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Abstract—In this paper, we present a four order
unconditionally stable implicit scheme for hyperbolic
equations. Based on the scheme and the concept of
decomposition a class of parallel alternating group ex-
plicit (AGE) iterative method is derived, and conver-
gence analysis is given. In order to verify the AGE
iterative method, we give an example at the end of
the paper.
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1 Preface

In scientific and engineering computing, we need to solve
large equation set by numerical methods. Considering the
stability and accuracy of explicit schemes and the com-
putation difficulty of implicit schemes, it is necessary to
construct methods with the advantages of explicit meth-
ods and implicit methods, that is, simple for computa-
tion and good stability. Recently with the development
of parallel computer many scientists payed much atten-
tion to the finite difference methods with the property
of parallelism. D. J. Evans presented an AGE method
in [1] originally. The AGE method is used in computing
by applying the special combination of several asymmetry
schemes to a group of grid points, and then the numerical
solutions at the group of points can be denoted explicitly.
Furthermore, by alternating use of asymmetry schemes at
adherent grid points and different time levels, the AGE
method can lead to the property of unconditional sta-
bility. The AGE method is soon applied to hyperbolic
equations [2] and other problems [3-5]. But most of the
developed AGE method has only two order accurate for
spatial step.

In this paper, we will consider the initial boundary value
problem of hyperbolic equations, and organize the rest of
this paper as follows:

In section 2, we present a four order accurate uncondi-
tionally stable implicit scheme for hyperbolic equations.
Based on the scheme we construct a class of parallel AGE
iterative method. Convergence analysis is given in section
3. Comparison of numerical examples with the original
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AGE method in [2] and the full implicit scheme are pre-
sented in section 4.

2 The AGE Iterative Method

We consider the following initial boundary value problem
of 1D hyperbolic equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂2u
∂t2

= ∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = f(x), 0 ≤ x ≤ 1
∂u(x, 0)

∂t
= φ(x), 0 ≤ x ≤ 1

u(0, t) = e1(t), u(1, t) = e2(t).

(1)

The domain Ω : [0, 1]× [0, T ] will be divided into (m×N)
meshes with spatial step size h= 1

m in x direction and
the time step size τ= T

N . Grid points are denoted by
(xi, tn) or (i, n), xi = ih(i = 0, 1, · · ·, m), tn = nτ(n =
0, 1, · · · , T

τ ). The numerical solution of (1) is denoted by

un
i , while the exact solution u(xi, tn). Let r = τ2

h2 .

We present an implicit finite difference scheme with pa-
rameters for solving (1) as below:

ξ1

un+1
i−1 − 2un

i−1 + un−1
i−1

τ2
+ ξ2

un+1
i − 2un

i + un−1
i

τ2

+ξ3

un+1
i+1 − 2un

i+1 + un−1
i+1

τ2
=

un
i+1 − 2un

i + un
i−1

h2
(2)

Considering ∂2ku
∂t2k = ∂2ku

∂x2k , applying Taylor formula to

the scheme at (xi, tn) we have

(ξ1 + ξ2 + ξ3)
∂2u

∂t2
− ∂2u

∂x2
+ (ξ1 − ξ3)h

∂3u

∂x3

+(
ξ1

2
+

ξ3

2
− 1

12
)h2 ∂4u

∂x4
= O(τ2 + h4)

Let ⎧⎪⎨⎪⎩
ξ1 + ξ2 + ξ3 = 1

ξ1 − ξ3 = 0
ξ1
2 + ξ3

2 − 1
12 = 0

that is ξ1 = ξ3 = 1
12 , ξ2 = 5

6.
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Then we denote (2) as the fourth order center-difference
scheme:

1
12

δ2
t un

i−1 +
5
6
δ2
t un

i +
1
12

δ2
t un

i+1 = δ2
xun

i (3)

here

δ2
t un

i =
un+1

i − 2un
i + un−1

i

τ2

δ2
xun

i =
un

i+1 − 2un
i + un

i−1

h2

It is obvious that the truncation error of the scheme (3)
is O(τ2 + h4).

Let Un = (un
1 , un

2 , · · · , un
m−1)

T , then we rewrite (3) as:

KUn+1 = En

Here En = E1U
n + E2U

n−1 + [−un−1
0 + (2 +

12r)un
0 , 0, · · · , 0,−un−1

m + (2 + 12r)un
m]T .

