(—Al) AJ®(-Ay) - Ag@(_Ap)}T
=['pn2
where

2 2

T::BIockDiag[Tl T2...Tp}ean xpn :

Thus

so that:

UuwlT W;]T =TJIT, (3.4)

T 2 2
Ta:=[T1_T 75" --TET} eRPITXNT (35)

J:=Block Diag { JA1®(—JA1T)--~ JAp@(—JAU }
eanzxpn2
Then,

KerN(A)= n
i=1

(Kef [(JAi ® (—JAiT)) (Pi_l ®P FT)])

since T is non-singular. Thus, ¥ X e Dom (A )c R "
XeCp < V(X )eKerN(A)

(3.6)

o

Ker[(Ai o(-a7)) | =er (a14)

p
=0

i=1

2

where YieKer(JAiGB(—JAiT)) ; Viep and

Y e( r% (Ker (J A;® (—J A,T)))] . Property (i) has been
i=1

proved. The first inequality of Property (ii) follows directly
from Property (i). The results of equalities and inequalities in
the second line of Property (ii) follow by the first inequality
by taking into account and Theorem 2.3. Property (iii)
follows from the proved equivalent definitions of Cp in

Property (i) by taking into account that [A i Aj ] =0;
YV jep so that:

) s o]
av(aj)e %)zl(Ker[(JAi e[-1a7))(7i"e Pi_T)D

i Viep O
Theorem 3.3 are concerned with MCa = {0 }e R "*" for

an arbitrary set of real square matrices A and for a
pair-wise-commuting set , respectively.

WCE 2009



Proceedings of the World Congress on Engineering 2009 Vol 11
WCE 2009, July 1 - 3, 2009, London, U.K.

IV. FURTHER RESULTS AND SOME EXTENSIONS
The extensions of the results for commutation of complex
matrices is direct in several ways. It is first possible to
decompose the commutator in its real and imaginary part and
then apply the results of Sections 2-3 for real matrices to both
parts as  follows. Let A=A +iAjy, and

B=Be +iB iy be complex matrices in C"*" with A,
and B being their respective real parts , and Ay and

Bijm, all in R™"N

i={-1 s the imaginary complex unity. Direct
computations with the commutator of A and B yield:

their respective imaginary parts and

[A’B]:([AreaB re] _[Aim , B im])
+i([Aim Brelt|Ae Binl) (4.1)
The following three results are direct and allow to reduce the

problem of commutation of a pair of complex matrices to the
discussion of four real commutators:

Proposition4.1. BeC 5 &

(([Are"Bre :[Aim ' E”im])A ( [Aim~ Bre]:[Bim'Are ]))
.Proposition 4.2.

(B re e(CAre mCAim )/\ Bim € (CAim ﬁCAre) )
= BeCp
Proposition 4.3.

(A re E(CBre mCBim )/\Aim G(CBimﬁCBre) )
= BeCp .

Proofs: Proposition 4.1 follow by inspection of (4.1).
Proposition 4.2 implies that Proposition 4.1 holds with the
four involved commutators being zero. Then the left
condition of Proposition 4.2 implies that BeC p , from

Proposition 4.1, so that Proposition 4.2 holds. Proposition 4.3
is equivalent to Proposition 4.2. O

Proposition 4.1 yields to the subsequent result

Theorem 4.4. The following properties hold:
(i) Assume that the matrices A and B ¢ are given. Then,

BeC p iff By satisfies the linear algebraic equation:

v(Bim)

4.2)

T T

Are® (—Are) Aim® (_Aim)
[ag) "o T

Aim® \-Ajy Are@(—Are)

for which a necessary condition is:

rank _A im @ (_AiTm) =

L Are@(_Ap—e)

_A- @(—AT) Are@(_AIe)
rank_A':®(_Ar'T5 AL ® AiTm) V(Bre)
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(if) Assume that the matrices A and B jmne are given. Then,
BeC p iff B satisfies (4.2) for which a necessary
condition is:

rank{A re @ (_ArTe) }:

A im ® (_A;rm)

A® (—ArTe) [ Ain® (—AiTm)
rank

V(Bim)
Aim@(_A;rm) Are@)(_A-rre)J
(iii) Also, 3B=0 such that BeC o with B =0 and

3B=0 such that Be C p with B j, =0

Proof: (i) Egn. 4.2 is a re-arrangement in an equivalent
algebraic system of Proposition 4.1 in the unknown V(B im)

for given A and B . The system is compatible if (4.2) holds

from the Kronecker- Capelli theorem. The proof of Property
(ii) is similar to that of (i) with the appropriate interchange of
roles of B ¢ and B, -

