
 
 

 

On the Misapplication of Cybernetics to Sensory 
Neurons: Norwich’s Informational Entropy 

Theory of Perception Has Not Derived 
Stevens’ Law for Taste  

Lance Nizami, Member, IAENG 

  
Abstract—Norwich’s Entropy Theory of Perception reveals a 

startling conclusion: that Stevens’ Law with an Index of 1, a 
power function stating direct proportionality between 
perceived taste intensity and stimulus concentration, arises 
purely from theory. Norwich’s theorizing starts with 
extraordinary hypotheses. First, “multiple, parallel 
receptor-neuron units” without collaterals “carry essentially 
the same message to the brain”, i.e. the rate-level curves are 
identical. Second, sensation is proportional to firing rate. Third, 
firing rate is proportional to the taste receptor’s “resolvable 
uncertainty”. Fourth, the “resolvable uncertainty” is obtained 
from Shannon’s Information Theory. Finally, “resolvable 
uncertainty” also depends upon the microscopic 
thermodynamic density fluctuation of the tasted solute. 
Norwich proves that density fluctuation is density variance, 
which is proportional to solute concentration, all based on the 
theory of fluctuations in fluid composition in Tolman’s “The 
Principles of Statistical Mechanics”. Altogether, perceived taste 
intensity is theoretically proportional to solute concentration. 
Now, a universal rule for taste, one independent of solute 
identity, physiological differences, and psychophysical task, is 
well-deserving of scrutiny. Norwich’s crucial step, the 
derivation of density variance, was meticulously reconstructed. 
It transpires that the appropriate fluctuation is Tolman’s 
mean-square fractional density fluctuation, not the density 
variance, altogether giving a “Stevens Index” of -1 rather than 
1. Thus, Norwich’s Entropy Theory of Perception has not 
derived Stevens’ Law for taste. Norwich’s mistake reveals the 
dangers of implying psychophysical laws from information 
theory and stimulus physics without accounting for sensory 
transduction. 
 

Index Terms—fluctuation, information theory, statistical 
mechanics, Stevens’ Law, taste.  
 

I. INTRODUCTION: THE ENTROPY THEORY OF PERCEPTION  
  The Entropy Theory of Perception of Professor K.H. 
Norwich derives from 1958 (see [1]) but was not published 
until 1975, as a proceeding [2]. Norwich and co-authors 
subsequently devoted several proceedings, a book, and many 
peer-reviewed publications to their theory. Two papers dealt 

exclusively with taste [3], [4]; the first, its details heavily 
used in the second, was recently synopsized in Chemical 
Senses [5, p. 1019] as follows: “It was shown (Norwich, 
1984) that if the magnitude of taste were equated to a general 
‘entropy’ or uncertainty, governed by an unspecified 
probability density function, one could then derive from this 
single definition many of the empirically discovered sensory 
laws governing taste: both laws of sensation (Fechner’s and 
Stevens’s), the general function for Weber fraction [sic], the 
adaptation function for taste, etc.”.  
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The Entropy Theory depends upon several broad 
hypotheses. One is that sensation is directly proportional to 
primary afferent firing rate, such that both obey an equation 
of the same algebraic form, the Entropy Equation [1], [4], [6], 
[7], [8], [9], [10]: 
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k is a constant, m is the number of samples taken of the 
stimulus by the receptor, is the “signal” (stimulus) 

variance and  is the variance of a hypothesized reference 

noise. k, m, and  are all unknown. Another crucial 
hypothesis was that “multiple, parallel receptor-neuron 
units” without collaterals [11] “carry essentially the same 
message to the brain” [12, p. 414], [3], [4], [11], [13]. A third 
crucial hypothesis was expressed thus for taste: primary 
afferent neurons respond when the sensory receptor samples 
“fluctuations in the local density of solute” [3, p. 273] for “a 
dilute solution held without flow in contact with the tongue” 
[3, p273]. Microscopically the solute molecules move 
randomly, causing moment-by-moment changes in solute 
“concentration” [14]. Similarly, the olfactory receptor 
samples a gas’s density; the samples reflect the fluctuations 
of molecule density [15], [16]. Fig. 1 illustrates these 
concepts. 
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    Regarding the fluctuating stimulus, the “signal”, Norwich 
et al. hypothesized that “signal variance” σ2 was related to 
“signal mean” μ through constants λ and n as 
 

0n,unknownswheren2 >= λμλσ     (2) 
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Fig. 1. The Entropy Theory concept of the physiological response to a stimulus. This figure combines elements of Fig. 
3 of [12] and Fig. 2 of [20]. The stimulus is macroscopically constant, here represented by always having the same 
number of particles (25) within the larger box. The larger box encloses the smaller box, within which the number of 
particles fluctuates in thermodynamic equilibrium with the surrounding “reservoir” of particles. Here, the number of 
particles within the smaller box varies, from 8 at time t1, to 4 at the later time t2, to 6 at the yet later time t3. At each of 
these instants, parallel, identical receptor-neuron units sample, without error, the contents of the smaller box. Each 
neuron thus conveys the same smaller-box particle count to the brain. 

