
 
 

 

  
Abstract— The paper presents an application of the Complex 

Variable Boundary Element Method (CVBEM) to solve a 
boundary value problem over two-dimensional multiply 
connected regions, in fact for the problem of a potential fluid 
flow around objects. The CVBEM is a powerful numerical tool 
for solving generally two-dimensional boundary value problems 
in which appear complex functions, and it represents a 
numerical application of Cauchy Integral Theorem.  

For solving the boundary integral the problem is reduced at 
there can be used different kinds of boundary elements. In this 
paper there are used linear boundary elements, so the 
geometries involved are approximated by polygonal lines and 
for the approximation of the unknowns there are used linear 
basis functions. The CVBEM’s advantage over other 
techniques, pointed out by the present paper, is the fact that 
when this method is applied the approximation exactly solves 
the equation, so using this method good approximations can be 
found. A computer code based on this method is developed and 
numerical results are obtained for some particular cases.  
 

Index Terms—complex boundary element method, fluid flow, 
linear boundary element,  multiply connected domain 
 

I. INTRODUCTION 

By use of the Cauchy integral equation for complex 
variable analytic functions it is obtained an advanced 
mathematical approach for solving two-dimensional 
potential problems as those that arise when we study a fluid 
flow around one or more objects. The theoretical bases of this 
method where put around 1983 by Hromadka and its 
collaborators [1], [2].  

The advantage of this method over the other methods that 
can be used to solve the same problems comes from the fact 
that the numerical application in this case is analytic and so 
the approximation exactly solves the equation, while the 
other numerical techniques develop only inexact 
approximations for the equation.  
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The paper presents an application of the complex variable 
boundary element method (CVBEM) for solving a boundary 
value problem over two-dimensional triply connected 
regions, in fact for the problem of a potential fluid flow 
around two objects.  

The application of CVBEM for solving problems over 
two-dimensional multiply connected regions has a great 
practical importance in computational fluid dynamics 
because, for example, there can be developed streamlines 
within a river with flows past bridge piers, and so it can be 
used to design the bridge pier alignment so as to minimize the 
disturbance. This method can be also successfully applied in 
other kind of problems of continuum mechanics as heat 
conduction [3], cracks, etc 

  

II. THE CVBEM  NUMERICAL STATEMENT 

Let us consider a uniform steady potential bi-dimensional 
river flow of an inviscid fluid past some arbitrary obstacles, 
first we consider only two, of boundary 21, ΓΓ . We want to 
determine the perturbation induced by the presence of the 
obstacles and the action exerted by the fluid on them applying 
the CVBEM. Using dimensionless variables, we have: 

( ) 0, =Δ yxϕ on Ω , (1) 

where ( )yx,ϕ is the perturbation potential, Ω  is he fluid 
domain, a multiply connected domain enclosed by 
boundaries 21

* ,, ΓΓΓ  ( 21
* ΓΓΓ=Γ ∪∪ ), 

and the boundary conditions:  0=⋅ ngradϕ  across the flow 

boundaries on *Γ  and on 21 ΓΓ ∪ , where ( )yx nnn ,  is the 

outward unit normal at the corresponded  boundary, and by 
defining an arbitrarily chosen potential drop between the 
upstream and downstream boundaries, noted 1ϕ  and 2ϕ .    

Using the complex variable iyxz += , the perturbation 
potential ( ) ( ) ( )zizzf ψϕ += , where ( )zψ  is the stream 
function, ϕ  and ψ  being related by the Cauchy-Riemann 

equations
yx ∂

∂
=

∂
∂ ψϕ  

xy ∂
∂

−=
∂
∂ ψϕ , real-valued functions that 

are harmonic functions for z : 0,0 =Δ=Δ ψϕ , we get a 
holomorphic function  f                                                                            

We consider an approximation of the problem boundary 

Γ  as a polygonal line ∪
N

k
k

1=

Γ=Γ , where kΓ is a straight line 

segment with nodal points at the end-points, noted 1, +kk zz , 
situated on the real boundary. 
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We choose m nodal points 1,1, += mjz j , on the outer 

curve *Γ , 11 zzm =+ , numbered in a counterclockwise 

direction, n nodes 2,2, +++= nmmjz j , on the inner 

curve 1Γ , 22 +++ = mnm zz , located in a clockwise direction 

and p nodes 3,3, +++++= pnmnmjz j , on the other 

inner curve 2Γ , 33 +++++ = pnmnm zz , located in a clockwise 

direction too. 

