
 
 

 

  
Abstract — The tensor calculus, used in a suitable manner, 

permits to establish the expression of the electromagnetic 
energy-momentum tensor (energy and quantity of motion 
tensor) in various cases interesting in the Theory of Relativity, 
and which have not been examined in the known works. In 
literature, in the works devoted to the Theory of Relativity, this 
problem has been especially treated for the vacuum medium. 
Here the author presents a new approach to the analysis of the 
case of linear but non-homogeneous electrically and 
magnetically polarized media. The problem of passing from a 
system of reference to another one in motion, and the selection 
of the volume density force formulae which are in accordance 
with the Theory of Relativity are also examined.  
 

Index Terms—Tensor calculus, Energy-momentum tensor, 
Theory of relativity.  
 

I. INTRODUCTION 
  In Electrodynamics and in the Theory of Relativity, the 
energy-momentum tensor has a very important role [1-9]. 
Besides the widely accepted fact that this tensor allows a 
compact way of writing the conservation laws of linear 
momentum and energy in Electromagnetism, it permits to 
calculate the energy and stress, in any reference frame in 
terms of another reference frame, and especially in terms of 
the reference frame in which the substance is at rest. 
 The developments of the principles of the concerned 
mathematical methods, started from a relatively long time, 
are still examined nowadays [10-14]. 

Many works have been devoted to this subject. However, 
in the most treated case of empty space as well as in the case 
of a space filled with substance, the transition from a 
reference frame to another in motion has not been carefully 
analysed. In this paper, a new approach to the analysis of the 
tensor will be presented namely, the construction of the 
tensor, the case of non-homogeneous electrically and 
magnetically polarized substances and the transition from a 
reference frame to another one. 
 

II. VOLUME DENSITY OF THE ELECTROMAGNETIC FORCE 
An analysis of the electromagnetic forces in the frame of 

classical theories can be found in certain works among which 
ref. [15]. In the works concerning the Theory of Relativity 
the analysis of electromagnetic forces is achieved from the 
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Lorentz formula of the force, e.g. [5, p. 133]. In the present 
paper, we shall start from the general formula of the 
electromagnetic force acting on a substance submitted to an 
electromagnetic field. It is derived from the principle of 
conservation of energy and the Theory of Relativity, through 
certain approximations, [8, p. 157]. The reasoning has led to 
the following formulae, both also deduced in various other 
manners and accepted by several authors: 
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where the symbols are the usual ones. In this case, the 
quantities ε and μ are considered as constant, but strongly 
depend on the point of the substance, hence varying in space. 
We shall denote the three axes of a Cartesian system of 
co-ordinates, by the indices i, j, k. In the further analysis, we 
shall consider formula (1), and we shall mention the 
modification occurring due to the supplementary term, if 
using formula (1 b). Relations (1 a) and (1 b) are considered 
as having three and four components, respectively: 
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given by the following expressions: 
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 Henceforth, we shall write the expressions of the 
electromagnetic field state quantities by using the scalar and 
vector potentials V and A, in the well-known form: 
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 The relations (4 a, b) may be written using a set of four 
quantities iA  as follows [10]: 
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 Further, we shall have in view the two sets of equations of 
the electromagnetic field (in the order used by H. A. Lorentz 
which differs from that of J. C. Maxwell) in a 
four-dimensional continuum space-time, where the symbols 
are those of [10, 11]. For the sake of facility, we shall recall 
these symbols in the case of empty space (vacuum). 
 The equations of the first group are given by the 
relationship: 
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(6 a-m)

where the subscript index k in the relation (6 l) refers to the 
usual three-dimensional vectors, whereas indices i and j 
refer, as previously, to tensor components. All situations in 
which the index k has this role will be mentioned. It is to be 
noted that the components of the form iiF  and iiG  vanish. 
 Introducing the axis coefficients of the Galilean reference 
frame, iie , [10], we can write: 

( ) ( ) ( ) ( ) .

;;0
;]3,1[,1,1;

2
3

2
2

2
1

2
0

00

AAAAAA

jie
ieeAeAeA

i
i

ij

ii
s

is
i

iii

−−−=

≠∈∀=
∈∀−====

(6 n-r)

 The equations of the second group are given by the 
relationship: 
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 In order to emphasize the tensors ijF  and ijG , 

equation (3) can be written in the form below, taking into 
account relations (6), for instance, relation (8 d) has been 
written taking into account relations (6 a, b, h, l): 

( ) ( )

( ) ( )

( ) ;
2
1

2
1

;

;;

