τ^* -Generalized Closed Sets in Topological Spaces

A.Pushpalatha, S.Eswaran and P.Rajarubi

Abstract- In this paper, we introduce a new class of sets called τ^* -generalized closed sets and τ^* -generalized open sets in topological spaces and study some of their properties.

Keywords: τ^* -g-closed set, τ^* -g-open set.

2000 Mathematics Subject Classification: 54A05.

1. Introduction

In 1970, Levine[6] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham[5] introduced the concept of the closure operator cl* and a new topology τ^* and studied some of their properties. S.P.Arya[2], P.Bhattacharyya and B.K.Lahiri[3], J.Dontchev[4], H.Maki, R.Devi and K.Balachandran[9], [10], P.Sundaram and A.Pushpalatha[12], A .S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb[11], D.Andrijevic[1] and S.N.Maheshwari and P.C.Jain[9] introduced and investigated generalized semi closed sets, semi generalized closed sets, generalized semi preclosed sets, α - generalized closed sets, generalized- α closed sets, strongly generalized closed sets, preclosed sets, semi-preclosed sets and α -closed sets respectively. In this paper, we obtain a new generalization of closed sets in the weaker topological space (X, τ^*) .

Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, int(A), cl(A), cl^{*}(A), scl(A), spcl(A), cl_{α}(A) and A^c denote the interior, closure, closure^{*}, semi-closure, semi-preclosure, α -closure and complement of A respectively.

Manuscript received December 18, 2008; revised March 2, 2009.

A.Pushpalatha and S.Eswaran are with the Department of Mathematics, Karpagam college of engineering, Coimbatore, India(e-mail:velu_pushpa@yahoo.co.in, rigeeas@yahoo.co.in

P.Rajarubi is with the Department of Mathematics, Emerald Heights college for women, Ootachamand, India.(e-mail: prabhurubi@gmail.com)

2. Preliminaries

We recall the following definitions:

Definition 2.1. A subset A of a topological space (X, τ) is called

- (i) Generalized closed (briefly g-closed)[6] if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (ii) Semi-generalized closed (briefly sg-closed)[3] if scl(A) ⊆ G whenever A ⊆ G and G is semiopen in X.
- (iii) Generalized semiclosed (briefly gs-closed)[2] if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (iv) α -closed[8] if cl(int(cl(A))) \subseteq A.
- (v) α -generalized closed (briefly α g-closed)[9] if $cl_{\alpha}(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (vi) Generalized α -closed (briefly $g\alpha$ -closed)[10] if spcl (A) \subseteq G whenever A \subseteq G and G is open in X.
- (vii) Generalized semi-preclosed (briefly gsp-closed)[2] if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.
- (viii) Strongly generalized closed (briefly strongly g-closed) [12] if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is g-open in X.
- (ix) Preclosed[11] if $cl(int(A)) \subseteq A$.
- (x) Semi-closed[7] if $int(cl(A)) \subseteq A$.
- (xi) Semi-preclosed (briefly sp-closed)[1] if $int(cl(int(A))) \subseteq A$.

The complements of the above mentioned sets are called their respective open sets.

Definition 2.2. For the subset A of a topological X, the generalized closure operator $cl^*[5]$ is defined by the intersection of all g-closed sets containing A.

Definition 2.3. For the subset A of a topological X, the topology τ^* is defined by $\tau^* = \{G : cl^*(G^C) = G^C\}$

Definition 2.4. For the subset A of a topological X,

(i) the semi-closure of A (briefly scl(A))[7] is defined as the intersection of all semi-closed sets containing A.

(ii) the semi-preclosure of A (briefly spcl(A))[1] is defined as the intersection of all semi-preclosed sets containing A.

(iii) the α -closure of A (briefly $cl_{\alpha}(A)$)[8] is defined as the intersection of all α -closed sets containing A.

3. τ^{*}-Generalized Closed Sets in Topological Spaces

In this section, we introduce the concept of τ^* -generalized closed sets in topological spaces.

Definition 3.1. A subset A of a topological space X is called τ^* -generalized closed set (briefly τ^* -g-closed) if cl^{*}(A) \subseteq G whenever A \subseteq G and G is τ^* -open. The complement of τ^* -generalized closed set is called the τ^* -generalized open set (briefly τ^* -g-open).

Theorem 3.2. Every closed set in X is τ^* -g-closed.

Proof. Let A be a closed set. Let $A \subseteq G$. Since A is closed, $cl(A) = A \subseteq G$. But $cl^*(A) \subseteq cl(A)$. Thus, we have $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^* -open. Therefore A is τ^* -g-closed.

Theorem 3.3. Every τ^* -closed set in X is τ^* -g-closed.

Proof. Let A be a τ^* -closed set. Let A \subseteq G where G is τ^* -open. Since A is τ^* -closed, $cl^*(A) = A \subseteq G$. Thus, we have $cl^*(A) \subseteq G$ whenever A \subseteq G and G is τ^* -open. Therefore A is τ^* -g-closed.

Theorem 3.4. Every g-closed set in X is a τ^* -g-closed set but not conversely.

