
 
 

 

  
Abstract—The motivation for this paper is to develop an 

approach to optimization of beam design. Under given loading 
and support conditions, the comparative strength of three (3) 
common structural shapes was determined. This led to the 
conclusion that a particular structural shape together with its 
dimensions will give the optimal solution in beam design in 
terms of the least cross-sectional area to support the given load, 
which would then translate to savings in cost and reduction in 
weight of the structural member. An investigation was also 
conducted to take into consideration the effect in the dimensions 
of the structural shapes of uncertainties due to manufacturing 
limitations and tolerances. This resulted in an assessment of the 
order of magnitude of this effect on the design variables. In 
solving the resulting optimization problems, MATLAB’s 
Genetic Algorithm and Direct Search Toolbox was employed. 
 

Index Terms—Beam design, direct search, hybrid genetic 
algorithm, structural shapes, uncertainty. 
 

I. INTRODUCTION 

In the design of a beam to support a particular loading, the 
structural engineer, after calculating bending moments, 
selects what he perceives to be the best structural shape and 
size that will satisfy the allowable stress and then checks the 
deflection for compliance with the stipulated value. This 
usually entails an iterative process employing empirical 
guidelines and trial sections to arrive at a satisfactory 
solution. Shown in Figure 1 are the structural shapes 
available to choose from. 

Generally, the primary concern of the structural engineer 
is to satisfy the allowable maximum stress and deflection 
based on the given loading and support condition. His choice 
of the structural shape to use is largely discretionary on his 
part and may be influenced by his personal preference since 
most of the since most of the above shapes can be used to 
support the particular loading under design consideration. 
This paper aims to provide a tool for the structural engineer 
so that he can make a rational choice of structural shape to 
use in his design in order to attain the optimal solution of the 
least cross-sectional area satisfying simultaneously both 
stress and deflection specifications. 
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We follow the approach of Hacker and Lewis [3] in 

formulating an optimization problem that seeks to minimize 
the cross-sectional area subject to stress and deflection 
constraints. We apply their approach to two other common 
shapes (Channel and T-Section) to be able to make a 
comparative study. We also explain how to handle the 
problem of uncertainties in the dimensions of the structural 
shapes due to manufacturing limitation and tolerances, which 
is a modified version of that presented in [3]. 

The optimization problems are solved using the Genetic 
Algorithm and Direct Search Toolbox of MATLAB. 

II. FORMULATIONS AND RESULTS 
We will present in detail the formulation of the problem for 

the particular case of the design of a T-Beam. The 
computations for the optimal beam design of other structural 
shapes can be patterned after this.  

Figure 2 shows the loading and support conditions as well 
as the design variables ( x1  through x4 ). 
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Figure 1. Common structural shapes.  

Figure 2. Design conditions of a T-Beam. 
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The following specifications are stipulated: 
 
� Maximum allowable stress = 16 kN/cm2 
� Maximum allowable deflection = 0.10 cm 
� Length (L) of the beam = 200 cm 
� Loads: P = 75 kN vertical load and  

Q = 7.5 kN transverse force 
� Young’s Modulus of Elasticity (E) = 20,000 kN/cm2 
� Simply supported beam 
 

These particular values are specified after taking into 
consideration the slightly different natures of the three 
structural shapes that we will compare in this study.  

The design elements are calculated as follows:  
 
� Cross sectional area: A = x2 x4 + x3 (x1 − x4 )  
� Neutral axis from top of section:  

y =
1
2 [x2 x4

2 + x3 (x1

2 − x4

2 )]

A
 

� Moment of inertia about the horizontal neutral axis of 
section: 

I yy = 1

12
x2 x4

3 + x2 x4 (y − 1

2
x4 )2[ ]+

1

12
x3 (x1 − x4 )3 + x3 (x1 − x4 )( 1

2
(x1 + x4 ) − y )2[ ]

 

� Moment of inertia about the vertical neutral axis of 
section: 

I xx = 1

12
[(x1 − x4 )x3

3 + x4 x2

3 ]  
� Maximum bending moment at center span due to P: 

M P = 1

4
PL = 3750 kNcm  

� Maximum bending moment at center span due to Q: 
M Q = 1

4
QL = 375 kNcm  

� Maximum combined stress due to P and Q: 
M PcP

I yy

+
M QcQ

I xx

=
3750y

I yy

+
187.5x2

I xx

 

 
Having stated the specifications and computed the design 

elements, we now state the optimization problems. The first 
problem is without uncertainty while the second problem 
takes into consideration dimensional uncertainties arising 
from, say, manufacturing errors. 

A. The Optimization Problem: No Uncertainty 
We wish to minimize the cross-sectional area of the 

T-section while making sure that the stress and deflection are 
below the specified values. The dimensions of the section 
must also be within prescribed bounds, based on values given 
in the Steel Handbook [1]. 

