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Abstract—In this paper, we consider two finite ele-

ment model updating problem which incorporate the

measured modal data into the analytical finite ele-

ment model, producing an adjusted model on the

damping and stiffness, that closely match the experi-

mental modal data. We develop an efficient numerical

algorithm for solving this problem. The new algo-

rithm is direct methods which require O(nk2) flops.

Here n is the dimension of the coefficient matrices

defining the analytical model and k is the number of

measured eigenpairs.

Keywords: quadratic eigenvalue problem, Model updat-
ing

1 Introduction

Vibrating systems, such as automotives, bridges, high-
ways and buildings are usually described by distributed
parameters. However, due to the lack of viable computa-
tional methods to handle distributed parameter systems,
a finite element method is generally used to discretize
such systems to an analytical finite element model (see
[1, Chap 2] for details), namely, a second-order differen-
tial equation

Maq̈(t) + Caq̇(t) +Kaq(t) = f(t). (1.1)

HereMa, Ca andKa ∈ R
n×n are all symmetric and repre-

sent the analytical mass, damping and stiffness matrices,
respectively (with Ma being symmetric positive definite,
or Ma > 0), q(t) is the n× 1 vector of positions and f(t)
is the n × 1 vector of external force. It is known that
solving the homogeneous equation (1.1) (i.e. f(t) ≡ 0)
corresponds to solving the quadratic eigenvalue problem
(QEP)

Qa(λ)x = (λ2Ma + λCa +Ka)x = 0 (1.2)

by letting q(t) = eλtx. The scalar λ and the associated
vector x in (1.2) are called, respectively, eigenvalues and
eigenvectors of the quadratic pencil Qa(λ). Note that the
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QEP (1.2) has 2n finite eigenvalues because the leading
Ma is nonsingular.

In the finite element model (1.2) for structural dynamics,
the analytical mass and stiffness matrices are, in general,
clearly defined by physical parameters and evaluated by
static tests. However, the analytical damping matrix for
precise dissipative effects is not well understood, because
it is a purely dynamics property that cannot be measured
statically and must be determined by dynamic testing.
This makes the process of modeling and experimental
verification difficult. A common simplification is to as-
sume proportional damping, which seems to be sufficient
where damping levels are lower than 10% of critical [2].
Two new methods for damping matrix identification are
developed by [3] which produce accurate representative
damping matrices. They serve to integrate the theory
and practical application of damping matrix identifica-
tion. Therefore, it is assumed in this paper that accept-
able models of the analytical mass, damping and stiffness
matrices are available. It is our objective to incorporate
the measured modal data into the finite element model,
aiming to produce an adjusted finite element model on
the mass, damping and stiffness with modal properties
that closely match the experimental modal data.

Finite element model updating (FEMU) problems have
emerged in the 1990’s as a significant subject to the de-
sign, construction, and maintenance of mechanical sys-
tems. Model updating, at its most ambitious form, at-
tempts to correct errors in a finite element model. It
uses measured data such as natural frequencies, damping
ratios, mode shapes and frequency response functions,
which can usually be obtained by vibration test. In the
past decade, a number of approaches to the FEMU prob-
lem are proposed (see [1, 4], and references therein). For
example, Baruch [5], Baruch and Bar-Itzak [6], Bermann
[7], Bermann and Nagy [8] and Wei [9, 10, 11] pro-
posed various updating methods to correct the analytical
mass and stiffness matrices of undamped systems (i.e.
Ca = 0). In Datta [12], Datta et al. [13], and Datta and
Sarkissian [14], studies are undertaken toward a nonsym-
metric feedback design problem for second-order control
system. That consideration eventually leads to a partial
eigenstructure assignment problem for the QEP. A new
symmetric feedback design for the QEP using symmetric
eigenstructure assignment are recently developed in [15].
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The FEMU problem for damped systems was first pro-
posed by Friswell, Inman and Pilkey [2]. They considered
the mass matrix to be exact, and updated the damp-
ing and stiffness matrices by using the measured modal
data as a reference. Following the basic idea of [5, 6],
they minimized the difference between the analytical and
updated damping/stiffness matrices, subject to the con-
straints that the eigenmatrix equation is satisfied and the
damping/stiffness matrices are symmetric. That is, the
FEMU problem proposed by [2] can be formulated by the
following constrained optimization problem:

Problem FEMU. Find n × n real matrices C and K
to minimize the objective function

