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Unsteady Free Convective Flow of a
Temperature Varying Electrically
Conducting Fluid

Krishna Gopal Singha and P. N. Deka

Abstract—An unsteady viscous incompressible free convective
flow of an electrically conducting fluid between two heated
vertical parallel plates is considered in presencef an induced
magnetic field applied transversely to the flow. Asuming that
the magnetic field induces a field along the linesf motion
which varies transversely to the flow and the fluidemperature
changing with time analytical solutions for velociy, induced
magnetic field and temperature distributions are olvained for
small and large magnetic Reynolds numbers. The skiftiction
on the two plates are obtained and plotted graphally. The
problem has also been solved for thermometric casee. when
the lower plate is adiabatic.

Index Terms- Hartmann number, induced magnetic field,
magnetic Reynolds number, skin friction, unsteady ree
convective flow.

I. INTRODUCTION

Borkakati and Srivastava[l] investigated free aotdd
convection and MHD flow. In a fluid, the variatioof
temperature causes variation of density. This in taises
force of buoyancy which governs the fluid motiomigtype
of unsteady fluid motion under the action of unifor
magnetic field applied externally reduces the hematsfer
and the skin friction considerably. This processeafuction
of heat transfer and skin friction of the fluid rwot has
various engineering applications such as nucleactoe,
power transformation etc. Borkakati and Chakraljaity

problem of dusty fluid between two parallel plategh
variable physical properties. Takhar[6] consideri
effect of radiation on free convection flow alongns-
infinite vertical plate in presence of transversagmetic
field. Very recently Singha[7] investigated theesff of heat
transfer on unsteady hydromagnetic flow in a paldlate
channel of an electrically conducting, viscous,
incompressible fluid. He found that velocity disttion
increases near the plates and then decreasesluedy at
the central portion between the two plates. Theqipal
numerical results presented in his work showedtti@flow
field is appreciably influenced by the applied metimfield.
Gourla and Katoch[&iscussed an unsteady free convection
flow through the vertical parallel plates in theepence of
uniform magnetic field.

In this paper, we are investigating the fullgveloped
free convection laminar flow of an incompressiblecous
electrically conducting fluid between two verticaarallel
plates in the presence of a uniform induced magregid
applied transversely to the flow. This induceseddfialong
the lines of motion which varies transversely te ffow.
The temperature of the fluid motion is assumed & b
changing with time. The analytical solutions forlogity,
induced magnetic field and the temperature distidng are
obtained for small and large magnetic Reynolds

numbersR . The skin frictions at the two plates are

investigated the nature and behaviour of a viscougbtained for different magnetic field parametersi are

incompressible, electrically conducting fluid oweflat plate
which is moving with a uniform speed in a quiesdénd in
presence of a uniform magnetic field. In their dason
they have found that for an incompressible fluidthbthe
fluid velocity and temperature gradually decreas#h the
increase of viscosity parameter. Elbashbeshy[3]istlheat
and mass transfer in the same problem in presefice
variable transverse magnetic field. The unsteadplpm in

a channel was studied numerically by Attia[4] withflow

plotted graphically. The rate of heat transfer also
obtained and are plotted graphically. The problems &also
been solved for thermometric case i.e. when thetqlate
is adiabatic.

Il. FORMULATION OF THE PROBLEM

0

We are considering an unsteady laminanvective
of a viscous incompressible  electrigall

temperature dependence viscosity. He also considergonducting fluid between two vertical parallglates. Let

steady state solution for velocity and temperatline his
study he analyzed the effect of viscosity paramdedined
as ratio of viscosity of the fluid at two different
temperatures. In the recent years, Attia[5] studi
unsteady magnetohydrodynamic flow and heat transfer
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X -axis be taken along vertically upward directiorotigh
the central line of the channel an¥ -axis is taken
perpendicular to theX -axis. The plates of the channel are
aty = £h.The uniform magnetic field B, is applied
parallel to Y -axis and the induced field so produced is
along X -axis that varies along -axis. The velocity and

magnetic field distributions areV :[u(y),0,0] and

B = I:B( y), Eb,O] respectively. HereB, and B(y) are
applied and induced magnetic field respectively.
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R, = (B9 T)/ (va,) is the Rayleigh number,
o R, = a, 14,0 is the Magnetic Reynolds number,

.
L

a, =k/(pC,) a, isthe thermal diffusivity,

gl K is the thermal conductivity,

» By v, =1/ (gu,) is the magnetic diffusivity,
vV = i/ p is the kinetic viscosity,
0 . O s the electrical conductivityp is the fluid density,

MU, is the permeability of the medium and
U is the co-efficient of viscosity.

