
AGEI Method For Diffusion Equations

Bin Zheng1 ∗, Qinghua Feng2 ∗

Abstract—In this paper, we present a high order im-
plicit scheme for one dimension heat conduction equa-
tions. The scheme is proved to be unconditionally
stable. Based on the scheme a class of parallel alter-
nating group explicit iterative method (AGEI) is con-
structed, and convergence analysis for the method is
done. Numerical experiments show that the method
is effective in computation.
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1 Preface

In this paper, we will consider the following initial bound-
ary value problem:

⎧⎪⎨⎪⎩
∂u
∂t

= ∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = f(x),
u(0, t) = g1(t), u(1, t) = g2(t).

(1.1)

In the last twenty years, researches on parallel numerical
methods are getting more and more popular. D. J. Evans
presented an AGE method for diffusion equations in [1]
originally. The AGE method is soon developed to solve
other partial differential equations by many authors such
as in [2-5]. The developed methods are all intrinsically
parallel, and can obtain absolute stability in computa-
tion. But we notice that almost all the methods have no
more than two order accuracy for spatial step.

In the section 2 of this paper, we will present a sym-
metry three time level implicit scheme with accuracy of
order four in spatial step and order two in time step.
Then an AGEI method will be constructed based on the
scheme. In section 3 and 4, convergence analysis and
stability analysis for the AGEI method are given respec-
tively. In section 5, results of numerical experiments for
the AGEI method are presented.

2 The Construction Of AGEI Method

The domain Ω : (0, 1)×(0, T ) will be divided into (m×N)
meshes with spatial step size h= 1

m in x direction and
the time step size τ= T

N . Grid points are denoted by
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(xi, tn) or (i, n), xi = ih(i = 0, 1, · · ·, m), tn = nτ(n =
0, 1, · · · , T

τ ). The numerical solution of (1.1) is denoted
by un

i , while the exact solution u(xi, tn) . If we approach
(1.1) at (i, n) with center-difference scheme:

un+1
i − un−1

i

2τ
=

1
4h2

[(un+1
i+1 − 2un+1

i + un+1
i−1 )

+2(un
i+1 − 2un

i + un
i−1) + (un−1

i+1 − 2un−1
i + un−1

i−1 )] (2.1)

Applying Taylor’s formula to the scheme at (xi, tn), then

it follows (∂u
∂t

)n
i + τ2

6 (∂3u
∂t3

)n
i = (∂2u

∂x2 )n
i + h2

12(∂4u
∂x4 )n

i +

O(τ2 + h4).

Considering ∂2u
∂t2

= ∂4u
∂x4 , we have (∂u

∂t
)n
i + τ2

6 (∂3u
∂t3

)n
i =

(∂2u
∂x2 )n

i + h2

12(∂2u
∂t2

)n
i + O(τ2 + h4). We approach (∂2u

∂t2
)n
i

with un+1
i − 2un

i + un−1
i

τ2 . Combining with (2.1) we have
the following scheme:

un+1
i − un−1

i

2τ
=

1
4h2 [(un+1

i+1 −2un+1
i +un+1

i−1 )+2(un
i+1−2un

i +un
i−1)

+(un−1
i+1 − 2un−1

i + un−1
i−1 )]− h2

12
(
un+1

i − 2un
i + un−1

i

τ2 )

(2.2)

The truncation error of (2.2) can easily be obtained as
O(τ2 + h4).

Let r = τ
2h2 , then we rewrite (2.2) as below:

−run+1
i−1 + (1 +

1
12r

+ 2r)un+1
i − run+1

i+1 = 2run
i−1

+(
1
6r
−4r)un

i +2run
i+1+run−1

i−1 +(1− 1
12r

−2r)un−1
i +run−1

i+1 .

(2.3)

Let Un = (un
1 , un

2 , · · · , un
m−1)

T , p = 1 + 1
12r , q =

1− 1
12r , then from (2.1) we have

AUn+1 = Fn. here Fn = BUn+CUn−1+[2run
0 +run−1

0 +
run+1

0 , 0, · · · , 0, 2run
m + run−1

m + run+1
m ]T .

A =

⎛⎜⎜⎜⎜⎝
p + 2r −r
−r p + 2r −r

... ... ...
−r p + 2r −r

−r p + 2r

⎞⎟⎟⎟⎟⎠
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B =

⎛⎜⎜⎜⎜⎝
1
6r − 4r 2r

2r 1
6r − 4r 2r

... ... ...
2r 1

6r − 4r 2r
2r 1

6r − 4r

⎞⎟⎟⎟⎟⎠

C =

⎛⎜⎜⎜⎜⎝
q − 2r r

r q − 2r r
... ... ...

r q − 2r r
r q − 2r

⎞⎟⎟⎟⎟⎠
A,B,C are all (m− 1)× (m− 1) matrixes.