J =
1
2
ν‖M− 1

2
a (C − Ca)M

− 1
2

a ‖2F
+
1
2
‖M− 1

2
a (K −Ka)M

− 1
2

a ‖2F (1.3a)

subject to

MaΦΛ2 + CΦΛ+KΦ = 0, (1.3b)

C� = C, K� = K. (1.3c)

Here Ma, Ca and Ka are respectively the analytical mass,
damping and stiffness matrices, ν > 0 is a weighting pa-
rameter, and C and K are respectively the updated damp-
ing and stiffness matrices. The measured eigenvalue ma-
trix Λ and the associated eigenvector matrix Φ satisfy

Λ = diag(λ[2]
1 , . . . , λ

[2]
� , λ2�+1, . . . , λk) ∈ R

k×k (1.4a)

with k � n and

λ
[2]
j =

[
αj βj

−βj αj

]
, βj �= 0,

for j = 1, . . . , �, and

Φ = [ϕ1R,ϕ1I , . . . ,ϕ�R,ϕ�I ;ϕ2�+1, . . . ,ϕk] ∈ R
n×k.
(1.4b)

Throughout this paper, we assume that Λ in (1.4a) has
only simple eigenvalues and Φ in (1.4b) is of full column
rank.

For Problem FEMU, Friswell, Inman and Pilkey [2, 3]
proposed a updating method by using the Lagrange mul-
tiplier method to solve (1.3). The solutions C and K are
given by

C = Ca − 2
ν

MaRe(ΓΛΛΦ� +ΦΛΓ�Λ )Ma (1.5)

and

K = Ka − 2MaRe(ΓΛΦ� +ΦΓ�Λ )Ma, (1.6)

where ΓΛ ∈ C
n×k solves linear equation

2MaRe(ΓΛΦ� +ΦΓ�Λ )MaΦ

+
2
ν

MaRe(ΓΛΛΦ� +ΦΛΓ�Λ )MaΦΛ

= MaΦΛ2 + CaΦΛ+KaΦ. (1.7)

There are two weaknesses for the method. Firstly, the
solution ΓΛ in (1.7) is, in general, complex while the up-
dated matrices C and K are expected to be real symmet-
ric. Secondly, the dimension n of coefficient matrices in
the finite element model (1.2) is usually quite large. It
is impractical to solve the large and dense linear system
(1.7), which requires O(n3k3) flops.

In Section 3, we develop an efficient algorithm for solving
Problem FEMU in (1.3). The new algorithm is a direct
method, which avoids the Lagrange multiplier method in
[2, 3], requiring only O(n2k) flops. In practice, Ma, Ca

and Ka are usually sparse with O(n) nonzero entries, and
the computational cost is then reduced to O(nk2) flops.

2 Solving a PD-IQEP.

For a given matrix pair (Λ,Φ) ∈ R
k×k × R

n×k (k ≤ n),
where Λ and Φ are defined by (1.4a) and (1.4b), respec-
tively, we now consider the partially described inverse
quadratic eigenvalue problem (PD-IQEP):

Find a general form of symmetric matrices M , C and K,
with M being positive definite, that satisfy the equation

MΦΛ2 + CΦΛ+KΦ = 0, (2.1a)

M� = M > 0, C� = C, K� = K. (2.1b)

A general solution to the PD-IQEP is given in [15] as
follows:

Theorem 2.1. Let Φ have the QR-factorization

Φ = Q

[
R
0

]
≡ [Q1, Q2]

[
R
0

]
, (2.2)

where Q ∈ R
n×n is orthogonal with Q1 ∈ R

n×k and R ∈
R

k×k is nonsingular, and let S = RΛR−1. Then the
general solution to the PD-IQEP defined by (2.1a) and
(2.1b) is given by

M = Q

[
M11 M12

M21 M22

]
Q�, C = Q

[
C11 C12

C21 C22

]
Q�,

K = Q

[
K11 K12

K21 K22

]
Q�. (2.3)

Here the n × n symmetric positive definite matrix[
M11 M12

M21 M22

]
, the (n − k) × (n − k) symmetric sub-

matrices C22 and K22, and the (n − k) × k submatrix
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C21 = C�12 can be arbitrarily chosen. The symmetric sub-
matrices C11 and K11 and the submatrices K21 and K12

satisfy

C11 = −(M11S + S�M11 +R−�DR−1), (2.4a)

K11 = S�M11S +R−�DΛmR−1, (2.4b)

K21 = K�
12 = −(M21S

2 + C21S), (2.4c)

with

D = diag

([
ξ1 η1

η1 −ξ1

]
, . . . ,

[
ξ� η�

η� −ξ�

]
, ξ2�+1, . . . , ξk

)
(2.5)

and ξi and ηi being arbitrary real numbers.