-
Aim @ (_Aim)
T
Are® (—Are)
The same proof

(iii) Since rank <n?2 from Theorem 3.3

Q) then
BreeCa,NCa, *#D)=Ca .

follows for 0 #B=B j, €C a since

T T
Are@(_Are) Aim@(_Aim) 2
rank T =rank <n
Aim®(_Aim) Are@(—A-rre)

O
A more general result than Theorem 4.4 is the following:

Theorem 4.5. The following properties hold:

(i) BeC aonC™Miff v(B)isa solution to the linear
algebraic system :

o et [veel] o

(4.4)

Nonzero solutions satisfying

e

always exist since

A ® (—ArTe) (—A im )® (AiTm)

BeC p )
Are®(_ArTe) (_Aim )®(AiTm)
Aim®(—AiTm) (—A re )®(ArTe)

Ker #{0le RN’
Aime[-aT) (A Jo(al)
, and equivalently, since
heo (ARl Camelanl],
Aim® —AiTm) (-A e )@(ArTe
(4.5)
(ii) Property (ii) is equivalent to
BeCpolA @ —A*))v(B): 0 (4.6)
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which has always solutions since

(A ® (—A*))<n 2
Proof: (i) It follows in the same way as that of Theorem

4.4 by rewriting the algebraic system (4.3) in the form
(4.4) which has nonzero solutions if (4.5) holds. But (4.5)

nonzero

always holds since B=AeC o n C"™" isnonzero if A is
nonzero and if A=0ecCc ™" then
cp=Cc™n.

(ii) Direct calculations yield the equivalence of (4.4) with the
separation into real and imaginary parts of the subsequent

algebraic system:
Jv(e)
we(al-iah )]

(A@ Ip—1,®A"
:{(Are FiAN)® I, -
(V(Bre)+iv(Bim)):O

which is always solvable with a nonzero solution (i.e.
compatible) since rank(A@ In-1h®A *)<n 2
(otherwise , A(#0)eC a). O

The various results of Section 3 for a set of distinct complex
matrices to pair-wise commute and for characterizing the set
of complex matrices which commute with those in a given set
may be discussed by more general algebraic systems like the
above one with four block matrices

T T

Ajre® (_AZre) (_A jim )® (Ajim)
T . T

Ajim® (*A 2im) (*AJZI’e )® (Ajre

the whole algebraic system. Theorem 4.5 extends directly for
sets of complex matrices commuting with a given one and
complex matrices commuting with a set of commuting
complex matrices as follows:

foreach jepin

Theorem 4.6. The following properties hold:
(i) Consider the sets of nonzero distinct complex matrices

A::{AieC”X”:ieﬁ} and
cA:={x€c”X” {x A; }zo;AieA,Vieﬁ} for
P=2.Thus, Cp3>X=X e +iXe iff
_Alre®(*A1Tre) (-A 1im Jo ( 1|m)
Asimo (- A;m) (A 1e )o@ (Alre)
Am@(A{re) (A2|m;®( 2|m) {v(xre))}_o

T
A2im®( A2|m) ( A 2re ( 2re)

~(*’/‘\ pim )® (A:)-Im)
(-A pre Jo Apre)i

T

A pre ® (7Apf9)
. T

L A pim © (_Apim

(4.7)
and a nonzero solution X e Cp exists since the rank of the
coefficient matrix of (4.7) is less than 2n2
(if) Consider the sets of nonzero distinct

AC::

commuting

complex  matrices eC™:icp } and
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MCA:={XeCnxn {x Aj }:O;AieA,vieﬁ} for

p=2 . Thus, MCa >X=Xe+iXe iff v (X and

v (Xjm) are solutions to (4.7).

(iii) Properties (i) and (ii) are equivalently formulated by
from the algebraic set of complex equations:

[A 1® (—Alj AS® (—Az) AL ® (prH v(X)=0
(4.8)
Outline of Proof: (i) It is a direct extension of Theorem 4.5
by decomposing the involved complex matrices in their real
and imaginary parts since from Theorem 3.3 (i) both left
block matrices in the coefficient matrix of (4.7) have rank

less than n 2 As a result, such a coefficient matrix has rank

less than 2 n2so that nonzero solutions exists to the
algebraically compatible system of linear equations (4.7) .
As a result, a nonzero n-square complex commuting matrix
exists.