The non-dimensional boundary condition becomes
t=0:u=0,b=1,T=1at y=t+h } "

In order to derive the governing equations of thebem t>0: u=1, b=B'/ B ,Tr =a™ at y=th
the following assumptions are made

Fig. | Geometnical Configuration

() the fluid is finitely conducting and the sgous V. SoLutions

dissipation and the Joule heat are neglected To solve (1) to (3) subject to the boundary é¢ood (5),
(i) Hall effect and polarization effect areghgible we apply the transformation of variables

(iii) initially (i.e. at timet = Q) the plates and the fluid are

at zero temperature (i.d. = 0) and there is no flow within U= f(Y)€™ . b=g(y) €" and T =g(y)e™  (6)
the channel '

(iv) at timet > 0, the temperature of the platg/ & £h) Substituting (6) in (1-3), we have from (1)

change according tol =T,(L—e™), where T, is a

02 R M2 o
constant temperature afdi=> O is a real number, denoting +nf + a P+ 99 _ 0. )
the decay factor and 6y2 R Re ReRnR)oy
(v) the plates are considered to be infinite afidthe
physical quantities are functions §f andt only. From (2)
2
ll. GoOVERNING EQUATIONS a g af =
- 5 +(MRmR) g+ (R Ry A =0 ®)
Under the above assumptions the non-dimensiondly oy
governing equations are as follows:
2 2 From (3)
R —
au:a;I_F( a jT.‘. L ﬂ) (1) aZw
ot gy R Re ReRmfk )0y VHHR)(FO 9)
o _ou [ 1 )o%b_ o
ot Re dy RnmRB 6y2 - The corresponding boundary conditions are :
= = for t=0:f=0,g=1,9p=1 at y=%1
oT _ 10°T x A (10)
E:Fj (3) fort>0:f=e ,gz(B'/ Eb)é] p=laty=#1
r oy The solutions of (7-9) subject to the boundarydittons
10
The following non-dimensional terms are used: (10) are
: 2 0 _ cos@y)
t“=ut/h*, b=B/ B ,y’=y/h, wy)=——— (11)
cosa
u”=u/ U, where U, :(ﬁg'ﬁ)ﬁ)/v , f(y) = C (cosh@y)- sinhg¢ y)+ G( cosl{ y4 sinb(y)
T = (T,-T)/ T, ) +C,(cosh@By)- sinhBy )+ G ( cosi®y 4 siniy))
The asterisks have been dropped with the ~A; cos(ay) (12)
understanding that all the quantities are now — e N 1 :
dimensionless. 9 Cssm( %)+ QCOS( X/_%)Jr Aa( Aan( e
where M =,/(B,>’o) / (pv) is the Hartmann number, (@*+A)B*+ A)A+(& - A)a(coshe y)
P =v/a, is the Prandtl number, -sinh@y))(8* + A )G - (cosh(zy ¥ sinh@y %,
R. =(y,h /v is the Reynolds number, +ﬁ’§cosh(8y )= sinhBy ))¢* + A X - B (cosify )
+sinh(By))@* + A)C,))) (13)
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where
a=\nk . A=R/(RR).
A =M?/(RR,P),

A =nR,F . A =RR.R . A =Aseca,
A =n+A-AA, A =AA-aA
Ay =A@+ - &y,

a:{\/—Aﬁ— —4nA3+A62}/\/§ ,

B={\/-%+m}/ﬁ :

A =@ - A)a” +A)B +A).
=_cosa(A,+ ca +p*+ (a2+,32),%)%)