K =

⎛⎜⎜⎜⎝
10 1
1 10 1

... ... ...
1 10 1

1 10

⎞⎟⎟⎟⎠

E2 =

⎛⎜⎜⎜⎝
−10 −1
−1 −10 −1

... ... ...
−1 −10 −1

−1 −10

⎞⎟⎟⎟⎠

E1 =

⎛⎜⎜⎜⎝
20− 24r 2 + 12r
2 + 12r 20− 24r 2 + 12r

... ... ...
2 + 12r 20− 24r 2 + 12r

2 + 12r 20− 24r

⎞⎟⎟⎟⎠
K, E1, E2 are all (m− 1)× (m− 1) matrices.

In order to solve Un+1 with Un and Un−1 known, we will
try to construct an AGE iterative method so as to avoid
solving an implicit equation set.

Let k denotes the iterative number. First we present two
iterative computing groups, in which computation can be
finished independently.

”κ1”group: four inner grid points are involved.

Let Ũn
i = (un

i , un
i+1, u

n
i+2, u

n
i+3)

T ,
Ũn

i(k) = (un(k)
i , u

n(k)
i+1 , u

n(k)
i+2 , u

n(k)
i+3 )T , then we have

(ρI + H11)Ũ
n+1
i(k+1) = (ρI −H22)Ũ

n+1
i(k) + B1Ũ

n
i + C1Ũ

n−1
i + Ên

i

(5)

here

Ên
i = (−un−1

i−1 +(2+12r)un
i−1, 0, 0,−un−1

i+4 +(2+12r)un
i+4)

T

H11 =

⎛⎜⎜⎝
10 1 0 0
1 10 2 0
0 2 10 1
0 0 1 10

⎞⎟⎟⎠
H22 =

(
H21

H21

)
, H21 =

(
10 1
1 10

)

B1 =

⎛⎜⎜⎝
20− 24r 2 + 12r 0 0
2 + 12r 20− 24r 2 + 12r 0

0 2 + 12r 20− 24r 2 + 12r
0 0 2 + 12r 20− 24r

⎞⎟⎟⎠

C1 =

⎛⎜⎜⎝
−10 −1 0 0
−1 −10 −1 0
0 −1 −10 −1
0 0 −1 −10

⎞⎟⎟⎠
Then the numerical solution of Ũn+1

i(k+1) at grid nodes
(i, n + 1), (i + 1, n + 1), (i + 2, n + 1), (i + 3, n + 1)
can be obtained in ”κ1”group as below:

Ũn+1
i(k+1) = (ρI+H11)

−1[(ρI−H22)Ũ
n+1
i(k) +B1Ũ

n
i +C1Ũ

n−1
i +Ên

i ]
(6)

”κ2”group: two inner grid points are involved. Let U
n

i =
(un

i , un
i+1)

T , U
n

i(k) = (un(k)
i , u

n(k)
i+1 )T , then we have

(ρI+H21)U
n+1

i(k+1) = (ρI−H21)U
n+1

i(k) +B2U
n

i +C2U
n−1

i +E
n

i

(7)

here

E
n

i = (−un−1
i−1 + (2 + 12r)un

i−1,−un−1
i+2 + (2 + 12r)un

i+2)
T

B2 =
(

20− 24r 2 + 12r
2 + 12r 20− 24r

)
, C2 =

( −10 −1
−1 10

)
The numerical solution of U

n+1

i(k+1) at grid nodes (i, n +
1), (i + 1, n + 1) can be denoted as below:

U
n+1
i(k+1) = (ρI+H21)

−1[(ρI−H21)U
n+1
i(k) +B2U

n
i +C2U

n−1
i +E

n
i ]

(8)

Let m = 4a + 1, a is an integer, Un+1
k =

(un+1(k)
1 , u

n+1(k)
2 , · · · , un+1(k)

m−1 )T , then we construct the
alternating group explicit (AGE) iterative method as be-
low:

{
(ρI + H1)Un+1

k+ 1
2

= (ρI −H2)Un+1
k + Ẽn

(ρI + H2)Un+1
k+1 = (ρI −H1)Un+1

k+ 1
2

+ Ẽn
k = 0, 1, · · ·

(4)
H1 = diag(H11, · · · , H11)(m−1)×(m−1)

H2 = diag(H21, H11, · · · , H11, H21)(m−1)×(m−1)
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Ẽn = 2En, k is the iterative number, ρ is the iterative
parameter.

From the construction of H1 and H2 in (4), we arrive to
the conclusion that all the computation can be fulfilled in
two separate groups ”κ1” and ”κ2”. By alternating use
of κ1 group and κ2 group, we can divide the computation
in the whole domain into many sub-domains, and compu-
tation in each sub-domain can be finished independently
and simultaneously. So the AGE iterative method (4) is
suitable for parallel computation.