Proof : Let A be a g-closed set. Assume that $A \subseteq G$, G is τ^* -open in X. Then $cl(A) \subseteq G$, since A is g-closed. But $cl^*(A) \subseteq cl(A)$. Therefore $cl^*(A) \subseteq G$. Hence A is τ^* -g-closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.5. Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}\}$. Then the set $\{a\}$ is τ^* -g-closed but not g-closed.

Remark 3.6. The following example shows that τ^* -g-closed sets are independent from sp-closed set, sg-closed set, α -closed set, preclosed set gs-closed set, gsp-closed set, α g-closed set and α -closed set.

Example 3.7. Let $X = \{a, b, c\}$ and $Y = \{a, b, c, d\}$ be the topological spaces.

(i) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}$, $\{a, b\}$ and $\{a, c\}$ are τ^* -g-closed but not sp-closed.

(ii) Consider the topology $\tau = \{X, \phi, \{a, b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sp-closed but not τ^* -g-closed.

(iii) Consider the topology $\tau = \{X, \phi\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}$ and $\{a, c\}$ are τ^* -g-closed but not sg-closed.

(iv) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sg-closed but not τ^* -g-closed.

(v) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}$,

 $\{b\}, \{c\}, \{a, b\} \text{ and } \{a, c\} \text{ are } \tau^*$ -g-closed but not α -closed.

(vi) Consider the topology $\tau = \{X, \phi, \{a\}, (a, b\}\}$. Then the set $\{b\}$ is α -closed but not τ^* -g-closed set.

(vii) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}$, $\{a, b\}$ and $\{a, c\}$ are τ^* -g-closed but not pre-closed.

(viii) Consider the topology $\tau = \{X, \phi, \{b\}, \{a, b\}\}$. Then the set $\{a\}$ is pre-closed but not τ^* -g-closed.

(xi) Consider the topology $\tau = \{X, \phi\}\}$. Then the sets $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{b, c\}$ and $\{a, c\}$ are τ^* -g-closed but not gs-closed.

(x) Consider the topology $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the sets $\{b\}, \{b, c\}$ and $\{b, d\}$ are gs-closed but not τ^* -g-closed.

(xi) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, (a, b\}\}$, where $X = \{a, b, c\}$. Then the sets $\{b\}$ and $\{a, b\}$ are gsp-closed but not τ^* -g-closed.

(xii) Consider the topology $\tau = \{Y, \phi, \{a\}\}$. Then the set $\{a\}$ is τ^* -g-closed but not gsp-closed.

(xiii) Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the set $\{a\}$ is τ^* -g-closed but not α g-closed.

(xiv) Consider the topology $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the sets $\{b\}, \{b, c\}$ and $\{b, d\}$ are α g-closed but not τ^* -g-closed.

(xv) Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, (a, b\}, \{a, c\}\}$. Then the set $\{b\}$ is τ^* -g-closed but not g α -closed.

(xvi) Consider the topology $\tau = \{Y, \phi, \{a\}, \{a, b, c\}, \{a, b, d\}\}$. Then the sets $\{b\}, \{b, c\}$ and $\{b, d\}$ are g α -closed but not τ^* -g-closed.

Theorem 3.8. For any two sets A and B, $\mathbf{cl}^*(A \cup B) = \mathbf{cl}^*(A) \cup \mathbf{cl}^*(B)$

Proof : Since $A \subseteq A \cup B$, we have $cl^*(A) \subseteq cl^*(A \cup B)$ and since $B \subseteq A \cup B$, we have $cl^*(B) \subseteq cl^*(A \cup B)$. Therefore $cl^*(A) \cup cl^*(B) \subseteq cl^*(A \cup B)$. Also, $cl^*(A)$ and $cl^*(B)$ are the closed sets Therefore $cl^*(A) \cup cl^*(B)$ is also a closed set. Again, $A \subseteq cl^*(A)$ and $B \subseteq cl^*(B)$ implies $A \cup B \subseteq$ $cl^*(A) \cup cl^*(B)$. Thus, $cl^*(A) \cup cl^*(B)$ is a closed set containing $A \cup B$. Since $cl^*(A \cup B)$ is the smallest closed set containing $A \cup B$ we have $cl^*(A \cup B) \subseteq cl^*(A) \cup cl^*(B)$. Thus, $cl^*(A \cup B) = cl^*(A) \cup cl^*(B)$.

Theorem 3.9. Union of two τ^* g-closed sets in X is a τ^* -g-closed set in X.

Proof : Let A and B be two τ^* g-closed sets. Let $A \cup B \subseteq G$, where G is τ^* -open. Since A and B are τ^* -g-closed sets, $cl^*(A) \cup cl^*(B) \subseteq G$. But by Theorem 3.8., $cl^*(A) \cup cl^*(B) = cl^*(A \cup B)$. Therefore $cl^*(A \cup B) \subseteq G$. Hence $A \cup B$ is a τ^* -g-closed set.

Theorem 3.10. A subset A of X is τ^* -g-closed if and only if $cl^*(A) - A$ contains no non-empty τ^* -closed set in X.