In the rest of this paper we will utilize this result to de-
velop an efficient algorithm for solving problems FEMU
described in Section 1.

3 Solving Problem FEMU

To solve Problem FEMU, we first solve two optimization
problems. Let D and R be given in (2.5) and (2.2), re-
spectively. We denote

R−1 = [r1, . . . , rk] =

⎡
⎢⎣

r11 . . . r1k

. . .
...

0 rkk

⎤
⎥⎦ . (3.1)

Problem I. Given A = [a1, . . . ,ak], B = [b1, . . . ,bk] ∈
R

k×k and ν > 0, let

x = (ξ1, η1, . . . , ξ�, η�, ξ2�+1, . . . , ξk)
� (3.2)

be constructed from the matrix D in (2.5). Find x∗ to
minimize

f(x) =ν‖A+R−�DR−1‖2F + ‖B −R−�Λ�DR−1‖2F

=
k∑

j=1

fj(x), (3.3a)

where

fj(x) =ν‖aj +R−�Drj‖22
+ ‖bj −R−�Λ�Drj‖22. (3.3b)

Solution: Note that[
ξ η
η −ξ

] [
u
v

]
=

[
u v
−v u

] [
ξ
η

]
.

The vector Drj in (3.3b) can be rewritten as

Drj = Γjx, j = 1, . . . , k, (3.4)

where

Γj = diag
([

r1j r2j

−r2j r1j

]
, . . . ,

[
r2�−1,j r2�,j

−r2�,j r2�−1,j

]
,

r2�+1,j , . . . , rk,j

)
∈ R

k×k. (3.5)

Substituting (3.4) into (3.3b), and then differentiating
fj(x), we have

∇fj(x) =
(

∂fj

∂x1
, . . . ,

∂fj

∂xk

)�
=2ν

(
R−�Γj

)� (
aj +R−�Γjx

)
− 2

(
R−�Λ�Γj

)� (
bj −R−�Λ�Γjx

)
.

Consequently, we obtain

∇f(x) =
k∑

j=1

∇fj(x)

=2
k∑

j=1

[
ν
(
R−�Γj

)�
aj + νΓ�j

(
R�R

)−1
Γjx

− Γ�j ΛR−1bj + Γ�j Λ
(
R�R

)−1
Λ�Γjx

]
. (3.6)

Setting ∇f(x) = 0, we derive the linear equation for x:

Gx = b, (3.7)

where

G =
k∑

j=1

[
νΓ�j

(
R�R

)−1
Γj + Γ�j Λ

(
R�R

)−1
Λ�Γj

]
(3.8a)

and

b =
k∑

j=1

(
Γ�j ΛR−1bj − νΓ�j R−1aj

)
. (3.8b)

Since the function f(x) in (3.3a) must have an optimum,
the linear system of (3.7) is consistent, and therefore,
x = x∗ is solvable.

Problem II. Given E, F ∈ R
(n−k)×k, ν > 0 and S =

RΛR−1 as in Theorem 2.1, minimize

g(X) = ν‖E −X‖2F + ‖F +XS‖2F (3.9)

for X = [xij ] ∈ R
(n−k)×k.

Solution: Differentiating (3.9) yields

∂g

∂xij
= −2ν tr [(E −X)�eie�j ] + 2 tr

[
(F +XS)�eie�j S

]
,

= −2νe�i (E −X)ej + e�i (F +XS)S�ej ,
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and so we have

∇g(X) = 2
[−νE + νX + FS� +XSS�

]
. (3.10)

By solving ∇g(X) = 0, we get

X = (νE − FS�)(νI + SS�)−1. (3.11)

We now return to Problem FEMU. Let

Ca := M
− 1

2
a CaM

− 1
2

a , Ka := M
− 1

2
a KaM

− 1
2

a , (3.12a)

C := M
− 1

2
a CM

− 1
2

a , K := M
− 1

2
a KM

− 1
2

a , (3.12b)

Φ := M
1
2
a Φ, M := M

− 1
2

a MaM
− 1

2
a = I.