The alternating group iterative method will be con-
structed in four cases as follows:
(1)m = 4k + 1, k is an integer.
Let A = 1

2(G1 + G2),
here G1 = diag(G11, · · · , G11)(m−1)×(m−1),
G2 = diag(G21, G11, · · · , G11, G21)(m−1)×(m−1).

G11 =

⎛⎜⎜⎝
p + 2r −r 0 0
−r p + 2r −2r 0
0 −2r p + 2r −r
0 0 −r p + 2r

⎞⎟⎟⎠
G21 =

(
p + 2r −r
−r p + 2r

)
Then the alternating group explicit iterative method
(AGEI1) can be constructed as below:{

(ρI + G1)U
n+1

k+ 1
2

= (ρI −G2)U
n+1
k + F̃ n

(ρI + G2)U
n+1
k+1 = (ρI −G1)U

n+1

k+ 1
2

+ F̃ n k = 0, 1, · · ·

(2.4)

Here F̃n = 2Fn.
(2)m = 4k + 3, k is an integer.
Let A = 1

2(G1 + G2),
here G1 = diag(G11, · · · , G11, G21)(m−1)×(m−1),
G2 = diag(G21, G11, · · · , G11)(m−1)×(m−1)

Then the AGEI2 method can be constructed as below:{
(ρI + G1)U

n+1

k+ 1
2

= (ρI −G2)U
n+1
k + F̃ n

(ρI + G2)U
n+1
k+1 = (ρI −G1)U

n+1

k+ 1
2

+ F̃ n k = 0, 1, · · ·

(2.5)

(3)m = 2k + 1, k is an integer.
Let A = 1

2(H1 + H2),
here H1 = diag(H11, · · · , H11)(m−1)×(m−1),
H2 = diag(H21, H11, · · · , H11, H21)(m−1)×(m−1)

H11 =
(

p + 2r −2r
−2r p + 2r

)
, H21 = p + 2r

Then the AGEI3 method can be constructed as below:{
(ρI + H1)U

n+1

k+ 1
2

= (ρI −H2)U
n+1
k + F̃ n

(ρI + H2)U
n+1
k+1 = (ρI −H1)U

n+1

k+ 1
2

+ F̃ n k = 0, 1, · · ·

(2.6)

(4)m = 2k, k is an integer.
Let A = 1

2(H1 + H2),
here H1 = diag(H11, · · · , H11, H21)(m−1)×(m−1),
H2 = diag(H21, H11, · · · , H11)(m−1)×(m−1) Then the
AGEI4 method can be constructed as below:{

(ρI + H1)U
n+1

k+ 1
2

= (ρI −H2)U
n+1
k + F̃ n

(ρI + H2)U
n+1
k+1 = (ρI −H1)U

n+1

k+ 1
2

+ F̃ n k = 0, 1, · · ·

(2.7)

3 Convergence Analysis of AGEI
Method

Lemma 1[6] Let θ >0, and G+GT is nonnegative, then
(θI + G)−1exists, and

‖(θI + G)−1‖ 2 ≤ θ−1 (3.1)

Lemma 2[6] On the conditions of Lemma 1, we have:

‖(θI −G)(θI + G)−1‖2 ≤ 1 (3.2)

Theorem 1 The alternating group explicit iterative
method (2.4) is convergent.

Proof: From the construction of the matrixes we can see
that G1, G2, (G1 + GT

1 ), (G2 + GT
2 ) are all nonnegative

matrixes. Then we have

‖(ρI−G1)(ρI+G1)−1‖2 ≤ 1, ‖(ρI−G2)(ρI+G2)−1‖2 ≤ 1

From (2.2), we obtain Un+1
k+1 = GUn+1

k +(ρI+G2)−1[(ρI−
G1)(ρI + G1)−1F̃n + F̃n]. here G = (ρI + G2)−1(ρI −
G1)(ρI + G1)−1(ρI −G2) is growth matrix.

Let G̃ = (ρI + G2)G(ρI + G2)−1 = (ρI − G1)(ρI +
G1)−1(ρI−G2)(ρI +G2)−1, then ρ(G) = ρ(G̃) ≤ ‖G̃‖2 ≤
1, which shows the AGEI1 method given by (2.4) is con-
vergent.

Analogously we have:

Theorem 2 The alternating group explicit iterative
method (2.5)-(2.7) are also convergent.