So we have: ,
1

* ∪
m

k
k

=
Γ=Γ ,

1

2
1 ∪

++

+=

Γ=Γ
nm

mk
k ∪

2

3
2

+++

++=

Γ=Γ
pnm

nmk
k . 

The next step in using the CVBEM is to develop a 
continuous approximation of the unknown ( )zf  on Γ  by 

the global trial function ( ) ( )∑
+++

++≠
+≠

=
=

2

2
1

1

pnm

nmk
mk

k
kk FzNzF , Γ∈z  , 

where ( )zNk  is a continuous function representing the 
influence of  over elements that have kz  as nodal point, so 
over 1−Γk  and kΓ . 

The approximation we construct is ( ) ( )
ζ

ζ
ζ

π
d

z
F

i
zf ∫

Γ
−

=
2
1~

, 

Ω∈z , the integral been taken in the counterclockwise 
direction. 

Because ( )zF  is continuous on Γ , ( )zf
~

 is analytic in Ω  
as an extension of the following theorem given in [1] to 
multiply connected regions, and so its real and imaginary 
parts satisfy Lapalce equation over Ω . 

Theorem 1. 
Let Γ be a simple closed contour with finite length L and 

simply connected interior Ω . Let ( )ζh  be a continuous 
function on Γ . Then ( )zw~  is analytic in Ω , where ( )zw~  is 

defined by the contour integral ( ) ( )
ζ

ζ
ζ

π
d

z
h

i
zw ∫

Γ
−

=
2
1~ . 

III. LINEAR BASIS FUNCTION 

We get the following discretized form: 

 ( ) ( )
ζ

ζ
ζ

π
d

z
F

i
zf

pnm

nmk
mk

k
k

∫
+++

++≠
+≠

=
Γ

−
=

∪
2

2
1

1

2
1~

 

In this paper we consider on each boundary element a 
linear approximation for ( )zF . After some calculus we get 
for the nodal point j the following linear basis function: 

( )

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

ΓΓ∉

Γ∈
−

−

Γ∈
−

−

=

−

+

+

−
−

−

jj

j
jj

j

j
jj

j

j

z

z
zz
zz

z
zz
zz

zN

∪1

1

1

1
1

1

,0

,

,

 

 
We further get: 

( )

∫∫

∫

ΓΓ +

+

+

++

Γ

−−
−

+
−−

−
=

=
−

jk

k

z
d

zz
FF

z
d

zz
FzFz

d
z

F

jj

jf

jj

jjjj

01

1

01

11

0

ζ
ζζ

ζ
ζ

ζ
ζ

ζ

. 

The two integrals from the right side of the above relation 
can be analytically evaluated: 

( )

( ) ( )0
0

01

0

01

0
0

ln,1lnln

1

zjji
zz
zz

zz
zz

znl
z

d

j
j

j

j

j

z

z
j

j

j

=++
−
−

=
−
−

=

=−=
−

++

Γ

+∫

θ

ζ
ζ

ζ

 

( )

( ) ( ) ( )

( )jji
zz
zz

z

zzznlzzz

z
dzzz

z
d

j

j

jj
z

zjj

jj

j

j

jk

,1ln
0

01
0

1001

0
01

0

1

++
−
−

+

+−=−+−=

=
−

+−=
−

+

++

Γ
+

Γ

+

∫∫

θ

ζ

ζ
ζ

ζ
ζζ

, 

where ( )jj ,1+θ  is the central angle between straight line 
segment joining points jz  and 1+jz  to central point 