 
(e.g. [3], [4], [6], [12], [13], [17], [18], [19], [20]). Norwich 
[3, p273] called n “the exponent in Stevens’s [sic] power 
law”.  This purported equivalence was claimed for all sensory 
modalities and is ubiquitous across the Entropy Theory 
papers [1], [3], [4], [7], [11], [12], [13], [18], [19], [20], [21], 
[22], [23], [24], [25], [26], [27]. For example, Norwich et al. 
[11, p. 353], speaking of all sensory modalities, stated that “It 
transpires that the exponent, n, is precisely the Stevens 
exponent that appears in the law of sensation [Stevens’ law]”.  
That is, again for all sensory modalities, “The parameter, n, 
has been shown in previous work to be equivalent to the 
power function exponent thoroughly examined 
experimentally by Stevens and others” [6, p169]. Usually, n 
could only be obtained by fitting the Entropy Equation to 
sensations, or to firing rates, as a function of stimulus 
intensity. But Norwich [3] demonstrated a remarkable 
breakthrough: a value for n for gustation that was derived 
from pure theory. That is, using statistical mechanics, 
Norwich showed that for a solute, the physical fluctuations in 

local density (the stimulus “intensity variance” σ2) is related 
to the stimulus intensity μ as  [3, p. 270]. Norwich 
concluded that “to a first approximation, the Stevens index 
for the sense of taste is 1.0” [3, p. 273]. 

μ∝σ 2

 

II.  THE STIMULUS VARIANCE FOR TASTE 
Derivation of a Stevens’ index purely from theory 

represents an unprecedented breakthrough that deserves 
scrutiny in its own right. Towards that end, Norwich’s 
algebra (from p273 of [3] unless stated otherwise) is first 
introduced. A Supplementary Appendix was prepared 
(available on demand from the author) in order to provide 
some proofs in a linear progression not used by Norwich, and 
to provide several steps that he omitted. 

Starting with (1), Norwich stated that μ is “the mean solute 
density or concentration”, commonly expressed as solute 
moles per solvent litre. Thus, to Norwich, σ 2 in (2) was the 
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density variance. Norwich used R for the gas constant, T for 
the absolute temperature, μ  for the chemical potential, and N 
for the number of moles of a substance within an assumed 
volume V.  “The mean number of molecules present in some 
volume of solvent” was called ν . Using these particular 
symbols, Norwich [3, Eq. (16)] rewrote an equation of 
Tolman [28, Eq. (141.43)] for the fluctuation in the amount 
of a component i in an open multicomponent fluid system at 
equilibrium.  Norwich’s version was 
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Norwich called this the relation between “the mean solute 
density or concentration” and the density variance.  Norwich 
then showed that theoretically 
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Substituting this into (3) gives νσ =2 . For μ in (2) 
Norwich substituted the letter “c”. Norwich then related ν  

to c as c∝ν . Altogether, . Norwich then 

concluded that “making use of the relationship  
(Norwich, 1977), we can now set n = 1”. This was substituted 
into the Entropy Equation, yielding the Weber-Fechner Law 
and equations of the Weber fraction and the adaptation curve. 

c2 ∝σ
n2 μσ ∝

 

III.  NORWICH’S MISTAKE (THOUGHT EXERCISE) 
Norwich’s conclusion hinges on the notion that density 

variance is the correct measure of the fluctuation in the 
density of a solute in a solvent. But is it? Consider a small 
volume v of solvent.  Imagine no solute molecules in v, only 
solvent molecules. Now place a single solute molecule in v. 
What happens if we add one other solute molecule? A 
receptor measuring the number of solute molecules in v sees a 
doubling of their number, and a doubling of their density 
(molecules per volume). Now empty the solvent of all solute 
molecules, and start afresh. Introduce 1,000 solute molecules 
into v. Now add one more new solute molecule. The change 
in the number of solute molecules is 1 as above, but the 
change in their density drops to just 0.1%. That is, a receptor 
now sees a negligible change in solute density. 

Thus, the proper measure of density fluctuation is the 
fractional (“percentage”) density change. Tolman [28] 
recognized this, preferring to express the fractional density 
change as the mean-square fractional fluctuation in density.  
Ironically, Norwich’s proof of n = 1 depended on Tolman’s 
algebra. Thus by reviewing that algebra we may discover 
Norwich’s line of thinking. We start with equations from 
Tolman [28]. Tolman’s notation was used, to maintain 
tradition and to illustrate what Norwich himself dealt with. 

