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Abstract—In this paper, under the assumption that

the claimsize is Negatively dependent subexponen-

tially distributed and the constant interest force is

considered, a simple asymptotics of ruin probabil-

ity for renewal risk model within finite horizon is

obtained. The results obtained extended the corre-

sponding results of related papers.
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1 The model

Consider a nonstandard renewal risk model, in which
the individual claim size, Xn, n ≥ 1, form a sequence
of identically distributed, not necessarily independent,
and non-negative random variables (r.v.s) with a com-
mon distribution (d.f.) F (x) = 1 − F (x) = P (X ≤ x)
for x ∈ [0,∞) and a finite mean µ = EX1. The inter-
occurrence times θn, n = 1, 2, ..., are another sequence of
independent, identically distributed (i.i.d.) nonnegative
random variables with mean Eθ1 = 1/λ. The random

variables σk =
∑k

i=1 θi, k = 1, 2, ... constitute a renewal
counting process

N(t) = sup

{

n ≥ 1 :
n

∑

i=1

θi ≤ t

}

(1.1)

with mean λ(t) = EN(t). In the case that θn has an
exponential distribution, the renewal model is then called
the compound Poisson model. Risk reserve process is
defined by

Uδ(t) = ueδt + c

∫ t

0

eδ(t−s)ds−

N(t)
∑

i=1

Xie
δ(t−σi), (1.2)

where u > 0 is initial capital, c > 0 is premium rate
and δ > 0 is the constant interest force. {Xn, n ≥ 1},
{N(t), t ≥ 0} and {θn} are assumed to be mutually inde-
pendent. Denote by

ψ(u, T ) = P (Uδ(t) < 0 for some T ≥ t > 0),
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the probability of ruin within time T . If T = ∞, then
ψ(u,∞) is called ultimate ruin probability. All limit re-
lationships in this paper, unless otherwise stated, are for

u → ∞. A ∼ B and A
>
∼ B(A

<
∼ B) respectively mean

that

lim
u→∞

A

B
= 1 and lim

u→∞

A

B
≥ (≤)1.

2 Preliminaries

In this paper, we pay attention to the claims with heavy-
tailed claims, which have been the focus of many refer-
ences in insurance and finance, for the facts that they
have close relationship with large claims; see Embrechts
et al. (1997) and Goldie & Klüppelberg (1998) for a
nice review. We say that a distribution F belongs to the
Pareto-like distribution class R−α if there is some α > 0
such that F (x) = x−αL(x), x > 0, where L(x) is a
slowly varying function as x → ∞ and index −α < 0.
So called extended regular varying class, ERV (−α,−β)
is defined, if for some 0 < α ≤ β <∞ and for any y > 1,

y−β ≤ lim infu→∞

F (uy)

F (u)
≤ lim supu→∞

F (uy)

F (u)
≤ y−α.

Long-tailed distribution class, denoted by L, is defined

if for each F ∈ L, limx→∞

F (x+t)

F (x)
= 1, for any t (or,

equivalently, for t = 1). Dominated class D is defined,

if for each F ∈ D, satisfying lim supx→∞

F (xy)

F (x)
< ∞, for

any fixed 0 < y < 1. The most important heavy-tailed
class may be S, usually called subexponential class. By

definition, a d.f. F belongs to S iff limx→∞

F∗n(x)

F (x)
= n,

for any n, where F ∗n denotes the n-fold convolution of
F , with convention that F ∗0 is a d.f. degenerate at 0.
These heavy-tailed classes have the properties below (see
Embrechts et al. (1997)):

R−α ⊂ ERV (−α,−β) ⊂ L ∩ D ⊂ S ⊂ L. (2.1)

The asymptotic behavior of the ultimate ruin probability
is an important topic in the area of risk theory. A very
famous asymptotic relation was established Embrechts
and Veraverbeke (1982). They obtained the following re-
sult when the integrated tail distribution of the cliam is
subexponentially distributed ψ(u) ∼ 1

µ

∫

∞

u
F (y)dy. Ruin

probability under the constant interest force in a contin-
uous time risk model has been extensively investigated.
In the classical risk model, Klüppelberg and Stadtmuller
(1998) obtained ψ(u) ∼ λ

αrF (u), when the claimsize is of
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regularly varying with index −α, and r is constant inter-
est force. Asmussen (1998) and Asmussen et al. (2002)

obtained a more general result: ψ(u) ∼ λ
r

∫

∞

u
F (y)

y dy,
where the claimsize is assumed to be in S∗, an impor-
tant subclass of S. In the Poisson case, Tang (2005a)
obtained (2.3) for subexponential claims. In the renewal

case, Tang (2005b) proved that ψ(u) ∼ Ee−rαθ1

1−Ee−rαθ1
F (u).