' 2coshy @7 - 2 )+ 2+ A)
_ cosa(A+ a8+ @+ 57)A)A)

’ 2cosha @° - 5% )a*+ B+ A)
_cosa(A, +(-d+a'+(d+a?) A) %) |

C, =
’ 2coshB @ - B° )a* + B+ A)

cosa(A, +(—a“+a“+ (a2+a2),%) ,%)
2c08h8 @ - )7+ B A)
C, = —é(cosec(\/z)a (asinhag® + A’
(B% + A) A +(& - A)(-asinha (6% + A;)
(C,+C,) - BsinhB@* + A)C,+ C)))),

C, =

C, = —isecﬂ Y2@&@ - A)A @ coslr B>+ A
(C,-C,)+BcoshB @* + A )C,— C,))- 2A},

V.  THERMOMETRIC CASE ,UﬁgTo h\| au (19)
7 =- __
Let us assume that the lower plate is adiabatiche plate v ay y=+1
y=-1 is adiabatic (thermally insulated wall). The . -
. . _ using (16),we get
boundary conditions in the thermometric case are BaT h\[
f=0,g=1,p=1at y=+1 __| #P9%0N | df —nt (20)
_ A _ (14) v dy —+1
f=0,0=1¢'=0 aty=-1 L y=%
The solutions of (7-9) subject to the boundempditions VIl SKIN FRICTION FORTHERMOMETRIC CASE
(14) are given by The skin friction at the platey = +1 , is defined as
Qay) = cosfall+ y)i (15) r= {#du} (21)
cos(2) dy 141
f.(y) = C, (cosh@y)- sinhg y)+ G( cosl{ y§ sinb(y) L . .
+, (cosh@y )~ sinh@y )+ Go( cosily 3 sinii(y)’ The skin frlqtlon in t.he n_on-dlmensmnal form for
9 y ‘ y 0 y y). thermometric case is given by
—Acos@(lty), (16)
—C.si asinfa(l+ y)|A A HBIToh | dfy —
4 ()= G,sin WA+ G,cog X/?\}*W T = —( 0 d—te nt (22)
_sinhjay]A + coshfr y1A, sinh[By]A, + coshBy1A, 17) v y y=+1
a’+A B+ A
ISBN:978-988-18210-1-0 WCE 2009

where

A = A secpal | A, =aAC, +aAC,,
Ao, =aAC, —aAC; |

A =2A —a’) (A +a®) (A + B7)
A=A+ (B -at+ (@ + B A)A
As=2@’-p)a*+ B+ A)
Ag=A +(@" -a'+(@ +a’)A)A

C o =_ A, (L+coth[a] sin[a]® + cosfa]? tanhfa])

A (coshp] +sinh[a])
c o= (cosp]? seda] - coseclalsin[a]®) A,
i As
co-- (cos]? sedh[ B] + cosecH B]sin[a]*) A,
9 A&.S ’
C = 2cosect2f](coshiBlsin[al? - cosg]? sinh[B]) A, '
10 — A5

C, :i«mm (asinRal(@® + A)(B" + A)AA -2’ - A)
(sinh@](B% + A)A, +sinh[Bl(a® + A)AL)))

C. :i@ecl/l (asinal(a® + A)(B° + A)AA -2(a’ - A)
(cosh@r]( B2 + A,) A, +coshiB)(a® + A)A,)))

VI. SKIN FRICTION
The skin friction at the plateg = +1, is defined as

du
T= —{,u} 18]
dy J1+q

The non-dimensional skin friction after removihg
asterisks takes the form:
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VIIl.  RESULTS AND DISCUSSION On the basis of same consideration Fig. 2(a) to Kidj) and
The velocity distribution f against the distance from the Fig. 3(a) to Fig. 3(b) are plotted. The following.id

fixed plat lotted at diff ¢ valuesnmdaneti parameters are used:

Ixed plates y are plotted at different valuesngnetic Ry =10, RR=10, R =071, n=1.0. All these
Hartmann number ) for small and large magnetic : _

Reynolds numberRR ) in the Fig. 1(a) to Fig. 1(d). plotting are done by using MATHEMATICA V 3.0.