IV.  THE MEAN-SQUARE FRACTIONAL (“PERCENTAGE”) 
FLUCTUATION IN THE DENSITY OF A SINGLE PURE FLUID 

Double overhead bars represent mean values; the subscript 
i represents the ith component of a mixture.  The number of 
molecules in the given volume of the ith component of the 
mixture was ni (rather than Norwich’s ν).  For the chemical 
potential, Tolman uses μ rather than Norwich’s μ .  Tolman 
[28] treated a mixture of liquids as a mixture of perfect gases, 
and thus obtained the mean-square fractional particle-number 
fluctuation: 
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[28, Eq. (141.45)]. Tolman [28, p645] subsequently dealt 
with fluctuations in the density of a single pure fluid, which 
also applies to a dilute solute in a solvent. Tolman treated the 
fluid as a “multi-component” system having just one 
component. That is, Tolman imagined the dilute solute as a 
“gas”. Equation (5) was derived using the 
statistical-mechanical notion of the grand canonical 
ensemble, and he invoked that concept again: “For this 
purpose let us consider a small portion of the fluid, located in 
some specified volume v, and containing in the mean 
n molecules, and let us treat this as being an ‘open’ 
thermodynamic system which is in equilibrium with the rest 
of the fluid which serves as a large reservoir for 
accommodating fluctuations in the amount of fluid in the 
specified volume” [28, p. 645]. Hence omitting the subscript 
from (5) yields the equation for the mean-square fractional 
fluctuation in the number of solute molecules in the solvent. 

Tolman then related molecule-number fluctuation to 
density fluctuation as follows.  Here, Tolman broke from his 
own notational habits; instead of using  ρ for the density 

within v  and ρ for its mean value, he used  ρ  for the mean 

and Δρ for deviations from it.  Here we will use ρ and ρ for 

consistency with n and n . Now ρ can change due to the free 
movement of molecules in and out of v, as allowed in the 
grand canonical ensemble.  The mean-square fractional (or 
“percentage”) density fluctuation within v is 
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Now, with NA as Avogadro’s number of molecules per mole, 
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so that 
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Substituting terms having the same units into (6) yields the 
unitless relation 
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The right-hand side of (8) is the left-hand side of (5) with the 
subscript “i” omitted.  Thus altogether 
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(in [28] as Eq. (141.60)).  That is, the mean-square fractional 
(“percentage”) fluctuation in the solute density within a small 
volume v of a fluid equals the inverse of the mean number of 
molecules n in v. In contrast, for the density fluctuation 
alone, (6), (7a), and (9) lead to 
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that is, density fluctuation alone is proportional to the mean 
number of molecules n in v. 

 

V.  NORWICH’S MISTAKE (SUMMARY) 
Equation (10) resembles Norwich’s [3] equation 

νσ =2 . To get the latter, Norwich had started with 
Tolman’s theoretical particle-number variance [28, Eq. 
(141.43)], which is 
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and then replaced in by its Norwich equivalent, ν .  He also 

abandoned ρ  in favour of its equivalent, c, the solute 
concentration (7b). Norwich described (11) as the relation 
between “the mean solute density or concentration” and the 
magnitude of the fluctuations in the local density of solute. 

Thus, Norwich assumed that variance is the fluctuation 
measure for density. But, as Tolman noted, the appropriate 
fluctuation measure is the mean-square fractional fluctuation.  
Norwich then assumed that c∝ν . That step is correct; for a 
small volume v, we have vN/c Aν=  moles/unit-volume, 
a density. But Norwich then equated variance in the number 
of solute molecules present in some volume of solvent (11) to 
the variance in the density of the solution. However, as 
demonstrated above, number variance and density variance 
are not equal; number variance is independent of volume, 
whereas density variance is not, because density itself is 
number per volume. Norwich’s equating of number variance 
to density variance, along with his failure to use mean-square 
fractional fluctuation as the proper fluctuation measure for 
density, actually adds up to two fatal errors - each of which 
separately renders Norwich’s proof invalid. Norwich even 
made a third, conceptual, error: he equated variance in 
molecule number to variance in concentration, a quantity that 
is actually unvarying thanks to its definition as the 
[ensemble] mean of the density of the solution, a definition 
that Norwich himself had noted! 
 

VI.  CONCLUSIONS 
In what Norwich et al. called the “informational theory of 

neural coding” [11, p. 348], “multiple, parallel 
receptor-neuron units” without collaterals “carry essentially 
the same message to the brain” [4], [12] and sensation is 
proportional to primary afferent firing rate. Norwich’s 
primary evidence for his theory was his derivation of an 
exponent of 1.0 for Stevens’ Law for taste from the statistical 
mechanics of gases and fluids [3]. Unfortunately, Norwich’s 
derivation was demonstrably wrong; he used density 
variance for density fluctuation, instead of the correct 
expression, mean-square fractional density fluctuation. 
Using the correct expression makes Norwich’s alleged 
“Stevens’ exponent” equal to  -1. Thus there is serious doubt 
about whether Norwich’s so-called “Stevens’ exponent” has 
any relation to the empirical one. These errors reveal the 
pitfalls of trying to relate psychophysical laws of sensory 
response to statistical properties of the stimuli through 
cybernetics arguments without accounting for neuronal 
transduction. 

. 
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