We emphasize that the methods used in the references
mentioned above greatly depends on the i.i.d. assumption
on the claims. Specially, the methods of Klüppelberg and
Stadtmuller (1998); Tang (2005a) depends upon the reg-
ular variation assumption of the claimsize distribution.
Jiang (2008) extended some results to the risky case. See
also Jiang (2004, 2008). Dufresne and Gerber (1991) first
researched the ruin probability for perturbed compound
Poisson process. Most recently, Chen and Ng (2007) ob-
tained a simple asymptotic formula when the claims are
pairwise negatively dependent with distribution of ERV
class. In this paper, with quite different methods, we aim
to extend their results to the case that the pairwise ND
claims belong to L ∩D.

Two random variables, X1 and X2, are called nega-
tively Dependent (ND) if for all real numbers x1 and
x2, P (X1 ≤ x1, X2 ≤ x2) ≤ P (X1 ≤ x1)P (X2 ≤ x2),
or, equivalently, P (X1 ≥ x1, X2 ≥ x2) ≤ P (X1 ≥
x1)P (X2 ≥ x2). See Lehmann (1966). We say that a se-
quence of random variables {X1, X2, ...} is pairwise ND
if for all positive integers i 6= j the random variables
Xi and Xj are ND. We can easily construct pairs of r.v.s
that are ND but not independent through a simple mech-
anism provided by Farlie-Gumbel-Morgenstern family of
distributions.

3 Main Result and Some Necessary lem-

mas

The following theorem is the main result of this paper:

Theorem 1. In the renewal risk model introduced in
section 1. If F ∈ L ∩ D, then the finite time ruin proba-
bility up to time T satisfies

ψ(u, T ) ∼

∫ T

0

F (ueδs)dm(s), (3.1)

where m(x) is the renewal function of the process, i.e.,
m(x) = EN(x).

To complete theorem 2.1, some lemmas in the following
are needed.

Lemma 1. If F is subexponential, the tail of its n-fold
convolution is bounded by F ’s tail in the following way:
for any ε > 0, there exists an A(ε) > 0 such that, uni-
formly for all n ≥ 1 and all x ≥ 0,

Fn∗(x) ≤ A(ε)(1 + ε)nF (x), (3.2)

see Embrechts et al. (1997).

The following result can be found in Cline and Samorod-
nitsky (1994).

Lemma 2. Let X and Y be two independent random
variables with distributions F and G. The distribution of
product X and Y is denoted by H.

(1) If F ∈ L and G doesn’t degenerate to zero, and for

any fixed a > 0, it holds that limx→∞

G(x/a)

H(x)
= 0, then

XY ∈ L.

(2) If F ∈ D and P (Y > 0) > 0, then H ∈ D.

(3) If X ∈ S and Y is bounded and doesn’t degenerate to
zero, then H ∈ S.

The following Lemma is the extension of Tang and Tsit-
siashvili (2003) on i.i.d. claim assumption:

Lemma 3. Let {Xi, i ≥ 1} be pairwise ND r.v.s with
common distribution F . σn is defined in section 1. Then
for any positive integer n0, we have

P (

n0
∑

i=1

Xie
−δσi > u) ∼

n0
∑

i=1

P (Xie
−δσi > u). (3.3)

4 Proof of Theorem 1

Obviously, ruin probability defined by (1.3) is equivalent
to the following

ψ(u;T )

= P (e−δtUδ(t) < 0,

for some T ≥ t > 0|Uδ(0) = u) (4.1)

The finite-time ruin probability ψ(u;T ) satisfying that

ψ(u;T ) ≥ P (

N(T )
∑

i=1

Xie
−δσi ≥ u+

c

δ
). (4.2)

Similarly, we have that

ψ(u;T ) ≤ P (

N(T )
∑

i=1

Xie
−δσi ≥ u). (4.3)

If we can prove that relations

P (

N(T )
∑

i=1

Xie
−δσi ≥ u)

∼

∫ T

0

F (ueδs)dm(s)

∼ P (

N(T )
∑

i=1

Xie
−δσi ≥ u+

c

δ
) (4.4)
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are true, then Theorem 1 will be finished. From Lemma
1, for any fixed ε > 0, there exists a constant C(ε) > 0
such that

