
 
 

 

  
Abstract—Since the evaluation of each individual is based on 

the time-consuming structural analysis, the computational 
efficiency of truss topology optimization using genetic algorithm 
is very low. The paper focuses on this challenging problem. It is 
observed that there are a number of duplicate individuals 
appearing repetitively in the evolutionary process. Therefore, 
an individual identification technique is introduced to avoid 
evaluating the duplicate individuals by the time-consuming 
structural analysis but by searching the evolutionary history 
data to save computing time, the computational complexity of 
this technique is deduced. The results of two truss examples 
verify that the technique can effectively improve the efficiency 
of the algorithm. Based on this identification technique, 
numeric experiments are implemented to study the influence of 
several factors, i.e., the population size, the max generation, and 
the scale of problems, on the proportion of duplicate 
individuals. Results show that the population size has a 
significant impact on the proportion, and that both the max 
generation and the scale of problems have little influence. 
 

Keywords—Genetic algorithm, Individual identification, 
Topology optimization.  
 

I. INTRODUCTION 
Generally, the field of structural optimization could be 

divided into three sub-problems, namely sizing, shape and 
topology optimization. The topology optimization is most 
beneficial as it can find out the best loading path in the 
infinite topology combinations to save the most materials, but 
it is also more intellectually challenging than the other two 
optimization problems because of its greater complexity [1], 
[2]. 

Genetic algorithm has several advantages compared to the 
traditional gradient based algorithms, such as the powerful 
capability of dealing with discrete, non-convex problems, no 
differentiable requirement of the response functions, and the 
global convergence ability. Therefore, it is very suitable for 
truss topology optimization [3], [4]. But the low 
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computational efficiency is the main shortcoming of truss 
topology optimization using genetic algorithm, as the 
evaluation of each individual is dependent on the 
time-consuming structural analysis. 

There are three ways to raise the efficiency. The first one is 
to study the evolutionary theory to improve the convergence 
of genetic algorithm, e.g., combining with graph-based 
concept [5], or developing a new encoding approach [6], et 
al. The second is to use faster computers or utilize parallel 
computing technology, which can effectively improve the 
computational efficiency whereas without reducing the scale 
of computation. Because the stage of evaluation of each 
individual by structural analysis is the most time-consuming 
step in genetic algorithm, the last way is to avoid the 
redundant structural analysis as much as possible. This paper 
focuses on the third way to improve the computational 
efficiency of truss topology optimization using genetic 
algorithm. 

Because of the stochastic operation of genetic algorithm, 
many kinematically instable or structurally invalid 
individuals appear in the optimization process. It is a waste of 
time to evaluate these individuals. Therefore, P. Hajela [7] 
used a two-level strategy to generate stable structures. Both 
Tang [6] and Deb [8] introduced a DOF (Degree Of 
Freedom) equation to filter instable structures, and utilized 
heuristic criteria to eliminate invalid structures. These means 
reduce the number of the instable or invalid structures, thus 
raising the efficiency of genetic algorithm. 

Furthermore, it is observed that there are a number of 
duplicate individuals appearing repetitively in the 
evolutionary process of genetic algorithm. According to the 
Holland’s Schema theorem, this phenomenon is inevitable 
[9], [10]. Therefore, it is better to evaluate the duplicate 
individuals by searching the evolutionary history data 
directly rather than by the time-consuming structural 
analysis. This can further improve the computational 
efficiency. But it is unacceptable to store all individuals 
appearing in the evolutionary process because of the huge 
storage memory demands. Meanwhile, the computational 
complexity of evaluating the duplicate individuals’ fitness by 
searching the evolutionary history data is high. Therefore, an 
individual identification technique with less storage memory 
demands and lower computational complexity is developed. 
Based on this identification technique, the influence of 
several factors on the proportion of duplicate individuals is 
investigated. 

Section 2 gives the formulation of truss topology 
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optimization problem. Section 3 introduces the genetic 
algorithm and the individual identification technique in 
detail. Section 4 illustrates two numeric examples to verify 
the effect of the identification technique and also investigates 
the influence of several factors on the proportion of duplicate 
individuals by numeric experiments. 

 

II. FORMULATION 
A very important problem in truss topology optimization is 

the singular solution [11]. Cheng et al. [12] developed an ε
-relaxed approach which relaxed the stress constraints to 
solve the singular problem. But theε -relaxed approach 
could not be guaranteed to find out the global optimal 
solution. Genetic algorithm can not only solve the singular 
problem, but also attain the global optimal solution. The 
formulation of truss topology optimization using genetic 
algorithm is as follows: 
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where M, Ne, and N is the number of loading cases, members, 
and nodes respectively; [σ] and [δ] is the allowable stress and 
displacement respectively; ti is the Boolean value, and ρi, li, Ai 
is the density, length, and area of the ith member respectively; 
K is the stiffness matrix, U and P is the vector of 
displacement and external force respectively. 