Proof: Let A be a τ^* -g-closed set. Suppose that F is a nonempty τ^* -closed subset of $cl^*(A) - A$. Now $F \subseteq cl^*(A) - A$. Then $F \subseteq cl^*(A) \cap A^c$, since $cl^*(A) - A = cl^*(A) \cap A^c$. Therefore $F \subseteq cl^*(A)$ and $F \subseteq A^c$. Since F^c is a τ^* -open set and A is a τ^* -g-closed, $cl^*(A) \subseteq F^c$. That is $F \subseteq [cl^*(A)]^c$. Hence $F \subseteq cl^*(A) \cap [cl^*(A)]^c = \phi$. That is $F = \phi$, a contradiction. Thus $cl^*(A) - A$ contain no non-empty τ^* -closed set in X.

Conversely, assume that $cl^*(A) - A$ contains no nonempty τ^* -closed set. Let $A \subseteq G$, G is τ^* -open. Suppose that $cl^*(A)$ is not contained in G, then $cl^*(A) \cap G^c$ is a non-empty τ^* -closed set of $cl^*(A) - A$ which is a contradiction. Therefore $cl^*(A) \subseteq G$ and hence A is τ^* -g-closed.

Corollary 3.11. A subset A of X is τ^* g-closed if and only if $cl^*(A) - A$ contain no non-empty closed set in X.

Proof : The proof follows from the Theorem 3.10. and the fact that every closed set is τ^* - closed set in X.

Corollary 3.12. A subset A of X is τ^* -g-closed if and only if $cl^*(A) - A$ contain no non-empty open set in X.

Proof: The proof follows from the Theorem 3.10. and the fact that every open set is τ^* -open set in X.

Theorem 3.13. If a subset A of X is τ^* -g-closed and A $\subseteq B \subseteq cl^*(A)$, then B is τ^* -g-closed set in X.

Proof: Let A be a τ^* -g-closed set such that $A \subseteq B \subseteq cl^*(A)$. Let U be a τ^* -open set of X such that $B \subseteq U$. Since A is τ^* -g-closed, we have $cl^*(A) \subseteq U$. Now $cl^*(A) \subseteq cl^*(B) \subseteq cl^*(CA) = cl^*(A) \subseteq U$. That is $cl^*(B) \subseteq U$, U is τ^* -open. Therefore B is τ^* -g-closed set in X.

The converse of the above theorem need not be true as seen from the following example..

Example 3.14. Consider the topological space (X, τ) , where $X = \{a, b, c\}$ and the topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ Let $A = \{c\}$ and $B = \{a, c\}$. Then A and B are τ^* -g-closed sets in (X, τ) . But $A \subseteq B$ is not a subset of $cl^*(A)$.

Theorem 3.15. Let A be a τ^* -g-closed in (X, τ). Then A is g-closed if and only if $cl^*(A) - A$ is τ^* -open.

Proof : Suppose A is g-closed in X. Then $cl^*(A) = A$ and so $cl^*(A) - A = \phi$ which is τ^* - open in X. Conversely, suppose $cl^*(A) - A$ is τ^* -open in X. Since A is τ^* -g-closed, by the Theorem 3.10, $cl^*(A) - A$ contains no non-empty τ^* -closed set in X. Then $cl^*(A) - A = \phi$ Hence A is g-closed.

Theorem 3.16. For $x \in X$, the set $X - \{x\}$ is τ^* -g-closed or τ^* -open.

Proof: Suppose $X - \{x\}$ is not τ^* -open. Then X is the only τ^* -open set containing $X - \{x\}$. This implies $cl^*(X - \{x\}) \subseteq X$. Hence $X - \{x\}$ is a τ^* -g-closed in X.

Remark 3.17. From the above discussion, we obtain the following implications.

A \rightarrow B means A implies B, A \rightarrow B means A does not imply B and A \rightarrow B means A and B are independent.

References

- [1] D.Andrijevic, Semi-preopen sets, Mat.Vesnik ,38 (1986),24-32.
- [2] S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717-719.
- [3] P.Bhattacharyya and B.K.Lahiri, Semi generalized closed sets in topology, Indian J. Math., 29 (1987), 375-382.
- [4] J.Dontchev, On generalizing semipreopen sets, Mem. Fac. Sci. Kochi Uni.Ser A, Math., 16 (1995), 35-48.
- [5] W.Dunham, A new closure operator for non-T₁ topologies, Kyungpook Math.J. 22 (1982), 55-60
- [6] N.Levine , Generalized closed sets in topology , Rend.Circ. Mat.Palermo, 19, (2) (1970), 89-96.
- [7] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly; 70 (1963), 36 – 41
- [8] S.N.Maheshwari and P.C.Jain, Some new mappings, Mathematica, Vol.24 (47) (1-2) (1982), 53-55.
- [9] H.Maki, R.Devi and K.Balachandran , Assiciated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ.(Math.) 15(1994),51-63.
- [10] H.Maki, R.Devi and K.Balachandran , Generalized α-closed sets in topology, Bull . Fukuoka Uni.. Ed. Part III, 42 (1993), 13-21.
- [11] A .S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [12] P.Sundaram, A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci. (FJMS) 3(4) (2001), 563-575