P (
k

∑

i=1

Xie
−δt ≥ u)

≤ C(ε)(1 + ε)
k
P (X1e

−δt ≥ u) (4.5)

holds for all k = 1, 2, ..., t ≥ 0 and u ≥ 0. Rewrite

P (

N(T )
∑

i=1

Xie
−δσi ≥ u)

= (

N0
∑

k=1

+

∞
∑

k=N0+1

)P (

k
∑

i=1

Xie
−δσi ≥ u,

N(T ) = k). (4.6)

For all integer k ≥ N0, pay attention to the condition
that N(T ) = k, we have

∞
∑

k=N0+1

P (
k

∑

i=1

Xie
−δσi ≥ x,N(T ) = k)

≤ A(ε)

∫ T

0

F (eδtu) ·

∞
∑

k=N0+1

(1 + ε)kP (N(T − t) = k)dFθ1
(t)

≤ A(ε)E[(1 + ε)N(T )I(N(T ) ≥ N0)] ·
∫ T

0

P (X1e
−δt ≥ x)dFθ1

(t). (4.7)

Especially, we can choose ε > 0 and N0 > 0 such that

A(ε)E[(1 + ε)N(T )I(N(T ) ≥ N0)] is smaller than any ar-
bitrarily given number, say, η0 > 0. In fact

E[(1 + ε)
N(T )

I(N(T ) ≥ N0)]

≤

∞
∑

k=N0

((1 + ε)Ee−θ1)
k
eT , (4.8)

here we have used Chebyxev inequality. We choose ε
small enough such that (1+ε)Ee−θ1 < 1, and then choose

N0 large enough so that A(ε)E[(1 + ε)
N(T )

I(N(T ) ≥
N0)] < η0. Thus, for this η0 > 0 and the same inte-
ger N0, there exists a number u1 > 0, for all u > u1, we
have

∞
∑

k=N0+1

P (

k
∑

i=1

Xie
−δσi ≥ u,N(T ) = k)

≤ η0

∫ T

0

P (X1e
−δs ≥ u)dm(s). (4.9)

By Lemma 2 and 3, we can get for k = 1, 2, ..., N0,

P (

k
∑

i=1

Xie
−δσi ≥ x,N(T ) = k)

∼
k

∑

i=1

P (Xie
−δσi ≥ u,N(T ) = k). (4.10)

Therefore

N0
∑

k=1

P (

k
∑

i=1

Xie
−δσi ≥ u,N(T ) = k)

∼

N0
∑

k=1

k
∑

i=1

P (Xie
−δσi ≥ u,N(T ) = k). (4.11)

In other words, for the same η0 > 0 and the same N0,
there exists u2 > 0, for all u > u2, it holds that

N0
∑

k=1

P (

k
∑

i=1

Xie
−δσi ≥ u,N(T ) = k)

≤ (1 + η0)

∞
∑

k=1

k
∑

i=1

P (Xie
−δσi ≥ u,N(T ) = k)

= (1 + η0)

∫ T

0

P (X1e
−δs ≥ u)dm(s). (4.12)

Thus, for u > max {u1, u2}, we get

P (

N(T )
∑

i=1

Xie
−δσi ≥ u)

≤ (1 + 2η0)

∫ T

0

P (X1e
−δs ≥ u)dm(s). (4.13)

On the other hand

P (

N(T )
∑

i=1

Xie
−δσi ≥ u)

=

∞
∑

k=1

P (

k
∑

i=1

Xie
−δσi ≥ u,N(T ) = k)

≥

N0
∑

k=1

(1 − η0)
k

∑

i=1

P (Xie
−δσi ≥ u,N(T ) = k)

≥ (1 − 2η0)

∫ T

0

P (X1e
−δs ≥ u)dm(s). (4.14)

By the arbitrariness of η0, we have

P (

N(T )
∑

i=1

Xie
−δσi ≥ u)

∼

∫ T

0

P (X1e
−δs ≥ u)dm(s). (4.15)

From Lemma 2, we know that every Xie
−σi still belongs

to L ∩ D. Hence

P (

k
∑

i=1

Xie
−δσi ≥ u+

c

δ
)

∼

k
∑

i=1

P (Xie
−δσi ≥ u), (4.16)

for all the 1 ≤ k ≤ N0. Thus Theorem 1 is completed.
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