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Abstract—In this paper, we present an integral form
of convection-diffusion equation. Then a class of alter-
nating group explicit finite difference method (AGE)
is constructed based on several asymmetric schemes.
The AGE method is unconditionally stable and has
the property of parallelism. Results of numerical ex-
amples show the AGE method is of high accuracy.
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1 Introduction

Research on parallel finite difference methods for con-
vection -diffusion equations is an interesting topic. We
notice that a so-called AGE method is widely cared be-
cause of its intrinsic parallelism and absolute stability.
The AGE method was originally presented for solving
diffusion equations by Evans [1], and was applied to
convection-diffusion equations in [2]. Based on the AGE
method, many alternating group methods and domain-
split methods were developed such as in [3-6]. In [7]
the AGE method for parabolic equations with periodic
boundary conditions was Applied, but the method will
lead to numerical vibration in the case of convection
dominant equations. Based on Samarskii’s scheme [8],
Lu [9] presented a class of alternating block explicit-
implicit method. Tian [10] presented a new group explicit
method using the theory of exponential type transforma-
tion. Both of the two methods are effective to solve con-
vection dominant problems, but we notice that the two
methods have only accurate of order two in spatial step
size. On the other hand, researches on periodic boundary
problems have been scarcely presented.

In this paper we will consider the following convection-
diffusion equation:

∂u

∂t
+ k

∂u

∂x
= ε

∂2u

∂x2 , 0 ≤ t ≤ T, k > 0, ε > 0 (1.1)

with initial and boundary conditions:{
u(x, 0) = f(x),
u(x, t) = u(x + 1, t). (1.2)
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Results about existence and uniqueness of theoretic so-
lution for convection-diffusion equations can be found in
[11-12].

We will organize this paper as follows: In section 2,
a kind of exponential-type transformation [10] will be
used to get the integral conservative form of convection-
diffusion equations. Then we present a group of asym-
metric schemes. Based on the schemes, a class of uncondi-
tionally stable alternating group explicit finite difference
method will be derived. Stability analysis for the alter-
nating group method is given in section 3. In section 4,
Results of numerical experiments on stability and accu-
racy are presented. Some conclusions are given at the
end of the paper.

2 The Alternating Group Method

The domain Ω : (0, 1)×(0, T ) will be divided into (m×N)
meshes with spatial step size h = 1

m in x direction and
the time step size τ = T

N . Grid points are denoted by
(xi, tn) or (i, n), xi = ih(i = 0, 1, · · ·,m), tn = nτ(n =
0, 1, · · · , T

τ ). The numerical solution of (2.1) is denoted
by un

i , while the exact solution u(xi, tn).

We notice (1.1) is equivalent to e−
kx
ε

∂u
∂t

=

ε ∂
∂x

(e−
kx
ε

∂u
∂x

). Integral from xi− 1
2

to xi+ 1
2

at
t = (n + 1

2 )τ , then we give the expression of the integral

in equation form
∫ x

i+ 1
2

x
i− 1

2

e−
kx
ε

∂u
∂t

dx = ε
∫ x

i+ 1
2

x
i− 1

2

e−
kx
ε

∂u
∂x

dx.

The proposed alternating group method is used in com-
puting by applying the special combination of several
saul’yev asymmetry schemes to a group of grid points.
Then the numerical solutions at each group of points can
be obtained independently, and the computation in the
whole domain can be divided into many sub-domains.

Let p = e−
kh
2ε , q = e

kh
2ε , r = kτ

48h(q − p) . In order to

construct the alternating group method, first we can es-
tablish the following saul’yev asymmetry finite difference
schemes to approach (1.1) at (i, n + 1

2 ):

[1+(26p+q)r]un+1
i −(27p+q)run+1

i+1 +prun+1
i+2 = −2qrun

i−2+

(2p+54q)run
i−1+[1−(28p+53q)r]un

i +(q+27p)run
i+1−prun

i+2

(2.1)
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−(p+25q)run+1
i−1 +[1+(27p+26q)r]un+1

i −(q+27p)run+1
i+1

+prun+1
i+2 = −2qrun

i−2+(p+29q)run
i−1+[1−(27p+28q)r]un

i

+(q + 27p)run
i+1 − prun

i+2 (2.2)

qrun+1
i−2 − (p + 27q)run+1

i−1 + [1 + (28p + 27q)r]un+1
i

−(q + 29p)run+1
i+1 + 2prun+1

i+2 = −qrun
i−2 + (p + 27q)run

i−1

+[1− (26p + 27q)r]un
i + (25p + q)run

i+1 (2.3)

qrun+1
i−2 − (p + 27q)run+1

i−1 + [1 + (53p + 28q)r]un+1
i

−(2q + 54p)run+1
i+1 + 2prun+1

i+2 = −qrun
i−2

+(p + 27q)un
i−1 + [1− (p + 26q)r]un

i (2.4)

