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Abstract—The intensity dynamics of a five-emitter
laser array subject to a linearly decreasing injection
current are examined numerically. We have matched
the results of the numerical model to an experi-
mental AlGaAs quantum-dot array laser and have
achieved the same robust oscillatory power output
with a nearly π phase shift between emitters that was
observed in experiments. Due to the linearly decreas-
ing injection current, the output power of the waveg-
uide decreases as a function of waveguide number. For
injection currents ranging from 380 to 500 mA, the
oscillatory behavior persists with only a slight change
in phase difference. However, the fundamental fre-
quency of oscillation increases with injection current,
and higher harmonics as well as some fine structures
are produced.
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1 Introduction

Semiconductor laser arrays have been proposed as a
method for achieving increased optical power output [1–
4]. This approach has met with mixed results, as stan-
dard index guided arrays tend to favor the out-of-phase
state as shown by Botez et al [5]. In addition, spatial hole
burning and other physical phenomena make achieving a
phase-locked device difficult to obtain in practice. Yet,
the same nonlinear effects which destroy the phase-locked
state can give rise to a variety of dynamical behaviors.
Rahman, Winful, and others have shown that the types
of unstable array operations includes chaos and sustained
oscillations [2, 3]. We explore numerically a five-element
array operating in the oscillatory regime with an uneven
injection current. The application of Winful’s model to
such a device produces results which are consistent with
experimental results from an AlGaAs quantum-dot array
operating in the same regime. Of particular interest is
the frequency of oscillation, as a potential uses of this
sort of array is as an all-optical GHz oscillator for pho-
tonic integrated circuits.

The model of the array dynamics involves the coupling
of the optical field to the carrier density dynamics. This
model is derived from a simplification of Maxwell’s wave
equation where a TE mode, the slowly varying envelope
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approximation, and the effective index approximation are
made in succession [6]. Additionally, it is assumed that
the charge carrier density is uniform in the direction of
propagation. Overall, this model includes the effects of
evanescent coupling between waveguide, stimulated emis-
sion and absorption, spatial diffraction, carrier antiguid-
ing, losses due to the cladding, and losses due to reflec-
tions off the edges of the crystal. The carrier dynam-
ics are influenced by current injection, stimulated and
spontaneous emission and absorption, as well as spatial
diffusion. Overall, this model is able to reproduce the
same dynamics observed in cases of smaller arrays. Ad-
ditionally, there is good agreement between this model
and experimental results in such a five-emitter AlGaAs
array.

2 Governing Equations

The evolution of the optical field is a combination
of guided mode propagation, coupling between guided
modes, and pumping or loss due to charge carrier dy-
namics [3]. Where the effects of charge carrier dynam-
ics to be discounted, the laser could be thought of as a
simple dielectric waveguide, and the evolution could be
modeled by considering each cold-cavity supermode, the
eigenfunctions of the now linear operator, separately. The
mechanism for coupling between the various cold-cavity
supermodes is the charge carrier dynamics, which intro-
duce nonlinearities that couple these modes to produce
additional dynamics not seen in the linear case. Due to
importance of nonlinearities, the optical field and carrier
dynamics are solved in PDE form given by

∂U
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e
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where U is the envelope of the electric field, V is the
charge carrier density, τ is nondimensionalized time, and
x is the spatial dimension, which retains units of mi-
crons. The following scalings relate the nondimensional
quantities to physical quantities: U = (η2

egτs/2cηa)1/2ψ,
V = 1

2gτp(N − Nth), p(x) = 1
2gτp[j(x)τs − Nth], T =

τs/τp, g = Γacηa/η
2
e , 1/τp = (c/ηe)[(ηc/ηe)(1 − Γ)αc +

(2/L) ln(1/r)], Nth = N0 + 1/gτp, Lp = (cτp/2η2
ek0)1/2,

C = Γck0ηaτp/η
2
e , and τ = t/τp. In these equations, ψ is

the envelope of the complex electric field in the transverse
direction and N is the charge carrier density. The other
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values are readily obtainable from experiment, tables
of material properties, and the effective index method.
Typical values used in these numerical experiments are
Lp ≈ 7.5, C ≈ 8 × 103, τp ≈ 22, and T ≈ 45, but the
actual values depend heavily upon the material compo-
sition of the waveguide array, thickness and geometry of
the active and cladding layers, crystal length, and other
parameters. Typical values for different types of arrays
may be found in Ref. [3,7] for AlGaAs and InGaP arrays
respectively as well as many other sources.