(ii) It is close to that of (i) but the rank condition for
compatibility of the algebraic system is not needed since the
coefficient matrix of (4.7) is rank defective since
AjeAceaVT(A ) v T(Ajm) T is in the nul
space of the coefficient matrix; V jep.

(iii) Its proof is close to that of Theorem 4.5 (ii) and it is then
omitted. 0

Remark 4.7. Note that all the proved results of Sections 2- 3
are directly extendable for complex commuting matrices, by
simple replacements of transposes by conjugate transposes,
without requiring a separate decomposition in real and
imaginary parts as discussed in Theorem 4.5(ii) and Theorem
4.6 (iii). O

Let f:C—>C be an analytic function in an open set
Do o(A) for some matrix AeC™ " and let p(1)a
polynomial fulfilling p (D (1, )=f D(1y) ; vkeo(A),
Vie my —1U{0}; Vkep (the number of distinct elements
in o(A), where my is the index of A} , that is its
multiplicity in the minimal polynomial of A. Then, f (A) is a
function of a matrix A if f(A)=p(A), [8]. Some results
follow concerning the commutators of functions of matrices.

Theorem  4.8.
BeC an C""forany given nonzero Aec C"*" . Then,

f(B)eCpancCc™" | equivalently
v(f(B))e Ker(A ® (—A*)) , for any function

f:c™N ™M of the matrix B.

Consider a nonzero matrix

and

Proof: Forany BeC o n C"™":
[A,B]=0=(r1,-B)A=A(rI,
=(1,-B)?

=[A,f(B)]=

—B);VKEC
A=A(1, -B) ;vieCro (B) (4.9)

A{%}gcf(k)(mn -B)d x}
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:%% £0.) (21, -B) tAd

_ %kf(x)(xln -8)tdr|Aa=[f(B),A]=0

where C is the boundary of D and consists in a set of
closed rectifiable Jordan curves which contains no point of

o(A) since AeCno (A) so that the identity

(\p-B)tA=A(1,-B)Y is  true.  Then,

f(B)eC on C"™" has been proved. From Theorem 3.5,

this is equivalent to v(f (B))e Ker(A ® (—A*)). O
The following corollaries are direct from Theorem 4.8 from
the subsequent facts:

1) AeCp;vAeC™,
2) [A,B]-0=[A g(B)]=0=[f(A),9(B)]

-plA).g@l- £ ailalo(s)]

=% oA [Ag(B)]=0(B)<C i C

where f (A)=p(A), from the definition of f being a
function of the matrix A, with p( 2 )being a polynomial

p0)=t i) o vkeald)
Viemy -1u{0} ; Vkep (the number of distinct

elements in o(A ), where m is the index of A, that is

its multiplicity in the minimal polynomial of A.
3) Theorem 4.8 is extendable for any countable set
{f i (B)}of matrix functions of B.

fulfilling

Corollary  4.9. Consider a nonzero  matrix
BeC an C""forany given nonzero Aec C"*" . Then,
g(B)eCr(a)n ™" for any function
f:c™" Cc"N of the matrix A and any function
g:C "N ¢ ™M of the matrix B. O

Corollary 4.10. f(A)eCan C™" | and equivalently
v(f(A)e Ker(A ® (—A*)) , for any function
f:CM"N ™" of the matrix A. O

Corollary 4.11. If BeC o~ C"*" then any countable set
of function matrices {f j(B)} is Cpandin MC p. ©

Corollary 4.12. Consider any countable set of function
matrices Cp:={fi(A);Viep}cCa for any given

nonzero A e C"*" . Then,

N (Ker(fi(A)e(-F;(A") > Ker(a@(-a%)) o
i€Cg
Note that matrices which commute and are simultaneously
triangularizable through the same similarity transformation
maintain a zero commutator after such a transformation is
performed.
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Theorem 4.12. Assume that BeC an C"*" | Thus,

AgeCp,nC™" provided that there exists a

non-singular matrix Tec™n such that

Apa=T AT and Ag=T !BT.
Proof: BeCp<F[A,B]G=0; VF,Ge C"™" being

non-singular. By choosing F Lg=T1 , it follows that

T A, BIT=T*A(TT Y)BT-T*B(TT *)AT=[A 1, A 5]=0
O

A direct consequence of Theorem 4.12 is that if a set of matrices are

simultaneously triangularizable to their real canonical forms by a

common transformation matrix then the pair-wise commuting

properties are identical to those of their respective Jordan forms.
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