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On a Nonlinear Nonlocal Cauchy Problem

Sergiu Aizicovici

Abstract -We prove the existence of integral solutions
to a nonlinear time-dependent functional differanti
equation with a nonlocal initial condition. The apgach
relies on the theory of m-accretive operators and
compactness methods.

Index Terms-Compact evolution operator, evolution
equation, m-accretive operator, nonlocal Cauchplero.

I. INTRODUCTION

We are concerned with the existence of satstio
to the nonlocal Cauchy problem

u'(t) + At)u(t) OF u)(t), tO1 =[0,T],
u(0) = g(u) (1)

in a real Banach spac¥ . Here{ A(t) : t O 1} are m-
accretive operators X , while F, g are functionals

defined onC(l; X) with values in Ll(I;X) andX,
respectively. Such problems arise in physics and
engineering, in particular in the mathematical
modeling of heat or diffusion processes, or in the
study of atomic reactors; see [1]-[3].

The study of abstract evolution equationth wi
nonlocal initial conditions was initiated by
Byszewski [4], who studied a problem of the form (1
whereA(t) = A linear and independent of time,

(Fu)@®) = f(t,u), f:1xX - X,and

P
g(u)=Zciu(ti),with0<t1 <..<t,<T
i=1

andcg OR
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For some recent results on fully nonlinear
nonlocal Cauchy problems, see [5]-[7]. In general,
the existing results require a Lipschitz condita
or g, or a compactness assumption @rn [8], the

authors remove these restrictions for a linear,
autonomous version of (1). It is our goal to gelizza
their approach to the fully nonlinear, time-depende
case.

II. PRELIMINARIES

In this section, we collect some basic facts on m-
accretive operators, evolution operators and non-
autonomous evolution equations; see [9], [10] for

details. Let(X,|||) be a real Banach space, of dual
(X*,
by

. )- The duality mappingl : X - X*is defined

I ={xOX*x* () =|¥* =[x*|7}, DxOX,

while the so-called upper semi-inner product iegiv
by

<y, x>, =sup{x* (y): x*0J(x)}, Ox,yOdX.

It can be shown that .,.>, is upper semicontinuous
on X x X. Let A be a multivalued operator o6, of
domain D(A) and rangeR(A). We say tha# is
accretive if < y'-y,x'=x>, =0for all x,x' D(A)

and allyd Ax, y'O AX. If alsoR(Id + AA) = X for all

A >0,where Id denotes the identity oX, then Ais
calledm-accretive.

Let{ A(t) :t 01} be a family of m-accretive
operators i, of domainsD(A(t)), with
D(A(t)) = D (independent of t), which satisfy the
condition:
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(H at)) There exist two continuous functions
m:l - X,m R, » R, (R, =[0,0)) such that

SY17Y2, X T X >4 2
= (6) = ma ()] [, = x2 | mp (masxa|x2 ).

O OD(A(®L), y; O A)x, X, DD(A(s)),
Yy, OA(S)X,,0<s<t<T.
If (H 5)) holds, then the familf At) :t T 1}

gives rise to amvolution operator U (t,s) onD via
the formula

n

U,s)x = lim [7(d +t_TSA(s+it_Ts))'lx, 2)

forall xOD,0<s<t<T.
It follows that
Ut,t)=Idand Ut s)x-U(,9)y|<|x-y]

forall x,yOD,and all0<s<t<T.The evolution

operatorU is said to beompact if U (t,s) maps

bounded subsets @b into relatively compact subsets

of D for all 0 s<t<T. In the special case when

A(t) = Ais a time-independent m-accretive operator,

U (t,0) = S(t) is the contraction semigroup generated

by —Aon D(A).
Next, consider the Cauchy problem

u'(t) + A(tu(t) C f(t), tOl,

u(0) = ug, 3

where{ A(t) :t 01} satisfy (H 5g)), f OL*(I; X), and
u, Jb.