K li6mnm
Rm=0.7——

/ 1.1
1.08
. e S— S 0% T
o W 05 T 7 Fig-2(s) Induced magnetic field distabution for small Ren at
Es=10, M=15, Re=10; n=10,P=071,
g9
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Fig-1(b) Velocity distnbution for small Rm at
Ra=1.0,M=7 5.R=1.0; n=1.0,P=0.71,
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Fig.-1(2) Velociy distmbution for large R at
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Fig-1{d) Veloaity custnbution for large Rm af Fig-2d) Induced magnetic field distribution for large Rm at
Ra=10:M=? 5.F\¢=10, n=1.EI.P,=EI?]. Ea=]_|:I;M=?.5; Rﬂ=l I:I'I |1=1|:|1Pr=l:l"_.l"|_
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Fig -2{a) Variation nfmmnnﬁnlmm
m non-thermometric case at y=-+1
df
dy
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Fig-3(6)V aristion of friction famrg_;

in non-themmometric cage aty=-1

ft

Fig.-44) Velocity distribution  ££1in thermometric case for
gmall Rm st Bg=1.0, M=135;, E=10, n=1.0,P=0.71,

The velocity and induced magnetic field distribugoin
thermodynamic case are shown in Fig.4(a-d) to6iEgb).
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Fig-4%) Velocity distribution( £t1in thermometric case for
small Rm ot Bp=1.0; M=75, BE=1.0; n=1.0,P=071;
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Fig-4(c) Velocity distribution( £t)in thermometric case for
large Rm ot Bp=1.0, M=15, Re=1.0, n=10,P=071,

: ¢ Rpy=1500---
“ _sol .- FRm1600—
\xk“sﬂ f.r"-; RHFIED.U""

Fig-4d) Velocity distribution( £+7in thernmometric case for
large Rm ot =10, =75, E=1.0; n=1.0,P=0.71,

Fig.-3(a) Induced magnetic field distrbution for small Rm at
E=10, =15, Ee~10, n=1.0,F=071,

It
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o " -0.0015F  Rp=08 ------
Fig-5(b) Induced magnetic field distribution for small Rm at
Bs=1.0.M=75, Re=10, o=1.0,F=0.71,
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Fig-%c) Induced magnetic fisld distribution for large Fm at
Be=1.0; M=1.5; R=1.0; n=1.0;P=0.71;

gt
10
] 3 A
a5 -1 "
Bp=100 ---
Emg=150 ——
Ryy=20.0 ==+

Fig.-5(d) Induced magnetic fisld distibution for largs Fm at
Bz=1.0,M=75 ER&10, n=10P=071,
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Fig-6(5) Variation of friction factor 4ft
dy

in the thermometrc case aty=-1

The skin frictions at the platesy =+1 in the non-
thermometric and thermometric cases are showngr8-
b) and Fig.6(a-b) for different valuedM and Rm.The

results obtained from Fig. 1(a-d) to Fig. 6(a-be as
follows:

From Fig 1(a-d) and Fig.(a-d) 4 it is obsenthdt the
velocity distributions in thermometric case are @$in

Further, it is also observed that velocities atd@etral plane
of the channel in both the cases are maximum bposife
in direction. In Fig. 1(d) it is observed that ihet non-
thermometric case the velocity gradually decreag#s the

increase of Rm But in Fig. 4(d) it is observed that in the
thermometric case the velocity gradually increasik the
increase of R .

In Fig. 2(a-d) and Fig.5(a-d) the induced maigngéeld
strength are plotted against distance from theeplat point
equal distance from the plates and at points orplites. It
is observed that the induced field strength inrtfwemetric
case are almost opposite in nature to those in non-
thermometric case.

The effect ofM and R, on the frictional factor at the

plates in thermometric case are almost oppositeatare to
those in non-thermometric case. From Fig.3(a-d) and
Fig.6(a-b) it is observed that the skin-frictiorsfiincreases
then gradually decreases with the increasdvbf while in
thermometric case skin-friction gradually decreasitks the

increase ofM at y = 1.
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