0
0

2
3

0
04

20

0

1

k
uv

uvk
u

uk

ku
u

k

kuj

uj

kkj

j

k

x
GG

x
FFcf

FG
x

f

F
x
G

fF
x

G
f

∂

μ∂
−

∂

ε∂
−=

∂

∂
=

∂

∂
=

∂

∂
=

 
(8 a-d)
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 Summing up, side by side relations (8 a) and (8 b), we 
shall get: 
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III. EXPRESSION OF THE ENERGY-MOMENTUM TENSOR  
 We shall now consider the case of a linear isotropic 
electric and magnetic polarization of the considered medium, 
with the relative permittivity rε  and the relative 
permeability rμ , which vary with the position of the 
considered point. 
 In order to express the force component as the derivative 
of an expression, we shall write relation (10) in the form: 
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Now, we shall modify the second term of the right-hand 
side as follows: 
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(12 b)

 Summing up the left-hand and the last right-hand sides of 
the two expressions (12 a, b), and taking into account (7), we 
get: 
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 Replacing (13) into (11), we shall obtain: 
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and by expanding the second term:  
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 Replacing the symbols of (8 e, f) into (15), we shall get: 
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 We are now going to calculate the components of kf  
which, according to the types of the included electromagnetic 
field state quantities, can be of the following types: electric, 
magnetic, mixed. 
 In order to facilitate the understanding of the formulae, 
we shall successively use the tensor notation and the vector 
notation. We shall use for indices numbers, instead of letters, 
because it is easier to perform the computation and to avoid 
the use of the summation convention when not allowed. 
Then, the indices will be subscripts. We adopt 3=k . We 
shall not write the terms containing factors of the form uuF  

or uuG , because these factors are equal to zero.  
 We shall express the electric component considering 
expression (15). We take into account the relation:  
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The electric component will be:  
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and: 
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Then, we shall express the magnetic component 
considering expression (15). In this respect, we shall take 
into consideration the following relation: 
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 The magnetic component is: 
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[ ]3,1, ∈∀ vu , and vu <  in the products of the form uv
uvGG  

or uv
uv FG . There follows: 
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and 
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or in tensor form: 
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[ ]3,1, ∈∀ vu , and vu <  in the products of the form 

uv
uvGG . 
Returning to previous letter indices, and summing side by 

side relations (17 b), (18 d) and (8 d), we get: 
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 We now express the mixed components considering the 
first term of expression (15) and the expression (8 c). The 
mixed components are given by: 
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and similarly: 
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Returning to previous letter indices, we get: 
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Adding up relations (19), (20 a) as well as (8 d), which 
has still not been used, we obtain: 
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 By summing up, side by side relations (17 c), (18 e),       
(20 a), we can write: 
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and after summing up with relation (8 d), we get: 

( ) ( ) ( )

( ) ( )

( ) [ ] .,3,1,,

2
1

2
1

0
0

0
0

0
0

sum

vuvuFG
x

FG
x

FG
x

FG
x

FG
x

f

kv
v

uv
uv

kku
uv

v

u
u

kk
v

vk

<∈∀
∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
=

 (23 b)

 
If we started from formula (1 b) we would have added 

also in the right hand side of relation (23 b) the expression 
(20 b) and then the final relation would differ. 

The force relation may be written in a compact form as 
follows: 
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or in a more compact form as follows: 
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 Finally, the component of the volume density of the force 
along the k-axis can be expressed as:  

j
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where the expression: 
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represents the energy-momentum tensor, also called tensor of 
energy and quantity of motion.  

 
Remarks 
1° If the media were not assumed isotropic and had not 

linear electric and magnetic polarization, the transformation 
from relations (17 a) and (18 a), respectively, will be no 
longer possible. 

2° Having established the expression of the tensor in one 
reference frame, we can obtain its expression in any other 
one. The calculation is to be performed by using the group of 
co-ordinate transformations, for instance the Lorentz 
transformations. We consider useful to make the following 
remark. The Lorentz transformation group has been 
established for empty space (vacuum), and the involved light 
velocity is that in vacuo. In the present case, we consider that 
polarization exists, and in this case, also all transformations 
of the quantities are like those established by Minkowski. But 
a doubt appears, namely if the transformations are still valid 
because in any media the velocity of light is different. For 
this reason, the Lorentz transformation group may be 
considered as an assumption that is so better the smaller will 
be the space regions filled with substance. 
 

IV. EXPRESSION OF THE ENERGY-MOMENTUM TENSOR  

 1° Component 0
0W . Using formula (26), and after 

performing the calculation, passing from tensor notation to 
vector notation, we get: 
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which represents the volume density of the electromagnetic 
energy, and the quantities iiii BHDE ,,, are considered as 
three-dimensional vector components. 