Definition 1. An integral solution of problem (3) is a
function uOC(l; D) satisfyingu(0) = uy and the
inequality

o =X -[ue -4 s2[ < 10 - yu(e) - x>,
+ M|u() - Jmy(7) - my (D) d7,
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00<s<t<T,00][0,T], xOD(A(H)), yO A(E)x, and

M = mz(max{]|X||,||U||c(|;x)})-

It is well-known that (3) has a unique integral
solution for eactuy DD and f O LL(1: X), provided
that (H ) is satisfied. In particulat) (t,0)u, is the

integral solution of (3) whefi = 0.

Proposition 2. Let (H ) be satisfied, and let
u,v be integral solutions of (3), corresponding to
(ug, T) and (vy, 9), respectively (withuy, vy 0D

andf,gOL(1; X)). Then

Juct) =v)| < Ju(s) —w(s)] +

It||f(r)—g(r)||dr, Tossst<T.

I1l. MAIN RESULTS
For a fixed finiter >0, we set
B, ={xOX:|x|<r},
K, ={@0C(I; X):(t) U B, , 0t 01}
We assume that:

(Hy) {A);tO1} satisfy(H 5, ), and the
corresponding evolution operatar(given by (2)) is
compact;

(H,) The operatorF : C(I; X) - L}(I; X)is

continuous, and there exisis= a, 0 L*(I; R, ) such
that

[FW®)| < a),ae. on,foral udK,;

(H3) The functiong: C(l; X) — D is continuous
and mapsK, into a bounded set;

(H4) There existsd O (0, T) such that
F(u) = F(v), g(u) = g(v) for any u,vOK, with
u(s) =v(s), s[4, TJ;
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(H) sup U EOo@|+ [ awdrsr.
tol, ¢K,

Definition 3. A function udC(l; D) is called an

integral solution of problem (1), if it is an inted)
solution, in the sense of Definition 1, of probl€sy
with F(u)(t) in place of f (t),and g(u) in place of

UO.

Theorem 4. Let (H;) —(H;z) be satisfied. Then
problem (1) has at least one integral solution.

This result does not cover the case when
F(u)(t) = f (t,u(t)) for a given function
f:IxX - X,since (H,) is not satisfied. We now

replace(H ,) by the following condition:

(HI) lim, , Hg((p) - g(qu)” = 0, uniformly for all

@e€),0<t < ¢,

PUK,, with ¢ (t) = {¢J(t), E<St<T.

Theorem 5. Let (H,)—(H5),(H})and (Hs) be

satisfied. Then problem (1) has at least one ialegr
solution.

If A(t) = A(independent of time), then the
evolution operatolJ is replaced by the contraction
semigroupS(t) generated by-A (cf. Section Il). The

corresponding autonomous initial-value problem (3)

has a unique integral solution (that is, a function
ul0C(l;D(A)) satisfying the inequality in Definition
1 with M =0) for any f OL*(I; X) and uy OD(A) .
Theorem 5 now yields the following result:

Corollary 6. Let A be an m-accretive operator
in X, such thatS(t), the semigroup generated by

—-Aon D(A), is compact fort > 0. If also
(H,),(H3) (with D =D(A)), (H}) and (H) (with
S(t) in place ofU (t,0) ) are satisfied, then there
exists an integral solution of the problem

u'(t) + Au(t) C F(u)(t), tO1,

5
u(0) = g(u). ©
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Remark 7. In the special case when
F(u)@) = ftu(), f:1xX - X,

where f satisfies Caratheodory type conditions,

Corollary 6 is comparable to Theorem 4.3 in [7],
which was proved by a different method.

IV. PROOF OF THEOREM 4

We sketch the proof of Theorem 4, only. The
proof of Theorem 5 can be carried out by using
Theorem 4, and adapting the approximating
procedure of [8]. The details will appear elsewhere

Set

K, (0) ={udC(a,T]; X) :|u(t)| < r, 0t O[5, T1}.

For anyuOK, (9),let u 0K, be given by

) = u(o),0<st <9,
UO =100, s<t<T.

