
Aspect Oriented Software Fault Tolerance

Kashif Hameed, Rob Williams, Jim Smith

Abstract

Software fault tolerance demands additional tasks like

error detection and recovery through executable

assertions, exception handling, diversity and redundancy

based mechanisms. These mechanisms do not come for

free, rather they introduce additional complexity to the

core functionality. This paper presents light weight error

detection and recovery mechanisms based on the rate of

change in signal or data values. Maximum instantaneous

and mean rates are used as plausibility checks to detect

erroneous states and recover. These plausibility checks

are exercised in a novel aspect oriented software fault

tolerant design framework that reduces the additional

logical complexity. A Lego XT Robot based case study

has been completed to demonstrate the effectiveness of

the proposed design framework.

Keywords: aspect oriented design and programming,

executable assertions, exception handling, fault tolerance,

plausibility checks.

1. Introduction

Adding fault tolerance measures to safety critical and

mission critical applications introduces additional

complexity to the core application. By incorporating

handler code, for error detection, checkpointing,

exception handling, and redundancy/diversity

management, the additional complexity may adversely

affect the dependability of a safety critical or mission

critical system.

One of the solutions to reduce this complexity is to

separate and modularize the extra, cross-cutting concerns

from the true functionality.

At the level of design and programming, several

approaches have been utilized that aim at separating

functional and non-functional aspects. Component level

approach like IFTC [5], computational reflection and

meta-object protocol based MOP [6] have shown that

dependability issues can be implemented independently of

functional requirements.

The evolving area of Aspect-Oriented Programming &

Design (AOP&D) presents the same level of

independence by supporting the modularized

implementation of crosscutting concerns.

This work is supported by BIT, UWE, Frenchay Campus, Cold Harbour

Lane Bristol, BS16 1QY, (email: kashif3.hameed@uwe.ac.uk)

Aspect-oriented language extensions, like AspectJ[7] and

AspectC++[1] provide mechanisms like Advice

(behavioural and structural changes) that may be applied

by a pre-processor at specific locations in the program

called join point. These are designated by pointcut

expressions. In addition to that, static and dynamic

modifications to a program are incorporated by slices

which can affect the static structure of classes and

functions.

In the context of fault tolerance, an induced fault can

activate an error that changes the behaviour of the

program and may lead to system failure. In order to

tolerate a fault, abnormal behaviour must be detected and

transformed back by introducing additional behaviour

changes (Exception Handler) or alternate structure

adoption (Recovery Blocks, N-Version Programming)

strategies.

The rate of change (ROC) of signals or data can be used

to detect erroneous conditions that can help in tolerating

faults and avoiding failures by triggering appropriate

recovery mechanisms. ROC-based plausibility checks for

error detection and recovery in the form of executable

assertions have been addressed by [2] [3]. In [4] the

author utilizes dynamic signal values for modeling and

predicting future sensor values. Unfortunately, these

mechanisms will add to the complexity of the true

functionality that could affect the overall dependability of

the system. None of the previous studies propose the

separation of these error handling concerns from true

functionality. However Aspect Oriented Design and

Programming approaches may be used to separate out

these concerns from the true functionality of a computer

based system.

In this paper the rate of change based executable

assertions have been extended with more refined time

bounded instantaneous and mean rate checks that reduce

false positives and false negatives. Secondly an empirical

method for determining the maximum instantaneous and

mean rates of change has been devised.

The current work also proposes generalized aspect-

oriented software fault tolerance design patterns. These

design solutions provide an implementation framework to

incorporate and validate the proposed ROC-based checks.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

2. ROC Plausibility Checks & Recovery

In order to apply various plausibility checks, it is first

necessary to determine the characteristic range of values

for key variables/signals. Most real-time sensors monitor

continuous signals that may be monotonic or random.

Further more, the monotonic signals may have static or

dynamic rates. Continuous signals can be classified on

the basis of the above criteria, as tabulated below. The

characteristic parameters have also been assigned to

various classes of signals for clarity and differentiation.

The characteristic parameters of variables assigned here

are ymax(maximum value), ymin (minimum value), rmax-

incr(maximum increase/sample time), rmin-incr(minimum

increase/sample time), rmax-decr(maximum decrease/sample

time), rmin-decr(minimum decrease/sample time).

