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Abstract— The research for the complex properties of 
visco-elastic material in various impact conditions have 
been interesting and difficult problems, especially in the 
auto-crash safety engineering process. In this paper an 
application of boundary-layer computing for the non-
Newtonian rate type impact hardening and share 
thinning phenomenon are discussed. The numerical 
scheme yields the convergent finite element analysis 
(FEA) solution and stable semi-discrete Galerkin-
Runge-Kutta(G-RK)  iteration. To develope the passive 
protection model based on the non-recover solid metal 
(phase1) impact, we are deepening our knowledge of 
soft material recover protection (phase2) concept. The 
high performance computing (HPC) tool enabled us to 
carry out the research on the passive safety analysis 
with engineering computing. 

Keywords—convergence, FEA, semi-discrete, 
transient, Garlerkin-RK  

I.   INTRODUCTION 
Several articles are useful sources of information of how 

to create a link between the crucial life saving virtual test 
and the celebrated dry honeycomb structure (phase1-P1) 
[1,7] with the visco-elastic plastic (phase2-P2) theory 
[5,8,9]. for example, [2,3,4,11] are standard texts giving 
mathematical and engineering perspectives upon the 
subject. Further more [7] gave specific computational 
method, in which the rate control of honeycomb strength is 
based on the non-recoverable crush densification. In this 
paper we introduce the development of recoverable 
controlled fluid-structure interaction soft solid concept（P2
）from 2 dimension [8] to 3 dimension [9,18] in positive 
definite FEA schemes.  

Shear thinning flow and yield stresses are common 
effects of “visco elasticity”. Weissenberg effects [11] 
include die swell are non-Newtonian. Wherein fluid 
emerges from a pipe and then undergoes a subsequent and 
sudden radial expansion downstream. Visco-elastic flow 
past a bubble leads to a distinct cusp at the rear stagnation 
point due to a long filament of highly stretched polymers in 
the bubble wake. An important point that one should take 
from this discussion is that non-Newtonian fluid effects can 
be varied and unusual. As a result, the literature on non-

Newtonian fluid mechanics contains many models of 
suspensions and polymeric fluids, each adding or 
encapsulating some observed effect. The first stable choice 
for the non-Newtonian viscosity has been made in the work 
by [11]. After Marchal and Crochet [2,3,16] the research 
had been focused on the reformulation of the momentum 
equation [4,19,20]. So that it includes the contribution of 
the micro-scopic effects towards the FEA solution of the P-
T/T equation in calculation of the macro-scopic non-
Newtonian stress flow [15,22,23]. In our paper, a specific 
numerical treatment can introduce the contribution of the 
micro-scopic shell element model [7] towards the currently 
validated macro-scopic non-Newtonian cubic element 
models.  

As one can see in the framework of the general 3 
dimension transient, positive, semi-discrete scheme [18,21], 
the objective derivative or the decoupled solution approach 
shall hide the expression of the term involving the 
convective derivative. On the basis of this argument it is 
important to carry out a numeric test for P2 in transient 3 
dimension positive definite condition in the practical 
interests. The numerical results of non-Newtonian flow and 
stress are obtained with the F90 programming on the 
platform of the HPC centre in the mathematics department. 

II.  The mathematical model 

By use of standard rheologic term in material physics, 
we may analyze the special feature of the non-Newtonian 
P-T/T equation, for the resistance to the extensional and 
simple shear   
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which gives best estimate of the stress over-shoot for the 
elongating element over-stretch known as non-slip impact 
hardening besides the simple shear. Here τ   is the stress 

field， D  is strain，u  is the deformation velocity field in 

e/p material ， η  is the viscosity ， λ  the relaxation 
constant， ε   is the elongation rate，ξ   is the shear rate, 
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ρ  is the density. The FEA calculation of the moving 
Maxwell type equation is at least 2nd-order of convergence 
by use of the Adini-type  elements. 

On the other hand, we calculated the large e/p 
deformation resulting from stress rate τ   known as flow 
shear thinning. That is the Cauchy conservation equation 
subject to the P-T/T stress effects, 

 
[ ]u u uρ τ ρ= ∇ • − • ∇  in Ω - 0Γ ，  （2.2） 

including the velocity field u  in region Ω - 0Γ . The initial 

boundary condition of stress is decided by static test )0(τ  

in the impact experiment and the impact speed )0(u ，that 

is: )0(τ = )(staticτ ； )0(u = 0xu on Γ⊂Γ0 ；where 

Ω  is the material volume，Γ  is the surface， 0Γ is the 
contacted surface (along x moving boundary direction). We 
treat the boundary (usually singular) between the contacting 
and non-contacting surfaces as the free surface or flow 
from the over-stretched perturbation. Extensional 
dominated flow of visco-elastic fluids are encountered in 
the laboratory tests (e.g. fiber spinning, spray, foam 
deformation and extensional rheometry).  
 