Figure 1: The transverse structure of the five-emitter Al-
GaAs array being modeled. The model considers five
different emitters with sloping sides separated by SiO2.
The material properties of the array impact the param-
eters of the model and are thus pertinent even though
they do not appear explicitly in the governing equations.

3 Lasing Dynamics

The differential equations in (1a) and (1b) are quite gen-
eral and should apply to any semiconductor array that
does not invalidate the assumptions. The particular array
of interest is a five-emitter array with a sloping injection
current. This can be seen in cross-section in Fig. 1. Phys-
ically, the slope of the injection current may be caused by
injecting current into all the emitter via one large contact
rather than injecting the same current individually into
each emitter. Note that this model includes the material
properties of the array as they are built-in to the parame-
ters used. The values corresponding to these parameters
are shown in Table 1. Note that the listed value of injec-
tion current is the sum of the injection current of all five
waveguides and not an average value. With these val-
ues, the system of equations was evolved in time by use
of a time-splitting procedure and transparent boundary
conditions [3, 8, 9]. The time-split equations were indi-
vidually evolved using Crank-Nicolson which is uncon-
ditionally stable for diffusion operators such as those in
(1).

The parameters of greatest interest are the power output
of each emitter and temporal fluctuations of that out-
put. This array, like smaller arrays, is capable of sev-
eral different dynamical instabilities. One of the first
to be examined was the phase-locked state. This has
been previously studied in great detail. Like observed by
Botez et al., numerical experimentation has shown that
the five emitter array also favors the undesirable out-of-

Table 1: Parameter values for a five-emitter AlGaAs
waveguide array.

Parameter Description Symbol Units Value
Wavelength λ µm 1.178

Ridge Thickness W µm 2.0
Active Layer Thickness d µm 0.4

Cavity Length L µm 4500
Injection Current I mA 400

Cladding Loss αc µm−1 1.0× 10−3

Antiguiding Factor R 3
Carrier Diffusion Length Le µm 3

Gain Coefficient a 1.5× 10−8

Active Layer Index ηa 3.443
Cladding Layer Index ηc 3.12

Effective Index ηe 3.386
Insulator Index ηi 1.45

Carrier Lifetime τs ps 2000
Transverse Confinement

Factor Γ 0.75
End Mirror Reflectivity r 0.53

phase state [5]. Similar to the results of Winful [3], this
mode is favored when the separation between waveguides
is large and evanescent coupling weak. However, for sim-
ilar reasons to those given by Winful [10], as the evanes-
cent coupling increasing it begins to overwhelm the sys-
tem’s ability to maintain a steady state causing a phase
shift that leads to dynamics.

As coupling increases, it alters the system dynamics cre-
ating a series of sustained stable periodic oscillations. As
small perturbations off of the theoretical steady state,
such as those caused by the error in numerical solvers,
produce oscillatory behaviors, it appears that the system
now posses a limit cycle. Experimental results for a sim-
ilar system yielded asymmetrical power outputs. Due to
the sign-invariance of (1) with respect to x, it is not possi-
ble to obtain asymmetric solutions while assuming a uni-
form injection current and a symmetric lateral step index
function. While either of these could yield an asymmetric
solution, the former is of primary concern. Thus for this
array, it is assumed that the largest injection current is in
the first waveguide, with a linearly decreasing current in
successive waveguides. The results of this assumption are
shown in Fig. 2. The result is persistent oscillations that
are nearly π out of phase, similar to those seen by Winful
in the case of smaller arrays [2, 3]. New to these results
are unequal injection currents and the impact they have.