Table 1 Signal Parameters

Signal Type Parameters

Static monotonic (↑)
0

,0

minmax

minmax

==

>=

−−

−−

decrdecr

incrincr

rr

rr

Static monotonic (↓)
0

,0

minmax

minmax

>=

==

−−

−−

decrdecr

incrincr

rr

rr

Dynamic monotonic (↑)
0

,0

minmax

minmax

==

≥>

−−

−−

decrdecr

incrincr

rr

rr

Dynamic monotonic (↓)
0

,0

minmax

minmax

==

==

−−

−−

decrdecr

incrincr

rr

rr

Random
0

,0

minmax

minmax

≥≥

≥≥

−−

−−

decrdecr

incrincr

rr

rr

3. ROC Plausibility based Executable Assertions

Error detection is the basic step in deploying any fault

tolerance strategy. Executable assertions are often

utilized as one error detection mechanism. ROC-based

plausibility checks on input signals may be used to detect

some erroneous conditions that could lead to failure.

Although ROC-based executable assertions have been

addressed in [2], these constraints are based on changes in

variable values but without time boundedness. However

the true rate of change should employ the change in

variable values in a specified time interval. Without

considering a time boundary, there are more chances to

have false positives and false negatives. Thus for bounded

dt

dy
 there exists

dt

dy
 such that

maxmin

≤≤

dt

dy

dt

dy

dt

dy
[4].

Moreover the signal configuration parameters like rmax and

rmin should also be calculated keeping in view the time

consideration. The set of plausibility checks exercised in

our study are tabulated below.

4. ROC Plausibility Based Recovery

When an error is detected a recovery mechanism is

brought into service to avoid a failure and so tolerate the

fault. The recovery mechanisms employed here are

managed on the basis of running trends. The faulty data is

replaced by computed values derived from past values and

some increment based on the maximum and minimum

rates of change. However, the forcefully assigned values

are kept within the maximum and minimum data ranges.

Table 2 Rate of Change Recovery Mechanism

ROC Assertion (PC) Recovery Mechanism

Case: 1−> ii yy (Increase)

PC1: incr
ii

ii r
tt

yy
−

−

− ≤
−
−

max
1

1 iiincrir Tryy →−−− ∆+= 1max1

 If PC1 && maxyyi < then

PC2: incr
ii

ii r
tt

yy
−

−

− ≥
−
−

min
1

1

if iiincri Tryy →−−− ∆≥− 1min1max

then iiincrir Tryy →−−− ∆+= 1min1

else maxyyr =

Case: 1−< ii yy (Decrease)

PC3: decr
ii

ii r
tt

yy
−

−

− ≤
−

−
max

1

1
iidecrir Tryy →−−− ∆−= 1max1

 If PC3 & minyyi > then

PC4: decr
ii

ii r
tt

yy
−

−

− ≥
−

−
min

1

1

if iidecri Tryy →−−− ∆≥− 1min1min

then

iidecrir Tryy →−−− ∆−= 1min1

 else minyyr =

5. Aspect Oriented Exception Handling Patterns

Exception handling has been deployed as a key

mechanism in implementing software fault tolerance

through forward and backward error recovery

mechanisms. It provides a convenient means of structuring

software that has to deal with erroneous conditions [11].

In [8], the authors addresses the weaknesses of exception

handling mechanisms provided by mainstream

programming languages like Java, Ada, C++, C#. In their

experience exception handling code is inter-twined with

the normal code. This hinders maintenance and reuse of

both normal and exception handling code.

Moreover as argued by [9], exception handling is difficult

to develop and has not been well understood. This is due

to the fact that it introduces additional complexity and has

been misused when applied to a novel application domain.

This has further increased the ratio of system failures due

to poorly designed fault tolerance strategies.

Thus fault tolerance measures using exception handling

should make it possible to produce software where (i)

error handling code and normal code are separated

logically and physically; (ii) the impact of complexity on

the overall system is minimized; and (iii) the fault

tolerance strategy may be maintainable and evolvable with

increasing demands of dependability.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

In this respect, [6] has proposed an architectural pattern

for exception handling. They address the issues like

specification and raising of exceptions, specification and

invocation of handlers and searching of handlers. These

architectural and design patterns have been influenced by

computational reflection and meta-object protocol.