More precisely, we wish to solve the following 
optimization problem: 

 

Minimize      A(x) = x2 x4 + x3 (x1 − x4 ) ,  
where  

5.28 ≤ x1 ≤ 47.50

10.31 ≤ x2 ≤ 42.49

0.71 ≤ x3 ≤ 2.84

0.88 ≤ x4 ≤ 5.11

 

Subject to: 

(stress constraint) g1 (x) =
3750y

I yy

+
187.5x2

I xx

≤ 16  

(deflection constraint) g2 (x) =
PL3

48EIyy

=
625

I yy

≤ 0.1  

 
This problem was solved using MATLAB’s Genetic 

Algorithm and Direct Search Toolbox with the following 
parameters: crossover fraction = 0.8, elite count = 2, 
generations = 100, mutation function = Gaussian, population 
size = 200, selection function = uniform, and convergence 
limit = 1e-6.  

Similar optimization problems were also formulated for 
the Channel and I-Section, and also solved using MATLAB. 
The obtained results are summarized in this table:  
 

TABLE 1. COMPARATIVE STRENGTH OF COMMON STRUCTURAL SHAPES 
Dimensions Channel T-Sectio

n 
I-Section 

Area (cm2) 35.62 41.12 43.61 
x1 (cm) 37.56 37.45 29.81 
x2 (cm) 9.44 17.15 13.40 
x3 (cm) 0.43 0.71 0.71 
x4 (cm) 1.08 0.88 0.88 

 
As can be seen from the above table, the Channel requires 

the least cross-sectional area to support the loading under the 
particular support condition. Compared to the I-section, for 
instance, there is a savings of 22.4% in area which also 
translates to 22.4 % savings in cost as well as in weight of 
structural materials for the beam. This is the case when no 
uncertainty is being considered. 

B. The Optimization Problem: With Uncertainty 
When uncertainty is introduced into the beam dimensions, 

the optimization problem will have to be modified 
accordingly. Instead of locating the point at which the 
cross-sectional area is minimum, we will now find the 
neighborhood over which the objective function has (a) 
minimum weighted mean or (b) minimum variance. 

Since evaluating the objective function at all points of a 
neighborhood is impossible, we will instead identify 33 
representative points/vectors in it. We note that at this point, 
we deviate from the approach of Hacker and Lewis [3]. For 
instead of a priori identifying points in the neighborhood, 
they made use of Monte Carlo simulation to generate sample 
points.  
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The 33 representative points are: 
� the center point x = (x1 , x2 , x3 , x4 )  
� sixteen points in the outer tier of the form 

(x1 ± Δ1 , x2 ± Δ1 , x3 ± Δ 2 , x4 ± Δ2 )  
� another sixteen points in the inner tier of the form 

(x1 ± 1

2
Δ1 , x2 ± 1

2
Δ1 , x3 ± 1

2
Δ2 , x4 ± 1

2
Δ2 )  

 
Note that the neighborhood is not spherical but rather 

rectangular in four dimensions. For ease in referencing the 
points, we denote the center point by P0  and label the other 

points Pj , where j runs from 1 to 16 for the inner tier points 
and from 17 to 32 for the outer tier points. Note further that 
two different increments are being added to the components 
of the vector due to the big difference in the magnitudes of 
these dimensions. Based on values for error tolerances in the 
Steel Handbook [1], suitable values of these increments are 
Δ1 = 0.5 cm  and Δ 2 = 0.05 cm . 

 
Case 1: The objective function as a weighted mean 

In this case, we give weights to the tier points as follows: 6 
for the center point, 4 for the inner tier points and 1 for the 
outer tier points. The 6-4-1 weighting scheme is chosen to 
approximate the normal distribution. 

The objective function now becomes 

Fmean =
1

86
6A(P0 ) + 4 A(Pj )j =1

16∑ + A(Pj )j =17

32∑⎡⎣ ⎤⎦ .  

 
Case 2: The objective function as variance 

We give the same weights to the tier points as in the 
weighted mean case. However the objective function is now 
computed as the variance of the set of cross-sectional area 
values at the points P0  to P33 , counting the weights (i.e., the 

area at P0  is counted 6 times, the area at P1  is counted 4 
times, and so on). 

In both cases, the constraints and the bounds are the same. 
Since we want the constraints to be satisfied even when there 
are slight deviations from the specified measurements, the 
stress and deflection constraints and will now have to be 
evaluated at all the 33 points. This gives rise to a total of 66 
nonlinear constraints (32 for each tier and 2 for the center 
points), namely, for j = 0, 1, …, 33: 

 
(stress constraint) g1 (Pj ) ≤ 16 , 

(deflection constraint) g2 (Pj ) ≤ 0.1 . 