Ω∈0z . 
So we deduce: 
 

( ) ( )

( ) ( )0
1

10

0
1

0
11

0

zl
zz

zz
F

zl
zz

zz
FFFd

z
F

j
jj

j
j

j
jj

j
jjj

k

−
−

−

−
−

−
+−=

−

+

+

+
++

Γ
∫ ζ

ζ
ζ

  

 
Finally we get: 
 

( ) ( )

( ) ( )[ ] ( )0

2

2
1

1 1

1001

2

2
1

1
10

~2

zl
zz

zzFzzF

FFzfi

j

pnm

nmj
mj

j jj

jjjj

pnm

nmj
mj

j
jj

∑

∑

+++

++≠
+≠

= +

++

+++

++≠
+≠

=
+

−
−−−

+

+−=π

   

Because the first term cancels we deduce: 
 

( )
( ) ( )[ ] ( )0

2

2
1

1 1

1001
0

~
2 zl

zz
zzFzzF

zfi j

pnm

nmj
mj

j jj

jjjj∑
+++

++≠
+≠

= +

++

−

−−−
=π  

and further  
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( ) ( )∑
+++

++≠
+≠

=
=

2

2
1

1
00 ,~2

pnm

nmj
mj

j
jj FzAzfiπ  

with ( ) ( ) ( ) ( ) ( )0
1

10
01

1

10
0 zl

zz
zz

zl
zz
zz

zA j
jj

j
j

jj

j
j −

−
−

−

−
=

+

+
−

−

− , 

when 3,2,1 +++≠ nmmj . 
For ,1=j  

 ( ) ( ) ( ) ( ) ( )01
12

20
0

1

0
01 zl

zz
zzzl

zz
zzzA m
m

m
−
−

−
−
−

= , 

for ,2+= mj   

( ) ( ) ( )

( ) ( )02
23

30

01
12

10
02

zl
zz

zz

zl
zz

zzzA

m
mm

m

nm
nmm

nm
m

+
++

+

++
+++

++
+

−
−

−

−
−

−
=

 

 
for ,3++= nmj   

( ) ( ) ( )

( ) ( )03
32

20

02
23

20
03

zl
zz

zz

zl
zz

zz
zA

nm
nmpnm

pnm

pnm
pnmnm

pnm
nm

++
+++++

+++

+++
+++++

+++
++

−
−

−

−
−

−
=

, 

From the above relation we can write the complex function 
( )0

~
zf  in terms of nodal values of F , in fact in terms of jF , 

so: 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΨΨΨΨΨΦ

ΦΦΦΦ
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΨΨΨΨΨΦ

ΦΦΦΦ
=

+++++++++

+++

+++++++++

+++

21212

1210

21212

1210
0

,...,,...,,,...,,
,...,,...,,,...,,~

,...,,...,,,...,,
,...,,...,,,...,,~~

pnmnmmmpnm

nmmm

pnmnmmmpnm

nmm

z
i

mz
zf

ψ

ϕ
 

(*) 
where 0z is in Ω . 

As we can see the global function is continuous on Γ , and 
we also have: ( ) jjjj iFzF Ψ+Φ== , the nodal values for 

the approximation function. We also have the nodal value of 
the solution function for the complex 
potential, jjj if ψϕ += , where ( )jj zff = , and jj ψϕ , are 

the values of the state and the stream functions. 
For given values of jjj iF Ψ+Φ=  at each jz the above 

relation gives f
~

an analytic function in Ω , and ( )f
~

Re  and 

( )f
~

Im  both satisfy the Laplace equation in Ω . If 

( ) ( )zfzf =
~

 on Γ , then ( ) ( )zfzf =
~

 in Ω , and so ( )zf
~

 is 
the solution to the original boundary value problem. 

We need to evaluate, using a limit process the value of 
( )0

~
zf  for Γ∈0z .  