However, most meta-programming languages suffer

performance penalties due to the increase in meta-level

computation at run-time. This is because most of the

decisions about semantics are made at run-time by the

meta-objects, and the overhead to invoke the meta-objects

reduces the system performance [10].

Therefore we propose generalized aspect based patterns

for monitoring, error detection, exception raising and

exception handling using a static aspect weaver. These

patterns would lead to integration towards a robust and

dependable aspect based software fault tolerance. The

following design notations have been used to express

aspect-oriented design patterns.

Figure 1 Aspect Oriented Design 1otations

5.1. Error Detection and Exception Throwing Aspect

Error detection and throwing exceptions has been an

anchor in implementing any fault tolerance strategy. This

aspect detects faults and throws range, input and output

type of exceptions. The overall structure of this aspect is

shown below. The GenThrowErrExcept join points the

 ormalClass via three pointcut expressions for each type

of fault tolerance case.

RangeErrPc: this join points the contexMethod() only. It

initiates a before advice to check the range type errors

before executing the contextMethod(). Incase the

assertions don’t remain valid or acceptable behavior

constraints are not met, RaneErrExc exception is raised.

InputErrPc: this join points the contextMethod() further

scoped down with input arguments of the

contextMethod(). It initiates a before advice to check the

valid input before the execution of the context method.

Incase the input is not valid it raises InputErrExc.

OutputErrPc: this join points the contextMethod()

further scoped down with results as output of the

contextMethod(). It initiates an after advice to check the

valid output after the execution of the context method.

Incase the output is not valid it raises OutputErrExc.

Figure 2 Error Detection, Exception Throwing

5.2. Rate of Change Plausibility Check Aspect

This aspect is responsible for checking the erroneous state

of the system based on the rate of change in critical

signal/data values. Once an erroneous state is detected, the

respective exception is raised. Various exceptions are also

defined and initialized in this aspect. The pointcut

GetSensorData defines the location where error checking

plausibility checks are weaved whenever a critical

data/sensor reading function is called. The light weight

ROC-based plausibility assertions are executed in the

advice part of this aspect.

Figure 3 Rate of Change Aspect Pattern Structure

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Figure 4 Rate of Change Aspect Pattern Dynamics

5.3. Catcher Handler Aspect

The CatcherHandler aspect as shown below is responsible

for identifying and invoking the appropriate handler. This

pattern addresses two run-time handling strategies.

The first strategy is designated by an exit_main pointcut

expression. It checks the run-time main() function for

various fatal error exceptions and finally aborts or exits

the main program upon error detection. This aspect may

be used to implement safe shut-down or restart

mechanisms in safety critical systems to ensure safety, if a

fatal error occurs or safety is breached.

The second strategy returns from the called function as

soon as the error is detected. The raised exception is

caught after giving warning or doing some effective action

in the catch block. This can help in preventing error

propagation. Using this aspect, every call to critical

functions is secured under a try/catch block to ensure

effective fault tolerance against an erroneous state.

It can be seen in the diagram below that exit_main

pointcut expression join points the main() run-time

function. Whereas caller_return pointcut expression join

points every call to the contextMethod(). Moreover

exit_main and caller_return pointcut expressions are

associated with an around advice to implement error

handling. The tjp�proceed() allows the execution run-

time main() and called functions in the try block.

The advice block of the catcher handler identifies the

exception raised as a result of in-appropriate changes in

the rate of signal or data. Once the exception is identified,

the recovery mechanism is initiated that assign new values

to signal or data variables based on previous trends or

history of the variable.

5.4. Dynamics of Exception Handling Aspect

This scenario shows an error handling aspect. It simulates

two error handling strategies. In the first case, control is

returned from the caller to stop the propagation of errors

along with a system warning. In the second case the

program exits due to a fatal error. This may be used to

implement shutdown or restart scenarios. Moreover the

extension of a class member function with a try block is

also explained.

1. A client object invokes the contextMethod() on an

instance of ormalClass.