(3.12c)

Then it follows from (2.3)–(2.5) and Q = [Q1, Q2] that
Problem FEMU becomes

min
{
1
2
ν

∥∥∥∥Q�CaQ−
[

C11 C12

C21 C22

]∥∥∥∥
2

F

+
1
2

∥∥∥∥Q�KaQ−
[

K11 K12

K21 K22

]∥∥∥∥
2

F

}

=
1
2
[
f(D) + 2g(C21) + h(C22, K22)

]
, (3.13)

where

f(D) = ν‖A+R−�DR−1‖2F + ‖B −R−�Λ�DR−1‖2F ,

g(C21) = ν‖E − C21‖2F + ‖F + C21S‖2F ,

h(C22, K22) = ν‖C22 −Q�2 CaQ2‖2F + ‖K22 −Q�2 KaQ2‖2F ,

with

A = Q�1 CaQ1 + S + S�, B = Q�1 KaQ1 − S�S,
(3.14a)

E = Q�2 CaQ1, F = Q�2 KaQ1. (3.14b)

Clearly, (3.13) achieves its minimal value if and only if

min f(D), min g(C21), minh(C22, K22)

are achieved. Obviously, h(C22, K22) is minimized if and
only if

C22 = Q�2 CaQ2, K22 = Q�2 KaQ2. (3.15)

The optimization problems min f(D) and min g(C21) can
be solved via Problems I and II, with the matrices A, B,
E and F defined by (3.14).

In summary, we have the following algorithm.

Algorithm I. For a given ν > 0, an analytical quadratic
pencil Qa(λ) = λ2Ma + λCa + Ka and a matrix pair
(Λ,Φ) ∈ R

k×k × R
n×k as defined in (1.4), we seek the

symmetric solutions C and K to Problem FEMU.

1) Set Ca := M
− 1

2
a CaM

− 1
2

a , Ka := M
− 1

2
a KaM

− 1
2

a ,

Φ := M
1
2
a Φ;

2) Compute the QR-factorization of Φ :

Φ = [Q1, Q2]
[

R
0

]
and S = RΛR−1;

3) Compute C22 = Q�2 CaQ2 and K22 = Q�2 KaQ2;

4) Solve Gx = b for
x = (ξ1, η1, · · · , ξ�, η�, ξ2�+1, · · · , ξk)�, where

G =
k∑

j=1

Γ�j
[
ν
(
R�R

)−1
+ Λ

(
R�R

)−1
Λ�

]
Γj ,

b =
k∑

j=1

Γ�j
(
ΛR−1vj − νR−1uj

)
,

Γj = diag
([

r1,j r2,j

−r2,j r1,j

]
, · · · ,

[
r2�−1,j r2�,j

−r2�,j r2�−1,j

]
,

r2�+1,j , · · · , rk,j

)
,

[u1, · · · ,uk] = Q�1 CaQ1 + S + S�,

[v1, · · · ,vk] = Q�1 KaQ1 − S�S,

(r1,j , · · · , rk,j)� = R−1ej ;

5) Form D as in (2.5) and compute

C11 = −
(
S + S� +R−�DR−1

)
,

K11 = S�S +R−�DΛR−1,

C21 = Q�2
(
νCaQ1 −KaQ1S

�) (νI + SS�)−1,

K21 = −C21S;

6) Compute

C = M
1
2
a Q

[
C11 C12

C21 C22

]
Q�M

1
2
a ,

K = M
1
2
a Q

[
K11 K12

K21 K22

]
Q�M

1
2
a ,

where Q = [Q1, Q2].

Note that the linear system in step 4 is solvable, because
the cost function has global minimizer.

Remark 3.1. (i) In a finite element model, the analyt-
ical matrices Ma, Ca and Ka are usually very large and
sparse. Matrix Ma is, in general, diagonal or banded
and therefore easily invertible. In practice, the number
of measured eigenpairs is much less than the dimension
of the finite element model, i.e., k � n. The orthogonal
matrix Q = [Q1, Q2] in step 2 of Algorithm I can be com-
puted and stored in the form of a diagonal matrix plus a
low rank updating by Householder transformations. Sup-
pose the multiplication of the sparse matrix Ca or Ka to
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a vector needs O(n) flops. Then, the computational cost
of Algorithm I is O(nk2) flops. Obviously, if the analyt-
ical matrices are all dense, then the computational cost
of Algorithm I will increased to O(n2k) flops.