IV. THE LIMIT PROCESS AND THE EXPRESSIONS OF THE 
COEFFICIENTS 

Concerning the calculation of the coefficients, it is 
performed by imposing effectively Γ∈→ izz0  in the 

previous expressions of jA . Except the elements 1−Γi  and 

iΓ  which become singular, this implies a simple replacement 

of 0z  with iz . With regard to the coefficients coming from 
the singular integral, we do as in [4], we shall use the 
evaluation of a principal value (in the Cauchy sense) of a 

singular integral of the type ( )
( )∫

Γ
−

ξ
ξ

ξ d
z

f  and the equality 

( ) ( ) 0lnlim =−−
→

pp
zz

zzzz
p

(see [5]). 

So we get: 
 

( ) ( ) ( ) ( ) ( )ij
jj

ji
ij

jj

ji
ijji zl

zz
zz

zl
zz
zz

zAA
−

−
−

−

−
==

+

+
−

−

−

1

1
1

1

1  

 ( )
ij

ij
ij zz

zz
z

−

−
= +1lnln , ( )

ij

ij
ij zz

zz
z

−

−
=

−
−

1
1 lnln , 

for 3,2,1 +++≠ nmmj , and 1,,1 +≠≠−≠ jijiji  

( )
jj

jj
j

zz
jj zz

zz
zAA

j −

−
==

−

+

→ 1

1
0 lnlim

0
, 

( )
1

11

1

11
01 lnlim

10 −

−+

+

+−

→
− −

−

−

−
−==

− jj

jj

jj

jj
j

zz
jj zz

zz
zz

zz
zAA

j

 

( )
11

1

1

11
01 lnlim

10 +−

+

−

−+

→
+ −

−

−

−
==

+ jj

jj

jj

jj
j

zz
jj zz

zz
zz
zz

zAA
j

  

  
Similarly we get the other coefficients:  

 ( ) ( ) ( ) ( ) ( )i
i

im
m

mi
ii zl

zz
zzzl

zz
zzzAA 1

12

2

1
11 −

−
−

−
−

== ,  

for 2,1, ≠≠≠ iimi  

( )
1

12
0111 lnlim

10 zz
zzzAA

mzz −
−

==
→

 

 
( )

m

mm
m zz

zz
zz
zzA

−
−

−
−

−=
1

2

12

2
1 ln , 

 
( )

2

21

21

2
12 ln

zz
zz

zz
zzA

m

m
−
−

−
−

=  

 

( ) ( ) ( )

( ) ( )im
mm

mi

inm
nmm

nmi
imim

zl
zz

zz

zl
zz

zzzAA

2
23

3

1
12

1
2,2

+
++

+

++
+++

++
++

−
−

−

−
−

−
==

,  

 
for 3,2,1 +≠+≠++≠ miminmi  

21

23
2,2 ln

+++

++
++ −

−
=

mnm

mm
mm zz

zzA  
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( )
12

13

23

31
1,2 ln

+++

+++

++

+++
+++ −

−
−
−

−=
nmm

nmm

mm

mnm
nmm zz

zz
zz
zzA  

( )
31

32

32

13
3,2 ln

+++

++

++

+++
++ −

−
−

−
=

mnm

mm

mm

nmm
mm zz

zz
zz

zzA  

( ) ( ) ( )

( ) ( )inm
nmpnm

pnmi

ipnm
pnmnm

pnmi
inminm

zl
zz

zz

zl
zz

zz
zAA

3
32

2

2
23

2
3,3

++
+++++

+++

+++
+++++

+++
++++

−
−

−

−
−

−
==

for 4,3,2 ++≠++≠+++≠ nminmipnmi , 

32

34
3,3 ln

+++++

++++
++++ −

−
=

nmpnm

nmnm
nmnm zz

zzA  

( )
23

24

34

42

2,3

ln
+++++

+++++

++++

+++++

+++++

−
−

−
−

−=

=

pnmnm

pnmnm

nmnm

nmpnm

pnmnm

zz
zz

zz
zz

A
 

( )
42

43

43

24

4,3

ln
+++++

++++

++++

+++++

++++

−
−

−
−

−=

=

nmpnm

nmnm

nmnm

pnmnm

nmnm

zz
zz

zz
zz

A
. 