2. The control is transferred to CatcherHandler aspect

that extends the contextMethod() by wrapping it in a try

block and executes the normal code.

3. In case an exception is raised by previous aspect, the

exception is caught by the CatcherHandler aspect. This is

shown by the catch message. The condition shows the

type of exception e to be handled by the handler aspect.

4. CatcherHandler aspect handles the exception e. the

caller_return strategy warns or signals the client about the

exception and returns from the caller. The client may

invoke the contextMethod2() as appropriate. In exit_main

strategy, the control is retuned to client that exits the

current instances as shown by the life line end status.

Figure 5 Catcher Handler Aspect (a) Structure (b) Dynamics

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

6. Case Study

In order to validate aspect oriented fault tolerance patterns

for exception handling and executable assertions as

proposed earlier, a case study has been carried out using a

LEGO NXT Robot (Tribot). This uses an Atmel 32-bit

ARM processor running at 48 MHz. Our development

environment utilizes AspectC++ 1.0pre3 as aspect weaver

[1].

The Tribot has been built consisting of two front wheels

driven by servo motors, a small rear wheel and an arm

holding a hockey stick with the help of some standard

Lego parts. Ultrasonic and light sensors are also available

for navigation and guidance purposes.

An interesting task has been chosen to validate our design.

In this example Tribot hits a red ball with its hockey stick

avoiding the blue ball placed on the same ball stand. It

makes use of the ultrasonic and light sensors to complete

this task. This task is mapped on a goal-tree diagram as

shown below.

Figure 6 Lego 1XT Robot Case Study: Goal Tree Diagram

Any deviation in full-filling the OR goals and

corresponding AND sub-goals is considered as a mission

failure.

6.1. Calculating ROC Plausibility Parameters

rmax , rmin correspond to maximum and minimum rate of

change of a signal value. These are directly related to the

time constant (τ) of the signal/variable under test. The

physical environment of the system also dictates these

parametric values. Since the behavior of a signal may vary

during different modes of operation of a system as argued

by [2], it necessary to identity the characteristics (rmax ,
rmin) for every such mode of operation. A generalized

mechanism has been formalized as discussed below:

Suppose)(ty is the single/variable value at any sampling

time instant t. Then the rate of change of the

signal/variable value over a sampling time interval

][1 ii tt →− is represented by the slope of signal between

these consecutive time intervals. This can be expressed

formally as:

Where i2= , =total signal samples

From the above it follows:

0,

max1

1
max >

−

−
=

−

−
−

dt

dy

tt

yy
r

ii

ii
incr ………………….. (1)

0,

min1

1
min >

−

−
=

−

−
−

dt

dy

tt

yy
r

ii

ii
incr ……………………(2)

0,

max1

1
max <

−

−
=

−

−
−

dt

dy

tt

yy
r

ii

ii
decr …………………...(3)

0,

min1

1
min <

−

−
=

−

−
−

dt

dy

tt

yy
r

ii

ii
decr ……………………(4)

Applying the above formalism to ultrasonic sensor data,

the following set of ROC parameters has been determined.

They will be used during the plausibility checks.

Table 3 ROC Plausibility Parameters

Parameter Value

rmax-incr 40 cm/sec

rmin-incr 0 cm/sec

rmax-decr 30 cm/sec

rmin-decr 0 cm/sec

ymax 255 cm

ymin 0 cm

7. Results & Discussion

The dependability assessment of the proposed scheme has

been done via fault injection. All the faults are injected

into the most critical functionality of the system, that is

reading the ultrasonic sensor, light sensor, motor speed

sensor and writing motor servo commands. The faults are

injected by supplementary code in an aspect oriented way

using AspectC++ [1]. The faults injected are permanent

stuck, noise bursts and random spikes at pre-defined or

random locations.

These faulty data scenarios may simulate both permanent

and transient faults originating in a faulty hardware,

software or corrupted environment within or outside a

computer-based system.

Although ROC-based plausibility checks are very

effective in detecting faulty data values, yet a number of

false positives and false negatives were generated. The

proposed recovery mechanism deviates if faults persist for

a longer duration as shown in figure 7.