2° Component j
kW  for both cases jk ≠  and jk = . We 

use, as above, formula (26), and after performing the 
calculation, we shall pass from tensor notation to vector 
notation. In the first case, remarking that j and k are different, 
we should keep only the first term of expression (26). We get: 
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 In the second case, for more clarity, instead of letter 
indices, we shall use number indices, considering a certain 
case, namely for 2== kj : 
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 (28 b)

and: 

( ).
2
1

2222
222

2 BHDE ⋅+⋅−+=−= BHDEWW (28 c)

The reason, for which we put numbers instead of letter 
indices, has been to avoid the usage of summation 
convention when not allowable. The results above, expressed 
by relations (28 a) and (28 c), represent the Maxwell stress 
tensors. 
 3° Component jW0 . As previously we shall use, formula 
(26), and after performing the calculation, we pass from 
tensor notation to vector notation. We begin with one 
example and then express the general form. There follows: 
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and the general form is as expected: 
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which apart the denominator c, represents the j-component of 
Poynting vector, i.e., the rate of the radiated flux of energy 
per unit of surface and unit of time. 

4° The force along the time axis. We use formula (24 a) or 
(24 b), and after performing the calculation, we pass from 
tensor notation to vector notation. There follows: 
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and: 
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 Calculating the first and second parentheses, we get: 
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(33 a)

where, for 2=i , 21211 HGGi == , the vector H being 
contravariant, and according to relation (6 l), 

3
1221 HHH −=−= , since 23

1 HH = . Calculating the 
derivatives of the first two parentheses, we get: 
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Handling similarly the next two parentheses and 
summing up all terms, there follows: 
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For the last parenthesis we obtain: 
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 Replacing (35) into (34), we get: 
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and hence: 
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where we replace the derivative with respect to time with the 
known Maxwell relations, as follows: 
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We get: 
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which represents the component of the force along the time 
axis. 
 The set if  represents a four-vector, according to 
formulae (24)-(26), or (1a) and (39), indeed the product of 
the set if  and the four-vector velocity yields a scalar. 
 

V. CONCLUSION 
 The aim of this paper has been to establish the expression 
of the energy-momentum tensor within the frame of the 
Theory of Relativity, starting from the general formula of the 
electromagnetic force acting on a substance submitted to an 
electromagnetic field. The case of linear non-homogeneous 
media has been examined. 

This subject has not been treated in the known papers or 
works published so far. Meanwhile, the analysis carried out 
has shown that no all-general known formulae are in 
agreement with the tensor energy momentum expression 
when passing from a system of reference to another one. If 
the media were not assumed as isotropic and had not linear 
electric and magnetic polarization the deduction carried out 
for obtaining the tensor would not be possible. 
 The expression of the tensor established in one system of 
reference can be obtained in any other system of reference 
owing to the group of Lorentz transformation and the 
Minkowski transformation formulae using this group. 
However, a doubt appears because the velocity of light in any 
media is different, and the Lorentz transformation has been 
established for this case. 
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List of Symbols 

Ai – component of the four-vector potential; 
Bij – twice covariant tensor component of magnetic 

induction, yielding Bk ; 
Bk – component of the magnetic induction along axis k, 

considered as a usual three-dimensional vector; 
c – velocity of light in empty space, supposed to be 

constant; 
Di – component of the electric displacement, considered 

as a usual three-dimensional vector; 
Di – contravariant component of the electric displacement 

yielding Dk or Di considered as a usual 
three-dimensional vector; 

Ei – covariant component of the electric field strength, as 
well as component of the electric field strength along 
axis i as a usual three-dimensional vector; 

Ei – contravariant component of the electric field 
strength; 

eii – axis coefficient, for the axis i of the Galilean 
reference frame; 

Fij – component of the covariant tensor of rank 2, yielding 
Bij for i and j non-zero; 

Fi0 – component of a covariant tensor, deriving from the 
previous one, and yielding the component Ei of the 
electric field strength, considered as a usual 
three-dimensional vector; 

fi – four-vector of the volume density of the 
electromagnetic field; 

Gij – contravariant tensor of rank 2, yielding Hij; 
Gi0, 
Gi0 

– covariant and contravariant tensor, deriving from the 
previous one, and yielding the component Di; 

Hk – component of the magnetic field strength along axis 
k, considered as a usual three-dimensional vector; 

Ji – component of a contravariant four-vector represents 
the density of the conduction electric current; 

V – electric potential; 
xi – co-ordinate along axis i; 
δij – symbol equal to unity for equal indices, and equal to 

zero for different ones (Kronecker symbol); 
ε – electric permittivity, in vacuo it is ε0; 
μ – magnetic permeability, in vacuo it is μ0; 
ρv – volume density of the electric charge. 
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