All the coefficients are so evaluated and they depend only 
on the nodal points. We consider in the above relations 

izz =0 , 2,1,2,1 ++≠+≠+++= nmimipnmi .  
As i takes all these values we obtain a system of m+n+p 

relations, in terms of complex numbers of the following 
form:  

( ) ( ) ∑∑
+++

++≠
+≠

=

+++

++≠
+≠

=
==

2

2
1

1

2

2
1

1
,~2

pnm

nmj
mj

j
jji

pnm

nmj
mj

j
jiji FAFzAzfiπ  

Using the complex expression of jF and ( )jj zff ~~
= : 

jjj iF Ψ+Φ=  and jjj if ψϕ ~~~
+= , we deduce: 

( ) ( )∑
+++

++≠
+≠

=
Ψ+Φ=+

2

2
1

1

~~2
pnm

nmj
mj

j
jjjiii iAii ψϕπ  (**) 

If ( )yx,ϕ  and ( )yx,ψ  are known continuously on Γ , 
and jjjjj iiF ψϕ +=Ψ+Φ= for all the nodes than 

( ) ( )zfzf ~
=  on ΓΩ∪ . Generally ( )yx,ϕ  and ( )yx,ψ  

are known only on portions of Γ . If there are N nodes let 
suppose that there are 1N  nodes where we know 

( )yx,ϕ and 2N nodes where we know ( )yx,ψ , 

21 NNN += .  The next step is to impose in the above 
relations the boundary conditions: ii ϕϕ ~= for all the nodes 
where the potential is known and ii ψψ ~=   for the nodes 
where the stream function is known. Doing so we generate 
implicit expressions of the unknown nodal values as 
functions of all the unknown variables, so m equations of m 
unknowns which can be solved using the computer. The 
computer is also used for getting the coefficients of the 

matrix involved. The evaluated nodal values enclosed to the 
original set of known nodal values completely define ( )zf

~
 

on Γ∪Ω . 
Taking into account that jijiji ibaA +=  

( ( )jiji Aa Re= , )Im( jiji Ab = ) and isolating the real and 

the imaginary parts in system (**) we obtain the following 
linear system of equations, in terms of real unknowns and 
coefficients: 

⎪⎩

⎪
⎨
⎧

+=

−=−

jjijjii

jjijjii

ab

ba

ψϕϕπ

ψϕψπ
~2

~2
 

1,1,1,1, +≠+≠++= mjminmji  

Imposing that: ii ϕϕ ~= for the 1N  nodes where the 
potential is known and ii ψψ ~=   for the nodes where the 
stream function is known, and after solving the system we 
obtained the other unknown values for both functions.  

So all the nodal values are then known. By replacing them 
in relation (*) we get the analytic function in Ω , f

~
, which 

satisfies relation ( ) ( )zfzf =
~

 on Γ and therefore the relation 

( ) ( )zfzf =
~

 in Ω . So ( )zf
~

 is the solution to the original 
boundary value problem. 

V. NUMERICAL RESULTS 

The problem of the evaluation of the system coefficients, 
and also that of finding its solution can be easily solved with 
a computer code made in MATHCAD.  

Numerical results can be obtained for any shape for the 
two obstacles, but in order to make a checking and to validate 
the computer code  we consider a particular case, the problem 
of a potential flow between two plane parallel walls around a 
circle, because it is a problem with a known solution. It has a 
great importance because it offers us the possibility to make a 
comparison between the exact solution and the numerical 
one. A computer code in MATHCAD is made in order to find 
the numerical solutions for different positions of the obstacle, 
and they are represented in the graphics below. 
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In the following figure there are represented the numerical 
results obtained for different position of two circular 
obstacles situated between the walls. Both have the same 
radius, and their centers are situated at the same distances 
from the walls, but different distances between their centers 
have been considered.  
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