1

1
0lim)(

−

−
→∆ −

−
=

∆

∆
==

ii

ii
ti

tt

yy

t

y

dt

dy
rater

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Figure 7 Limitations of Rmax Check

Since ()max, ryy oldr φ= , it can be seen in the figure above

that the scheme deviates if the faulty data persists for

longer time duration. This is due to the fact that more

positive or negative bias equivalent Tr ∆max or

Tr ∆min has is added to or remove from the previous data

values. Suppose the fault persists for n data samples, the

predicted bias added to the previous stable non faulty

value yold is Tnr ∆max . Now if next sample contains a non

faulty data value. The check max1 ryy ii >− − is satisfied

and new data value is marked faulty resulting in a false

negative.

Solution: We propose an rmean constraint apart from

instantaneous rmax check. The mean or average rate rmean is

measured from a fixed point or moving point on the

trajectory.

)()(

)()(

ktit

kyiy
rmean −

−
= , ik < ………………………. (5)

In order to attain rmean for ultrasonic sensor data/variable,

autoregressive moving average with exogenous inputs

(ARMAX) parametric model is used. This has been done

by best fit of Tribot speed as input and ultrasonic distance

(range) as output. Finally the average distance and

average velocity profiles are obtained as shown below.

Figure 8 ARMAX Based Mean Rate

The recover mechanism as proposed earlier has also been

modified keeping in view that),(maxryy oldr φ= is not the

true representation of previous trends. We can make much

better estimates if we at least take into account the rate of

the last stable check-pointed data. Thus we propose:

(a) Case; 0>oldr ↑, iiincrmeanir Tryy →−−− ∆+= 11

(b) Case: 0<oldr ↓, iidecrmeanir Tryy →−−− ∆−= 11

)()1(

)()1(

nitit

niyiy
rold −−−

−−−
= , measured from last n

th
 sample.

7.1. Fixed First Point of Slope

If rmean is measured from the fixed point say the initial

starting point then from equation (5) it follows:

)1()(

)1()(

tit

yiy
rmean −

−
= ……………………………. (6)

Now y(1) and t(1) are constants and if)1()(yiy − <<

)1()(tit − , rmean reduces with time. This can be expressed

more formally as: If ∞→∆T 0→meanr .

It postulates that a fixed point of slope is feasible for

faulty data values closer to the starting point of slope.

This is demonstrated in the Lego NXT Case as shown in

figure 9.

Figure 9 Fixed First Point of Slope, Rmean Reduces

7.2. Moving First Point of Slope

In this rmean is measured from first point of slope moved

after m samples thus the first point of slope consists of set

{y(0),y(m),y(2m)…}. Here m is the size of the window

for calculating rmean . Thus the first point of slope for rate

measurement is shifted every m samples.

Generally the first point of the slope for rate measurement

consists of a set y(k) such that k is an integral multiple of

m i.e. k=jm, where j = {0,1,2…}.

mkiki +<≤∀ : ,
)()(

)()(

ktit

kyiy
rmean −

−
= ………. (7)

Inserting, jmk = , from equation (7) it follows:

mmjimji +<≤∀ : ,
)()(

)()(

jmtit

jmyiy
rmean −

−
= …. (8)

For every
thj window of size m, rmean is calculated using

the above formula.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Figure 10 Moving Window Concept, Rmean Enhanced

Next we discuss some special cases in the proposed

recovery mechanism.

Case i=k

For every first sample in a window, it can be seen that i=k;

Inserting i=k in equation (7), it follows:

0
)()(

)()(
=

−
−

=
ktit

kyky
rmean

Thus the weight age of rmean is reduced in error detection

and recovery. So rmean is calculated as follows:

)
2

()(

)
2

()(

m
ktit

m
kyiy

rmean

−−

−−
= ……………………………. (9)

Minimum and Maximum Window Size

From equation 8, if m=2, the rmean ≈ rinst, thus we can

expect a large estimated bias in the presence of a large

faulty band.

If moving window size (m), is very large, first point of

slope for rmean remains constant for a large duration. Thus:

constit

constiy
rmean −

−
≈

)(

)(
………………………………… (10)

Thus from equation (10), it can be inferred that as it

increases rmean reduces and again the weight age of rmean is

reduced in the error detection and recovery mechanism.