The bounds are modified as follows: 
5.28 + Δ1 ≤ x1 ≤ 47.50 − Δ1

10.31 + Δ1 ≤ x2 ≤ 42.49 − Δ1

0.71 + Δ2 ≤ x3 ≤ 2.84 − Δ 2

0.88 + Δ2 ≤ x4 ≤ 5.11 − Δ2

 

Note that with these bounds, the obtained center and tier 
points after minimization would still satisfy the original 
bounds set for the dimensions of the T-section. 

The optimization problem with uncertainty for the 

T-beam, and subsequently for the Channel and I-section, are 
then solved using MATLAB. The results are shown in the 
following tables: 
 

TABLE 2. RESULTS OF MINIMIZING THE WEIGHTED MEAN OF THE 
CROSS-SECTIONAL AREA. 

Dimensions Channel T-Sectio
n 

I-Section 

Area (cm2) 41.52 44.60 47.66 
x1 (cm) 35.78 37.94 30.36 
x2 (cm) 8.93 17.55 13.83 
x3 (cm) 0.48 0.76 0.76 
x4 (cm) 1.44 0.94 0.94 

 
TABLE 3. RESULTS OF MINIMIZING THE VARIANCE OF THE CROSS-SECTIONAL 

AREA. 
Dimensions Channel T-Sectio

n 
I-Section 

Area (cm2) 63.82 67.02 60.74 
x1 (cm) 29.98 31.02 28.53 
x2 (cm) 8.94 15.56 12.57 
x3 (cm) 1.44 1.61 1.30 
x4 (cm) 1.38 1.22 1.06 

 
Note that compared to the values given in Table 1 where 

no uncertainty was introduced, the dimensional uncertainties 
resulted in the increase of cross-sectional areas, as may be 
expected. There is, however, a marked difference between 
minimizing the weighted mean and minimizing the variance 
of the fitness function in the results.  

In Table 2, the increase in cross-sectional area varied from 
section to section: 16.6% increase for Channel, 8.5 % for 
T-Section and 9.3% for I-Section. In Table 3, on the other 
hand, the increase is much larger: 73.6% for Channel, 63.0% 
for T-Section and 39.2% for I-Section. Note that in the 
dimensions in Table 3, there is a significant decrease in x1 
and x2, while x3 and x4 increase in all sections. Evidently, 
there is a wide berth between the results of minimizing the 
mean and minimizing the variance of the fitness function.  

Minimizing the variance tends to move the solution far 
away from the optimal (no uncertainty) results. Although of 
academic interest, it has no practical value. Minimizing the 
weighted mean of the fitness function is, therefore, the 
preferred option as it is realistic and stays within the 
periphery of the optimal solution. 

By way of recapitulating the results obtained, Fig. 3 
illustrates graphically the three (3) T-Beam solutions, 
namely, (a) no uncertainty; (b) with uncertainty, minimizing 
the weighted mean; and (c) with uncertainty, minimizing the 
variance.  

 
Figure 3. The three T-Beam solutions. 
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III. CONCLUSIONS AND FUTURE WORK 
The approach presented in this paper showed that through 

the use of Genetic Algorithms in comparative strength 
assessment of common structural shapes, a methodology for 
definitive selection of structural shape and its appropriate 
proportions (x1 through x4) can be developed to arrive at an 
optimal solution in beam design. The results yielded the least 
cross-sectional area to carry the given loading and support 
conditions. This will translate to savings in the cost of 
structural materials and to lighter structural members. The 
intended beneficiary of this work is the structural engineer 
who may wish to optimize his beam design instead of just 
satisfying stress and deflection specifications as heretofore. 
The foregoing optimization process is rather simple and 
straightforward and can be carried out easily by a structural 
engineer employing genetic algorithms.  

Moreover, the structural engineer is made aware of the 
effects of uncertainties on his design variables. Although 
sensitivity to the effects of dimensional uncertainties on 
account of manufacturing limitations vary among the 
structural shapes studied, perception of the order of 
magnitude of the effects can be gathered from the Study. For 
the case at hand, the effect ranges from 8% to 16% increase in 
cross-sectional area if minimizing the weighted mean of the 
fitness function is used, and 39% to 74% if minimizing the 
variance is employed. In practice, the structural engineer 
would consider the former option a reasonable allowance as a 
result of introducing the dimensional uncertainties. The 
authors, moreover, consider minimizing the variance as 
untenable because it drifts far away from the optimal solution 
and negates whatever benefits that may accrue from 
optimizing the beam design.  

The application of this approach can be further widened by 
assessing the strength of the other structural shapes not 
included in this paper. Additionally, the approach presented 
can be expanded to increase its scope and utility by 
investigating the effect of other uncertainties, such as 
variations in the composition of the structural material (the 
case of recycled materials), and that of corrosion on beams 
spanning bodies of water, especially salt water, as well as 
other uncertainties due to uncontrollable factors. 
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