(ii) Using Algorithm I to solve Problem FEMU in (1.3)
is different from using (1.5)–(1.7). The latter needs to
solve a large (and possibly dense) nk × nk linear system
in (1.7), which is impractical when n is very large.

4 Numerical results

A set of pseudo simulation data was provided by the Boe-
ing Company for testing. After a model reduction tech-
nique, we get three symmetric analytical matrices Ma,
Ca and Ka with dimension 42 and Ma being positive def-
inite. The 2-norms of Ma, Ca and Ka are 3.9057 × 108,
1.2250× 108 and 2.0326× 108, respectively.

Test 1. Since Ma > 0, the quadratic pencil Qa(λ) =
λ2Ma+λCa+Ka has 84 finite eigenvalues. We first com-
pute all 84 eigenpairs of Qa(λ) by solving a generalized
eigenvalue problem of a linearization of Qa(λ). Then the
measured eigenpairs (Λa,Φa) ∈ R

14×14×R
42×14 are cho-

sen from those 84 computed eigenpairs of Qa(λ) so that
eigenvalues of Λa are nearest to the original. Actually,
the relative residual is estimated by

‖MaΦaΛ2
a + CaΦaΛa +KaΦa‖F

‖MaΦaΛ2
a‖F + ‖CaΦaΛa‖F + ‖KaΦa‖F

= 4.0671× 10−10.

Intuitively, the optimal solutions C and K for Problem
FEMU should be very close to Ca and Ka, respectively.
We use Algorithm I to solve Problem FEMU with ν = 1,
the relative errors of the updated matrices are estimated
by

‖C − Ca‖Fa

κ1
	 10−10,

‖K −Ka‖Fa

κ1
	 10−10,

where ‖ · ‖Fa
= ‖M− 1

2
a (·)M− 1

2
a ‖F and κ1 =

max{‖Ca‖Fa
, ‖Ka‖Fa

}. The relative residual of (Λa,Φa)
is estimated by

‖MaΦaΛ2
a + CΦaΛa +KΦa‖F

‖MaΦaΛ2
a‖F + ‖CΦaΛa‖F + ‖KΦa‖F

= 5.4135× 10−14.

Test 2. Consider the given measured eigenvalues

{λmj}14j=1

= { − 0.60939± 37.365ι,−0.73496± 36.707ι,
− 2.8832± 31.992ι,−1.8907± 61.437ι,
− 1.9112± 54.181ι,−2.2785± 39.639ι,
− 5.0387,−4.3416}. (4.1)

The eigenpairs of the experimental model are used to cre-
ate the experimental modal data. It is assumed that only

the fundamental mode characteristics are experimentally
determined and only s (s ≤ 42) components of eigen-
vector are measured. Suppose now we are given the mea-
sured mode shapes vj ∈ R

s, j = 1, . . . , 14. The measured
eigenvectors ϕj is estimated by

ϕj = DjD̃
†
jvj , j = 1, . . . 14, (4.2)

where Dj is defined by Dj = [λ2
mjMa+λmjCa+Ka]−1Ba

with the control influence matrix Ba ∈ R
n×t (t ≤ s).

The matrix D̃j consists of the first s rows of Dj , and
the superscript “ † ” denotes the pseudo inverse. We
first construct the eigenmatrix pair (Λ,Φ) associated with
(4.1) and (4.2) as in (1.4). Then we use Algorithm I to
compute the updated matrices C and K with ν = 0.1, 1.0
and 10, respectively. The numerical results are shown in
Table 4.1.

Table 4.1 relative residuals and optimal values

ν 0.1 1.0 10
r1 1.4725× 10−14 1.4826× 10−14 1.4859× 10−14

Here, the relative residual is defined by

r1 =
‖MaΦΛ2 + CΦΛ+KΦ‖F

‖MaΦΛ2‖F + ‖CΦΛ‖F + ‖KΦ‖F
.

From the accurate relative residuals in Tables 4.1, we see
that the new proposed methods have high efficiency and
reliability.

5 Conclusions

In this paper, we have developed two efficient numerical
algorithms for finite element model updating problems.
The new algorithm compute symmetric updated damp-
ing and stiffness, that closely match the experimental
modal data. The new algorithm is direct method which
are highly efficient and reliable, according to our numeri-
cal experiments. The algorithm produce encouraging re-
sults and interesting insight in a simple pseudo test suit
provided by the Boeing Company.
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