The formulation eliminates the stress constraints of absent 
members automatically because of the introduction of 
topology variable t, thus there is no singular problem here. 
The formulation is difficult for traditional gradient-based 
algorithms because of the existence of discrete topology 
variables, but easy for genetic algorithm. Furthermore, the 
global convergence ability of genetic algorithm makes sure it 
can attain the global optimal solution. 

 

III. IMPLEMENTATION 

A. Genetic Algorithm 
Genetic algorithm works with a coded string of design 

parameters, named chromosome, but not the parameters 
themselves, thus the encoding approach is a key point in 
genetic algorithm. In this paper, a node matrix encoding 
approach [13] is utilized to handle the topology and sizing 
optimization of truss structure according to its characteristics 
of the finite element model. Because of the inherent 
sparseness of node matrix, the sparse matrix technique is 
introduced to save the storage memory and raise the 
computational efficiency. 

Following is an example to illustrate this sparse node 
matrix encoding approach. The truss structure shown in Fig. 

1a has 6 nodes and 11 members. The cross-sectional area of 
every member is selected from a set of 9 discrete values (5, 
10, 15, 20, 25, 30, 35, 40 and 45), which can be denoted by 9 
properties with IDs from 1 to 9 respectively. The property 
encoding matrix P is shown in Fig. 1b, where the element P(3, 
4)=3 denotes that the property ID of the member connecting 
with node 3 and node 4 (member ○4 ) is 3, which represents 
the cross-sectional area of 15. The topology encoding matrix 
T is shown in Fig. 1c, where the element T(2, 5) is equal to 
zero, which denotes that the member connecting with node 2 
and node 5 is absent in the structure. 

1 4 5 

2 3 6 

○2  ○4  ○8  

○1  

○3  

○7  

○9  

○5  ○6  ○10  ○11  

 
(a) Ground structure 

 1 2 3 4 5 6
1  5 7 1 0 0
2   2 9 0 0
3    3 5 8
4     1 3
5      4
6       

     

 1 2 3 4 5 6
1  1 1 1 0 0
2   1 1 0 0
3    1 1 1
4     1 1
5      1
6       

 
(b) Property matrix P            (c) Topology matrix T 

Fig. 1 Example of encoding matrices 
This node matrix encoding method is more natural than the 

traditional vector encoding approach when portraying the 
truss structural optimization problem. Different from the 
vector encoding, the size of node matrix encoding is only 
concerned with the number of nodes, but not members in the 
ground structure. Consequently, it is more suitable for 
complicated structures with large numbers of members. 
Furthermore, this encoding approach can be easily extended 
to handle the profile optimization and material optimization 
problem, for the property of a member can represent not only 
the cross-sectional dimensions but also the cross-sectional 
profiles and materials. 

 1 2 3 4 5 6  
1  1 1 1 0 0  
2   1 1 0 0  
3    1 1 1  
4     1 1  
5      1  
6        

        

 1 2 3 4 5 6
1  1 0 1 0 0
2   1 1 0 0
3    1 1 1
4     1 0
5      1
6       

  
 1 2 3 4 5 6  
1  1 1 1 0 0  
2   1 1 0 0  
3    1 1 1  
4     1 0  
5      1  
6        

       

 
 1 2 3 4 5 6
1  1 0 1 0 0
2   1 1 0 0
3    1 1 1
4     1 1
5      1
6       

 

 
Parents 

 
 
 
 
 
Offspring 

 
 
 

 
Fig. 2 Submatrix crossover 

Selection, crossover and mutation are the main operators 
in genetic algorithm. In this paper, the tournament selection 
is utilized. Different crossover and mutation operators are 
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developed for topology and property encoding matrices. For 
the topology encoding matrix, submatrix crossover and 
single-point mutation are used. In the submatrix crossover, 
the parents are randomly divided into four submatrices, and 
then the right lower submatrices are exchanged to produce 
offspring, as shown in Fig. 2. In the single-point mutation, a 
member from the ground structure is stochastically selected, 
and then the Boolean bit of the corresponding element in the 
topology encoding matrix is reversed. 

For the property encoding matrix, arithmetic crossover and 
Gauss mutation are employed. Suppose that the parent 
matrices are A(aij) and B(bij), the formulation of arithmetic 
crossover and Gauss mutation is shown as (2) and (3) 
respectively: 
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where r is a random number distributed evenly between 0 and 
1; ξ  is a normally distributed random number with mean 0 
and variance 2. The calculation of ‘int’ rounds a number to 
the nearest integer, as the property ID must be an integer. 