There are chances that more faulty data is used in the true

functionality that may lead to failure.

Figure 11 Moving Window Size Constraints

Hence the choice of window size m is a trade off between

avoiding faulty data and reducing too much estimation

bias if fault bandwidth is large. For the ultra sonic sensor

of Lego NXT case study, a moving window of size (m=4)

or (m=5) provides optimal results.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

In order to provide better test coverage, the ultrasonic

sensor data has been injected with periodic noisy bursts

and random spikes. The frequency of these noisy spikes is

controlled by modulo-n of a random number. It has been

observed that mission critical failures are avoided using

the proposed strategy with much higher confidence level.

Figure 12 Mission Failure without Recovery Aspect in Place

Figure 13 Periodic Bursts with Error Recovery

Figure 14 Random Spikes with Error Recovery

8. Conclusions & Future Work

The current work proposes an aspect oriented error

detection and exception handling design framework. The

aspect oriented design patterns under this framework

bring additional benefits like the localization of error

handling code in terms of definitions, initializations and

implementation. Thus error handling code is not

duplicated since the same error detection and handling

aspect is responsible for all the calling contexts of a safety

critical function. Reusability has also been improved

because different error handling strategies can be plugged

in separately. In this way, aspect and functional code may

both be ported more easily to new systems.

The current work also investigated the use of maximum

instantaneous and mean rate plausibility checks to detect

and recover from erroneous states. It has been observed

that mission critical variables which have monotonically

increasing or decreasing trends can be augmented with

carefully designed maximum instantaneous and mean rate

plausibility checks to detect and recover from erroneous

states.

The feedback from this initial case-study has led us to

apply the same strategy to more complex applications

involving the university’s Merlin 521 Flight simulator.

The intention is now to design and implement an aspect

oriented protective wrapper that will allow students to

experience physical motion within the flight simulator,

under the control of their own designed autopilot, with

much reduced physical risk.

This further probes the need for incorporating an error

masking strategy like Recovery Blocks and N-Version

Programming. An aspect oriented design version of these

strategies is also under consideration.

References

[1] AspectC++ project homepage: http://www.aspectc.org.

[2] Martin Hiller, et. al., “Executable Assertions for Detecting

Data Errors in Embedded Control Systems”, In

Proceedings of the International Conference on

Dependable Systems & Networks, 2000.

[3] Martin Hiller. "Error Recovery Using Forced Validity

Assisted by Executable Assertions for Error Detection: An

Experimental Evaluation", In 25th EUROMICRO, Milan,

Italy, 1999.

[4] Matthew Clegg and Keith Marzullo. "Predicting Physical

Processes in the Presence of Faulty Sensor Readings”,

Proceedings 27th International Symposium on Fault

Tolerant Computing, pp. 373-378, 1996.

[5] Paulo Asterio, et al. "Structuring Exception Handling for

Dependable Component-Based Software Systems”, In

Proceedings of the 30th EUROMICRO Conference

(EUROMICRO'04), 2004.

[6] Alessandro F. Garcia, Delano M. Beder, Cecilia M. F.

Rubira. "An Exception Handling Software Architecture

for Developing Fault-Tolerant Software" Proceedings of

the 5th IEEE HASE USA, pp. 311-32, November: 2000

[7] AspectJ project homepage: http://eclipse.org/aspectj/

[8] Fernando Castor filho, et al. "Error Handling as an

Aspect", In Workshop BPAOSD '07, 12-13 March,

Vancouver, BC, Canada, 2007.

[9] Alexander Romanovsky. "A Looming Fault Tolerance

Software Crisis", In ACM SIGSOFT Software

Engineering Notes Volume 32, No. 2, page 1, March

2007

[10] Kenich Murata, R. Nigel Horspool, Eric G. Manning,

Yasuhkio Yokote, and Mario Tokoro, ”Unification of

Compile-time and Run-time Metaobject Protocol”,

appeared in ECOOP Workshop in Advances in Meta

object Protocols and Reflection (Meta'95), Aug., 1995.

[11] Laura L. Pullum, "Software Fault Tolerance Techniques

and Implementation", Artech House Inc., 2001.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