2qrun+1
i−2 − (2p + 54q)run+1

i−1 + [1 + (28p + 53q)r]un+1
i

−(q + 27p)run+1
i+1 + prun+1

i+2 = [1− (26p + q)r]un
i

+(q + 27p)run
i+1 − prun

i+2 (2.5)

2qrun+1
i−2 − (p + 29q)run+1

i−1 + [1 + (27p + 28q)r]un+1
i

−(q + 27p)run+1
i+1 + prun+1

i+2 = (p + 25q)run
i−1

+[1− (27p + 26q)r]un
i + (27p + q)run

i+1 − prun
i+2 (2.6)

qrun+1
i−2 − (p + 27q)run+1

i−1 + [1 + (26p + 27q)r]un+1
i

−(q + 25p)run+1
i+1 = −qrun

i−2 + (p + 27q)run
i−1

+[1− (28p + 27q)r]un
i + (q + 29p)run

i+1 − 2prun
i+2 (2.7)

qrun+1
i−2 −(p+27q)run+1

i−1 +[1+(p+26q)r]un+1
i = −qrun

i−2

+(p+27q)run
i−1+[1−(53p+28q)r]un

i +(2q+54p)run
i+1−2prun

i+2

(2.8)

Using the schemes mentioned above, we will have three
basic point groups:
(1)”G1” group: eight inner points are involved, and
(2.1)− (2.8) are used at each grid point respectively.
(2)”G2” group: four inner points are involved, and
(2.1)− (2.4) are used respectively.
(3)”G3” group: four inner points are involved, and
(2.5)− (2.8) are used respectively.

Let m = 8s, here s is an positive integer. Based on the
basic point groups above, the alternating group method
will be presented as following:

First at the (n + 1)-th time level, we will have s point
groups. ”G1” is used in each group. Second at the (n+2)-
th time level, we will have (s + 1) point groups. ”G3” is
used in the left four grid points. ”G1” is used in the
following s − 1 point groups, while ”G2” is used in the
right four grid points.

From the alternating use of (2.1)-(2.8), grouping explicit
computation can be obviously obtained. Thus comput-
ing in the whole domain can be divided into many sub-
domains, and can be worked out with several parallel

computers. So the method can shorten the computing
time compared to implicit methods, and has the prop-
erty of parallelism.

Let Un = (un
1 , un

2 , · · · , un
m)T , then we can denote the

alternating group method as follows:
{

(I + rA)Un+1 = (I − rB)Un

(I + rB)Un+2 = (I − rA)Un+1 (2.9)

A =

⎛
⎜⎜⎜⎜⎝

A1

A1

...
A1

A1

⎞
⎟⎟⎟⎟⎠

m×m

B =

⎛
⎜⎜⎜⎜⎝

A3 E
A1

...
A1

D A2

⎞
⎟⎟⎟⎟⎠

m×m

,

A1 =
(

A11 A12

A21 A22

)

A11 =

⎛
⎜⎝

26p + q −(27p + q) p 0
−(p + 25q) 27p + 26q −(q + 27p) p

q −(p + 27q) 28p + 27q −(q + 29p)
0 q −(p + 27q) 53p + 28q

⎞
⎟⎠

A12 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
2p 0 0 0

−(2q + 54p) 2p 0 0

⎞
⎟⎠

A21 =

⎛
⎜⎝

0 0 2q −(2p + 54q)
0 0 0 2q
0 0 0 0
0 0 0 0

⎞
⎟⎠

A22 =

⎛
⎜⎝

28p + 53q −(q + 27p) p 0
−(p + 29q) 27p + 28q −(q + 27p) p

q −(p + 27q) 26p + 27q −(q + 25p)
0 q −(p + 27q) p + 26q

⎞
⎟⎠

A2 =

⎛
⎜⎝

26p + q −(27p + q) p
−(p + 25q) 27p + 26q −(q + 27p) p

q −(p + 27q) 28p + 27q −(q + 29p)
q −(p + 27q) 53p + 28q

⎞
⎟⎠

D =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
2p 0 0 0

−(2q + 54p) 2p 0 0

⎞
⎟⎟⎠

A3 =

⎛
⎜⎝

28p + 53q −(q + 27p) p
−(p + 29q) 27p + 28q −(q + 27p) p

q −(p + 27q) 26p + 27q −(q + 25p)
q −(p + 27q) p + 26q

⎞
⎟⎠
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E =

⎛
⎜⎝

0 0 2q −(2p + 54q)
0 0 0 2q
0 0 0 0
0 0 0 0

⎞
⎟⎠

Applying Taylor’s formula to (2.1)-(2.8) at (xi, tn), we
can easily obtain that the truncation error is O(τ2 +τh+
τh2 + τh3 +h4) respectively, and alternating use of (2.1)-
(2.8) can lead to counteraction of the truncation error
for the items containing τh, τh2 and τh3. Then we can
denote the truncation error of (2.9) as O(τ2 + h4).

3 Stability Analysis

Kellogg Lemma[13] Let r >0, and G is nonnegative
definite real matrix, then:

{ ‖(I + rG)−1‖ 2 ≤ 1
‖(I − rG)(I + rG)−1‖2 ≤ 1 (3.1)

Theorem The alternating group method defined by
(2.9) is unconditionally stable.