3 Convergence Analysis For The AGE It-
erative Method

Lemma 1[6] Let θ >0, and G+GT is nonnegative, then
(θI + G)−1exists, and

‖(θI + G)−1‖ 2 ≤ θ−1 (9)

Lemma 2[6] On the conditions of Lemma 1, we have:

‖(θI −G)(θI + G)−1‖2 ≤ 1 (10)

Theorem 1 The AGE iterative method (4) is conver-
gent for any ρ > 0.

Proof: From the construction of the matrices we can see
that H1, H2, (H1 +HT

1 ), (H2 +HT
2 ) are all nonnegative

matrixes. Then from lemma 3 we have

‖(ρI−H1)(ρI+H1)−1‖2 ≤ 1, ‖(ρI−H2)(ρI+H2)−1‖2 ≤ 1

From (4), we obtain Un+1
k+1 = HUn+1

k +(ρI +H2)−1[(ρI−
H1)(ρI + H1)−1Ẽn + Ẽn]. Here H = (ρI + H2)−1(ρI −
H1)(ρI + H1)−1(ρI −H2) is the growth matrix.

Let H̃ = (ρI + H2)H(ρI + H2)−1 = (ρI − H1)(ρI +
H1)−1(ρI − H2)(ρI + H2)−1, then ρ(H) = ρ(H̃) ≤
‖H̃‖2 ≤ 1, which shows the AGE iterative method given
by (4) is convergent.

4 Numerical Experiments

Example :⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2u
∂t2

= ∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = 0,
∂u(x, 0)

∂t
= sin(πx), 0 ≤ x ≤ 1

u(0, t) = 0, u(1, t) = 0.

(11)

The exact solution of (11) is denoted as u(x, t) =
sinπtsin(πx).

Considering the scheme (2) is a three time level method,
we can approach U1 with the following difference scheme
so as to avoid loss of accuracy.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
12

u1
i−1,j − 2u0

i−1,j + u−1
i−1,j

τ + 5
6

u1
i − 2u0

i + u−1
i

τ

+ 1
12

u1
i+1 − 2u0

i+1 + u−1
i+1

τ =
u0

i+1 − 2u0
i + u0

i−1

h2

u1
i − u−1

i
2τ = φ(xi), i = 1, 2, · · · , m− 1

Let ||E1||∞ = max|un
i − u(xi, tn)|, ||E2||∞ = max|(un

i −
u(xi, tn))/u(xi, tn)|, i = 1, 2, · · · , m − 1. We use the it-
erative error 1 × 10−10 to control the process of itera-
tiveness. Let A.I.T. denotes the average iterative times,
then we compare the numerical results of the proposed
AGE iterative method in this paper with the alternating
group explicit iterative method by Evans [2] and the re-
sults from the fourth order center-difference scheme (3)
in Table 1 and Table 2. Let t1/t2 denote the ratio of
execution time between the AGE method and the fourth
order center-difference scheme (3).

Table 1: Results of comparison m = 17, τ = 10−3, ρ = 1

t = 100τ t = 200τ t = 500τ

A.I.T. 50.49 50.54 48.68
A.I.T.[2] 81.52 81.75 80.63
||E1||∞ 2.978 ×10−4 4.683 ×10−4 2.475 ×10−5

||E1||∞[2] 3.104 ×10−2 1.243 ×10−2 7.638 ×10−3

||E2||∞ 9.677 ×10−2 4.336 ×10−2 2.527 ×10−3

||E2||∞[2] 4.258 9.491 ×10−1 6.573 ×10−1

t1/t2 0.246 0.253 0.261

Table 2: Results of comparison m = 17, τ = 10−4, ρ = 1

t = 1000τ t = 2000τ t = 5000τ

A.I.T. 43.96 43.76 41.83
A.I.T.[2] 74.58 74.67 72.32
||E1||∞ 3.999 ×10−5 6.689 ×10−5 2.279 ×10−5

||E1||∞[2] 1.426 ×10−3 2.371 ×10−3 9.896 ×10−4

||E2||∞ 1.348 ×10−2 1.186 ×10−2 2.301 ×10−3

||E2||∞[2] 8.734 ×10−1 8.518×10−1 7.964 ×10−2

t1/t2 0.255 0.267 0.315

From above we can see that the numerical solution for
the proposed AGE method can converge to the exact so-
lution faster and are of higher accuracy than the alter-
nating group explicit iterative method by Evans [2]. Fur-
thermore, for its intrinsic parallelism, the presented AGE
method can shorten the running CPU time in compari-
son with the fully implicit scheme, and the effect becomes
obvious when the amount of grid points increases.
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