An adaptive strategy based on a sigmoid function 
developed by Hangyu and Jing et al. [14] is used to control 
the probability of crossover and mutation, as follows: 
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where f’ is the higher fitness of the two crossover parent 
individuals; favg and fmax are the average and the maximum 
fitness of current population respectively; pcmax and pcmin are 
the upper and lower limits of crossover probability 
respectively; pmmax and pmmin are the upper and lower 
boundary of mutation probability respectively; c is a constant; 
here it is 9.903438. 

Moreover, the DOF equation and heuristic criteria ([6], [8]) 
are utilized to filter the instable and invalid structures. 

Genetic algorithm obeys the principle of ‘survival of the 
fittest’, which means that the higher fitness an individual 
owns, the more survival chance it has. The fitness of an 
individual is evaluated through the fitness function including 
the objective and the penalty term. The fitness function used 
in this paper is shown as (6) 

( ) ( ) ( )fit pf x M f x f x⎡ ⎤= − +⎣ ⎦         (6) 

where M is a positive number large enough to make sure the 
fitness of individual is positive; f(x) and fp(x) is the objective 
function and penalty term respectively. 

B. Identification Technique 
In genetic algorithm, a chromosome represents and only 

represents a structure. Thus, the simplest way to identify a 
structure is to store each chromosome appearing in the 
evolutionary process. But it brings two problems. The first 
one is that the demand for storage memory is huge, even 
unacceptable. The second problem is that the computational 
complexity of evaluating the duplicate individuals’ fitness by 
searching the evolutionary history data is high. 

It is noted that the mapping of other number systems to 
decimalization is a rule of correspondence between a vector 
and a decimal number, for example, the mapping from a 
binary vector to a decimal number is shown as (7). 

0 1 1

1 2
0 1 12 2
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The mapping rule can be extended to identify different 
individuals. Suppose that the number of members in the 
ground structure is Ne, the Boolean value and property ID of 
the ith member is ti and pi respectively, pmax is the maximum of 
all property IDs. Therefore, a chromosome can be seen as a 
vector of pmax number system, whose radix is pmax, and the 
identity of the chromosome is calculated as (8). The ID 
maybe overflow if the scale of the problem is too large, but it 
can be easily solved by storing the ID in string format. 
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The identity, response values, and fitness of each 
individual are stored in an evolutionary history table, whose 
data structure is shown as Fig. 3. Obviously, the storage 
demand of this data structure is much less than that of storing 
the chromosome directly. 

 
ID R1 R2 … Rm Fit 

 
Fig. 3 Data structure of the evolutionary history table 

 
Where ID is the identity, Ri is the structural response, and Fit 
is the fitness of an individual. 

First, the identity of each individual in the new population 
produced by genetic operations, i.e., selection, crossover, and 
mutation, is calculated. Then, the identity is searched in the 
evolutionary history table to justify whether an individual is 
duplicated or not. If so, the fitness of the individual is attained 
immediately. Otherwise, the evaluation of the individual is 
finished by the structural analysis. The process is repeated 
until all individuals are evaluated. Finally, the evolutionary 
history table is updated to include the information of new 
individuals. Following, the time complexity of this 
identification technique, as well as the direct storage of 
chromosomes, is deduced. 

Suppose the population size is N, and the length of current 
evolutionary history table is L, then, 

1

T

i
i

L q N TN
=

= ≤∑               (9) 

where qi is the proportion of non-duplicate individuals in the 
population, T is the index of current generation. 

The worst time complexity of the identification technique 
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to search the fitness of a duplicate individual is 
O(TNNe+TN2), and that of storing the chromosome directly is 
O(TN2Ne). Evidently, the former is much lower than the 
latter. 

C. Flowchart 
The flowchart of truss topology optimization using genetic 

algorithm with the individual identification technique is 
shown in Fig. 4. Offspring must be identified first. Only the 
new individuals would be evaluated by structural analysis, 
the duplicate individuals are evaluated by searching the 
evolutionary history table. After the evaluation of all 
individuals, the evolutionary history table is updated to 
include the information of new individuals. 

Initiation

Decoding

Structural 
analysis

EvaluationSelection

Stop?End

Offspring Identification

Data update

N

New
individuals

Duplicate
individuals

Crossover

Mutation

Y

 
Fig. 4 Flowchart of genetic algorithm 

 

IV. EXAMPLES 

A. 10-Bar Truss 
The ground structure of the 10-bar truss problem is shown 

in Fig. 5, where a=9.14m，and P=444.5kN. The elastic 
modulus of the material is 68.9GPa. The axial allowable 
stress for all members is 172MPa and the allowable 
displacement of nodes 2 and 5 is 5.08cm. The cross-sectional 
area of every member is selected from a set of 32 discrete 
values in [3]. Weight is minimized by GA with parameters as 
follows: population size 40, maximum generation 400, 
crossover probability [0.6 0.99], mutation probability [0.01 
0.25], and tournament size 6. The weight of the optimal 
solution attained is 2250.76kg, which is accordant with [3]. 
The topology of the optimal solution is shown in Fig. 6. 