2.1    The discrete form  

The positive definite semi-discrete form of the Euler-
Galerkin method is the simplified step of the coupled 
Cauchy ，  P-T/T equations. The further higher order 
computation is based on the following analysis 
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By use of the residuals method， the weak form of the 
Cauchy equation is： 
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where，N  is the nodes number on each element. 
 
On each node ( , )i ix y  we have： 
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For each element the interpolation ( , )i x yφ are defined as
： 
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which is the Galerkin method by taking 

( , ) ( , )i ix y x yψ φ= . Here  ( , )i ix y  is the mesh node 
of finite element. 

If we use explicite form for fixed time from impact the 
integral form may be written as： 
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Finally we worked out the matrix form of the coupled 
Non-Newtonian flow equation： 
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It however, can be reversed into the related semi-discrete 
matrix form for higher order approximation (both in time 
and space)： 
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The 2nd order convergence is guaranteed with the 9 point 
bi-quadratic elements in the Adini finite element space 
domain; while keep the model geometry hence, the stiff 
matrix in a positive definite condition. Therefore it is a 
fixed time (0< t < t1 << ∞ ) stable numeric scheme 
(transient LBB). Further more the 2nd and 3rd order 
Runge-Kutta method have been tested with geometric 
dimensional controlled time steps to yield the accurate 
stable solution (the 4th and 3rd order solution are identical) 
in a sense of evolutionary stability. 
 

2.2    The boundary-layer analysis of the stress 
on the contact interface 

For contact thin-layer near boundary an anisotropic 
visco-elastic P-T/T equation is studied to analyse (an 
exponential impact term has been added to the UCM 
equation) the following semi-discrete equations, the Galerkin-
Runge-Kutta (2nd order G-RK or higher) scheme  
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and  Fp3 has been defined in the previors paper [9], 
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Where the initial value (n=0) is from the test and documented 

in the FEA boundary condition data base.  
Therefore the stress corrected Cauchy flow is 
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With the discrete component form： 
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The Runge Kutta-Galerkin method yields the higher 
precision solution with at least 2nd order of convergence.  
where τ  is the stress, D  is the strain, u  is the 

elastic/plastic deformation velocity,  η  is the viscosity,  λ  
is the relaxation constant, ε  is the elongation rate, ξ  is the 
shear rate,  ρ  is the density.  It enabled us to calculate the 
microscopic overstritching, i.e. elongation - shear stress. 
To solve the stability problem for the element over-stretch 
limite in the complex contacting boundary, we developed a 
technique with the combination of the cubic element and 
the shell element. It simulated large deformation 
successfully.  

Further more, in the boundary-layer, a two dimensional 
correction (modify) scheme is developed to overcome the 
three dimensional non-Newtonian complex boundary 

problem. Therefore reduce the dimensional computing and 
saved CPU time. 

The asymptotic analysis is followed to discover the 
numeric feasibility of the non-Newtonian solution by the 
multiscale perturbation method in the complex space. 
 

The above initial matrix form can be written as the 
simple nonlinear parabolic conservative type  
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( ( )x f u−∂ ) in the discontinuous Galerkin discretization. A 
minmode slope control function maybe introduced to 
strengthen the nonlinear stability which is based on the 
dimensional control of the time step and the mean value of 
jump conditions across the discontinuouse contact surfaces.  
To solve the above semi-discretized form, we adopt the 2nd 
and 3rd order Runge-Kutta methods which kept the original 
precision from the finite element approximation. The 
convergent solutions of velocity and stress are shown in the 
following figures (figure 1 (a,b)). The corresponding 
numerical Runge-Kutta correction process based upon the 
Galerkin prediction is as follows (k = 2, 3): 
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This is so called convex combination of Runge-Kutta 

method, where ,il ilα β are the non-negative 
coefficients. 
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                                           (b) 
Figure 1   (a) velocity of 3 numerical scheme show the high 
precision of the RK method; (b) stress components result of 
stable G-RK scheme. 
 

III.     Conclusion 
 

The semi-discrete scheme for the effective numeric 
correction yields the 2nd order convergent solutions in this 
paper. The posteriori estimate will be given in another 
paper for the numerical analysis and modeling. The 
dissipative flow and stress in the impact boundary-layer 
show the impact hardening and shear thinning behaviour 
correctly in the rheological sense. The velocity of 3 numerical 
scheme showing the high precision of the RK method which result 
in the coupled stable stress components of the G-RK scheme. It is 
integrated towards the currently validated macro-scopic 
non-Newtonian models based on our 3 diomensional FEA 
solver with a super-convergence interpolation.  
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