Also, define
F(u)(t) = F@@), tO1; g(u)=g(@). (6)

By (H,) - (H,) and (6), it follows that= and g are

continuous fromK, (d)to L*(1; X)and D,
respectively. In addition, we have

”E(u)(t)” <a(t),ae.onl, DuOK, (), (7)

sup U ¢,0g(u)|= sup [U0)g(v)|<e. (8)
{01, uCK, (3) 0 VOK,

Define the map¥ : K, (8) - C([J,T]; X) by
Yw)(t) =uy,(t), tO[o,T], wOK, (d), whereu,, is
the unique integral solution of

%uw(t) +A(t) u,, (t) OF (w)(t), tO1,

uy, (0) = g(w)

9
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From (4) we infer that

- ty) ~
Jun () U ¢,005(W)] < j O“F(W)(s)“ ds.
This, (7), (8) andHs) lead to

Jlu, @< sup U ¢.0)gW)|+
{01, VOK,

. (10)
IO a(s)ds<r, Ot0O1,

so that¥ mapsK, (d)into itself. Moreover, on
account of (4), (6)(H,),(H3), Definition 1 and the
upper semicontinuity ok.,.>,, itis easily seen that

Y is continuous. Next, employing (6), (7),
(H,) —(H3) and the theory of [11], we deduce that

Y(K, (9)) is relatively compact irC([J,T]; X).
Applying Schauder’s fixed point theorem, we
conclude that has a fixed poinw* O K, ().

Letu(t) = u,. (t),t O1 and remark that
w* (t) = W(WF)(t) = u. (t) =u(t),0tO[,T]. This,
together with(H,) , (9) and (10), implies that is an

integral solution of (1), as desired. The proof is
complete.

V. AN APPLICATION

For simplicity, we restrict ourselves to a
example that illustrates Corollary 6. Consider the
initial-boundary value problem

u; (t, X) —Au(t, x) = h(t,u(t, x)) +

I; k(t—s)u(s,x)ds, (t,x)01xQ,
_%“’Xmﬁ(u(w)), t, %) 01 x0Q, (11)

u(0,x) = uo(x)+iciu(ti ,X), xOQ,
i=1

where Q is a bounded domain iRN with a smooth
boundaryoQ, g is an m-accretive operator dhwith

ISBN:978-988-18210-1-0

00 £(0), ai denotes the outward normal derivative,
n
0<t <..<t, <T, ¢ ,i =1,...p are given constants,

kOLY(1), h:1 xR - R and u, OL?(Q). This
problem can be written in the form (1) in the
spaceX = L?(Q), by setting

A=-A, D(A) ={udH?*Q): —% 0 B(u), a.e. on
0Q},

F(u)(©)(x) = h(t, u(t, X)) + j ;k(t —9u(s x)ds, (12)

g(u)(x) = uo(x)+2pjciu(ti ), ()01 %Q.
i=1

It is well-known [10] thatA is m-accretive irK
with D(A)= X, and that the semigroup(t)
generated by-Aon X is compact (fort > 0), with
S(t)0=0,0t = 0. Assume that

(Hg) t - h(t,y) is measurable it for all yOR,and
continuous iny fora.a.tO1;

(H,) There exista>0,b0L*(I; R, ) such that
Inct, )| < dly|+bio),
for almost alltO01 and all yOR..

Then, it is easily verified thafF and g, as given in

(12), satisfy(H,), and respectively(H) and (H}).

Finally, in this set-up, conditiofH 5) reduces to

p
"uO" L2(Q) +r(a+ Z'Ci | +T"k" L) )+
i=1

"b"|_1(|)'u(Q)1/2 =T

(Hg)

where i denotes the Lebesgue measure.

Consequently, an application of Corollary 6

yields:
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Corollary 8. If u, 0 L*(Q),k O L*(I) and
(Hg) —(Hg) hold, then problem (1) has at least one
integral solutionu 0 C(1; L2(Q)).
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