In order to know how many duplicate individuals appear in 
the evolutionary process, 10 independent runs are 
implemented, and the results are shown in table 1, where N1 
and N2 is the number of non-duplicate and duplicate 
individuals in the evolutionary process respectively. The 
process stops when the optimal solution is attained or the max 
generation is achieved. 

6 2 

3 4 1 

○5  ○1  

○8  

○9  

○3  

○7  

○10  ○4  ○2  ○6  

a 

5 P P

a a 

 
Fig. 5 Ground structure of the 10-bar truss example 

 
Fig. 6 Topology of the optimal solution 

 
Table. 1 Results of 10 independent runs 

Run N1 N2 N1+N2 N2/(N1+N2) 
1 5983 3577 9560 37.42% 
2 9749 6251 16000 39.07% 
3 9732 6268 16000 39.18% 
4 2408 1432 3840 37.29% 
5 4101 2419 6520 37.10% 
6 1281 759 2040 37.21% 
7 2824 1616 4440 36.40% 
8 9748 6252 16000 39.08% 
9 3381 2019 5400 37.39% 
10 9528 6472 16000 40.45% 
Average 5873.5 3706.5 9580 38.06% 
 

It shows that the proportion of duplicate individuals of 
these 10 independent runs ranges between 36.40% and 
40.45%, and 38.08% on average, i.e., the introduction of the 
identification technique reduces structural analysis 38.08% 
on average. In this example, the process of structural analysis 
takes up 92.60% of the total time of a generation. Therefore, 
the efficiency is raised by 35.24% on average. 

Meanwhile, the average proportion of duplicate 
individuals of the 4 runs (run 2, 3, 8, 10) which all stop at the 
max generation is higher than that of the other 6 runs which 
stop by attaining the optimal solution. Therefore, it seems 
that more generations may induce to higher duplication 
proportion in the evolutionary process. Nevertheless, the 
difference of the duplication proportion among the 10 runs is 
not significant, which indicates that the max generation is not 
a significant factor to the duplication proportion. 

In order to investigate the influence of the population size 
on the duplication proportion, another 10 independent runs 
are executed with the population size of 100. Results show 
that the average duplication proportion is increased to 
68.29%, which indicates that larger population size will 
induce larger duplication proportion, and that the population 
size has an important impact on the duplication proportion. 
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B. 15-Bar Truss 
The ground structure of the 15-bar truss problem is shown 

in Fig. 7, where a=1.016m，b=0.762m and P=89kN. The 
elastic modulus of the material is 207MPa. The axial 
allowable stress for all members is 345MPa. The 
cross-sectional area of every member is selected from a set of 
16 discrete values evenly distributed between 0.645cm2 and 
10.3cm2. The objective is to minimize the volume of the 
structure. No displacement and symmetry constraints are 
considered. The population size is 100, the max generation is 
500, and the other parameters are correspondent with the 
10-bar truss example. The optimal solution is shown in Fig. 8, 
where the volume is 3933cm3, as in [15]. 

 
Fig. 7 Ground structure of the 15-bar truss example 

 
Fig. 8 Topology of the optimal solution 

The scale of the 15-bar truss problem (1715) is 1.87×103 

times of the 10-bar truss problem (3310). In order to 
investigate whether or not the scale of problems is an 
important factor to the duplication proportion, 10 
independent runs are implemented with the population size 
40, and the max generation 600. The results show that the 
average duplication proportion is 34.61%, which is close to 
that of the 10-bar truss example. Thus, it is concluded that the 
scale of problems is not an important factor to the duplication 
proportion. 

V. CONCLUSION 
The main shortcoming of truss topology optimization 

using genetic algorithm is the low computational efficiency 
which is resulted by the time-consuming structural analysis 
of all individuals. It is observed that there are many duplicate 
individuals in the evolutionary process. To raise the 
efficiency of genetic algorithm, the structural analysis of 
duplicate individuals should be avoided. An individual 
identification technique with less storage memory demands 
and lower time complexity compared to the direct storage of 
chromosomes is developed to handle this issue. The results of 
two truss examples verify the feasibility of the algorithm, and 
indicate that the identification technique can effectively 
improve the computational efficiency. Moreover, numeric 
experiments show that the population size has an important 
impact on the duplication proportion, but that the max 
generation and the scale of problems do not. 

The phenomenon of duplicate individuals in genetic 
algorithm is inevitable. The paper has investigated the 
influence of the population size, the max generation, and the 
scale of problems on the duplication proportion. 

Nevertheless, the influence of the selection, crossover, and 
mutation on the duplication proportion is not clear now, 
which should be further investigated by more numeric 
experiments and theoretical analysis. 
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