Proof: From the construction of the matrices above we
can see A and B are both diagonally dominant matrices,
which shows A and B are both nonnegative definite real
matrices. Then we have: ‖(I+rA)−1‖ 2 ≤ 1, ‖(I−rA)(I+
rA)−1‖2 ≤ 1, ‖(I+rB)−1‖ 2 ≤ 1, ‖(I−rB)(I+rB)−1‖2 ≤
1.

Let n be an even integer, from (2.9) it follows that Un =
GUn−2 = G

n
2 U0, G = (I +rB)−1(I−rA)(I +rA)−1(I−

rB). Let G = (I + rB)G(I + rB)−1 = (I − rA)(I +
rA)−1(I−rB)(I+rB)−1, then we can get ρ(G) = ρ(G) ≤
‖G‖ 2 ≤ 1, which shows the method defined by (2.9) is
unconditionally stable.

4 Numerical Experiments

We consider problem (1.1) with initial and boundary con-
ditions: {

u(x, 0) = sin(2πx),
u(x, t) = u(x + 1, t). (4.1)

The exact solution of the problem above is denoted as
below:

u(x, t) = e−4επ2tsin[2π(x− kt)]

Let A.E. = |un
i − u(xi, tn)| and P.E. = 100 ×

|un
i − u(xi, tn)|
u(xi, tn) denote maximum absolute error and rele-

vant error of the presented method respectively. we com-
pare the numerical results of (2.9) with the results in [2,
9, 10].

Table 1: Results of comparisons at m = 16

τ = 10−4, t = 100τ, ε = 1 τ = 10−5, t = 100τ, ε = 1

A.E. 8.586 ×10−6 9.132 ×10−7

A.E.[2] 8.726 ×10−5 9.596 ×10−6

A.E.[9] 6.517 ×10−5 6.873 ×10−6

A.E.[10] 7.306 ×10−5 8.062 ×10−6

P.E. 1.312 ×10−2 7.345 ×10−3

P.E.[2] 4.229 ×10−1 9.456 ×10−2

P.E.[9] 2.958 ×10−1 7.103 ×10−2

P.E.[10] 3.673 ×10−1 8.218 ×10−2

Table 2: Results of comparisons at m = 24, τ = 10−4

t = 100τ, ε = 0.1 t = 1000τ, ε = 0.01

A.E. 6.731 ×10−6 1.102 ×10−4

A.E.[2] 1.458 ×10−5 2.647 ×10−3

A.E.[9] 1.074 ×10−5 7.653 ×10−4

A.E.[10] 1.127 ×10−5 8.914 ×10−4

P.E. 2.016 ×10−2 2.467 ×10−2

P.E.[2] 4.250 ×10−1 5.364 ×10−1

P.E.[9] 1.156 ×10−1 1.924 ×10−1

P.E.[10] 1.241 ×10−1 2.758 ×10−1

Then we let m = 16, ε = 0.001, 0.0001, and the results
show that the method in [2] doesn’t converge to the exact
solution. The comparisons between the presented AGE
method and the methods in [9, 10] are listed in Table 3.

Table 3: Results of comparisons at m = 16, τ = 10−4

t = 100τ, ε = 0.001 t = 100τ, ε = 0.0001

A.E. 3.276 ×10−4 4.105 ×10−4

A.E.[9] 2.137 ×10−3 3.426 ×10−3

A.E.[10] 1.159 ×10−2 1.194 ×10−2

P.E. 4.891×10−2 5.207 ×10−2

P.E.[9] 2.469 ×10−1 2.683 ×10−1

P.E.[10] 3.689 3.723

Let t1/t2 denote the ratio of running CPU time between
the AGE method and the implicit scheme (3). In Table 4,
we compare the presented AGE method and the known
Crank-Nicolson scheme in running time.

Table 4: Results of comparison in runningCPU time
at τ = 10−3

m = 16, t = 100τ m = 64, t = 200τ m = 96, t = 500τ

t1/t2 0.246 0.141 0.0924

If we use a large ′m′ ,for example, m = 200, 600, 800, then
the implicit C-N method will be invalid. But considering
the parallelism of the present method, the computing can
be divided into many sub-domains independently, and the
computing can be finished as usual.

In the end we let ε = 0.00001. We find the methods
in [2, 9, 10] can’t converge to the exact solution, but
the presented method in (2.9) is also valid, and we have
A.E. = 5.691× 10−3, P.E. = 0.814.
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5 Conclusions

In this paper, we present an alternating group explicit
method, which is of absolute stability and parallelism.
The results in Table 1-3 show that the method introduced
is of higher accuracy than the methods in [2, 9, 10]. Fur-
thermore, numerical results show the presented method
in this paper won’t lead to numerical vibration in the case
of small ε such as ε = 0.0001. So the presented method is
suitable for solving convection dominant problems, and
is superior to the methods in [2, 9, 10].
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