4 Stability Analysis

Lemma 3[7] if b and c are real numbers, and λ1, λ2 are
the roots of λ2−bλ−c = 0, then we have |λi| < 1, i = 1, 2
if and only if |b| < 1− c < 2.
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We use fourier method to analyze the stability of (2.3),
we let wn

i = (un
i , un−1

i )T , then from (2.3) we have(
−r 0
0 0

)
wn+1

i−1 +
(

p + 2r 0
0 1

)
wn+1

i

+
( −r 0

0 0

)
wn+1

i+1 =
(

2r r
0 0

)
wn

i−1

+
(

p− q − 4r q − 2r
1 0

)
wn

i +
(

2r r
0 0

)
wn

i+1

Let wn
i = vneiαxi , then we have(

p + 2r − 2rcos(αh) 0
0 1

)
vn+1

=
(

p− q − 4r + 4rcos(αh) q − 2r + 2rcos(αh)
1 0

)
vn

Furthermore

vn+1 =

⎛⎜⎜⎝
1
6r

−8rsin2(αh
2

)

p + 4rsin2(
αh

2
)

1− 1

12r
− 4rsin2(

αh

2
)

p + 4rsin2(
αh

2
)

1 0

⎞⎟⎟⎠ vn

= Tvn

Let λ be the eigenvalue of T, then we have

λ2 −
1
6r
− 8rsin2(

αh

2
)

p + 4rsin2(
αh

2
)

λ−
1− 1

12r
− 4rsin2(

αh

2
)

p + 4rsin2(
αh

2
)

= 0

From lemma 3, the stability of (2.3) can be ob-

tained under the condition |
1
6r
− 8rsin2(

αh

2
)

p + 4rsin2(
αh

2
)
| ≤ 1 −

1− 1
12r

− 4rsin2(
αh

2
)

p + 4rsin2(
αh

2
)

< 2, that is, | 1
6r −8rsin2(αh

2 )| ≤

1
6r + 8rsin2(αh

2 ) < 2 + 1
6r + 8rsin2(αh

2 ), which is obvi-
ously true. So we can get the following theorem:

Theorem 3 The scheme (2.3) is unconditionally stable.

5 Numerical Experiments

We consider the following initial boundary value problem
of diffusion equations:

⎧⎪⎨⎪⎩
∂u
∂t

= ∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = sin(πx),
u(0, t) = 0, u(1, t) = 0.

(4.1)

The exact solution for the problem is u(x, t) =
e−π2tsin(2πx). Let ||E1||∞ = max|un

i −
u(xi, tn)|, ||E2||∞ = max|(un

i − u(xi, tn))/u(xi, tn)|, i =
1, 2, · · · , m − 1. We use the iterative error 1 × 10−10 to
control the process of iterativeness, and the results of
numerical experiments are listed in the following two
tables:

Table 1: The numerical results at

m = 16, τ = 10−4, ρ = 1

t = 100τ t = 200τ
||E1||∞ 8.906 ×10−4 8.066 ×10−4

||E2||∞ 9.872 ×10−2 9.869 ×10−2

iterative times 27.7 27.85

Table 2: The numerical results at

m = 16, τ = 10−4, ρ = 1

t = 500τ t = 1000τ
||E1||∞ 5.994 ×10−4 3.654 ×10−4

||E2||∞ 9.860 ×10−2 9.847 ×10−2

iterative times 27.94 27.489

Table 3: The numerical results at

m = 16, τ = 10−5, ρ = 1

t = 1000τ t = 2000τ
||E1||∞ 1.260 ×10−4 1.522 ×10−4

||E2||∞ 1.396 ×10−2 1.863 ×10−2

iterative times 173.27 172.614

Table 4: The numerical results at

m = 16, τ = 10−5, ρ = 1

t = 5000τ t = 10000τ
||E1||∞ 2.173 ×10−4 2.911 ×10−4

||E2||∞ 3.576 ×10−2 7.844 ×10−2

iterative times 170.488 166.89

From Table 1 and Table 2 we can see that the numerical
solution for the AGEI method can converge to the exact
solution excellently, and the computation error won’t ac-
cumulate when time steps increases, which accords with
the conclusion of convergence and stability analysis. Fur-
thermore, the AGEI method has the obvious property of
parallelism.

6 Conclusions

In this paper, we present an alternating group explicit it-
erative(AGEI) method by using a special three time level
implicit scheme with accuracy order O(τ2 + h4). Then
the convergence analysis and stability analysis are done.
The AGEI method is suitable for parallel computation
in solving large equation set. Furthermore, and the con-
struction of the AGEI method can also be applied to
other partial differential equations.
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