Self-evident in Fig. 2 is the lack of symmetry typically
found in these systems. This results in an unequal aver-
age power as well as an unequal amplitude of oscillations.
However, the frequency of oscillation remains similar for
the four waveguides that are above threshold. The fifth
waveguide is clearly exhibiting different behavior. This is
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Figure 2: Numerical simulation of power fluctuations at
400 mA of injection current. The power output for emit-
ters 1-5 are given in the plots labeled (a)-(e) respectively.
The decrease in average power with respect to waveguide
number is due to the slope of the injection current. The
slope has altered both the average power and the ampli-
tude of oscillation of each emitter.

due to the emitter barely exceeding the threshold current.
The amplitude of oscillation can be controlled by chang-
ing the slope of the injection current or the separation
between waveguides. Increases in both tend to decrease
the amplitude of oscillations. That the system settles to
a common frequency should be expected. In the absence
of charge carrier dynamics, this would be reduces to a rel-
atively simple five-emitter dielectric waveguide problem
which has been studied at length [11, 12]. In that prob-
lem, only a few of the modes are typically excited over
the duration of the problem. The presence of the charge
carriers couples these modes resulting in the temporal dy-
namics observed. Yet, as each supermode includes power
in all five waveguides, it makes sense the oscillation fre-
quency in each is roughly the same.

For a particular set of parameters matching experiment,
the phase difference between waveguides remains fairly
constant at π over injection currents ranging from 380
mA to 500 mA. The fundamental frequency of oscillation
increases in that range from around 0.75 GHz to 1.5 GHz
as shown in Fig. 3. In addition to the fundamental fre-
quency, two higher harmonics are also visible, starting at
1.5 GHz and approximately 2.25 GHz respectively. These
increase at roughly twice and three time the rate of the
fundamental frequency, as one would expect from har-
monics. There are also streaks of frequency components
that exist between the harmonics. These streaks are nei-
ther at the proper frequency nor increase at the proper

rate to be harmonics. The dynamics of these streaks is
a source of disagreement between numerics and experi-
ment. In experiment, the fine structure crosses the fun-
damental frequency and harmonics. As shown in Fig.
3, these crossings do not occur. Apart from that, there
is good qualitative and quantitative agreement between
theory and experiment.

Figure 3: Frequency spectrum vs injection current ob-
tained numerically. This matches the general pattern
observed in experimental results with an increasing fun-
damental frequency of oscillation and higher harmonics.
Additionally, there exists fine structure that appears be-
tween the harmonics.

In addition to the injection current, the frequency of os-
cillation is sensitive to a wide range of parameter values
including the separation of the waveguides and the level
of index guiding. Minor changes in these parameters tend
to have a larger impact upon the resulting dynamics of
the system. Indeed, altering the spacing of the waveg-
uides from 7 µm to 9 µm results in the system changing
from stable to oscillatory and then to chaotic behavior,
traversing the entire range of potential behaviors. Even a
shift of one waveguide is capable of altering the dynam-
ics of the system. Therefore, between the combination
of altering injection currents and individual waveguide
separations it should be possible to achieve almost any
desired oscillatory power output. The combination of
the physical design of the waveguide array as well as the
level of injection current provides a method for tuning the
output of the array. Alterations in the structure of the
array produce large scale changes in dynamics as shown
by Winful [3], while changes in injection current produce
relatively fine scale changes in the output frequency.
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4 Conclusions

The output power dynamics of a five-emitter array have
been analyzed and several different dynamical behaviors
observed. While the stable out-of-phase, oscillatory, and
chaotic behaviors have been achieved, the oscillatory be-
havior is of most interest as it lends itself to the pro-
duction of all-optical GHz oscillators among other ap-
plications. Here, GHz frequency oscillation rates were
achieved, with the fundamental frequency ranging from
0.75 GHz at 380 mA to 1.5 GHz at 500 mA. The sec-
ond and third harmonics have two- and three-times the
frequency respectively. Additionally, the output power
between adjacent waveguides differs by a phase shift of
approximately π that persists throughout the range of
currents studied. It should be noted that these behav-
iors depend heavily upon the parameters chosen for the
system and a wide range of potential behaviors exists.
For instance, it is easy to obtain systems that are chaotic
for almost all injection current values greater than the
threshold. Indeed, the majority of parameter space yields
undesirable behavior. Yet, with parameter values that
are physically plausible for a five-emitter AlGaAs array,
numerical results with good quantitative agreement to ex-
perimental results were obtained. The present limitations
of this model include its inability to accurately capture
the fine structure of the frequency components observed
in experiment. While the fine structure is observed, it be-
haves differently than the structure seen in experiments.
Due to the relatively low powers in those frequencies, and
the decibel scale used in Fig. 3 the streaks have a mi-
nor impact on the resulting intensity dynamics. There-
fore, the model accurately captures the intensity dynam-
ics that occur, and thus can be used in the future as a
design tool for such arrays.
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