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Abstract—The Gibbs phenomenon poses a major
obstruction in reconstructing a function with finite
jumps by a partial Fourier sum or truncated orthog-
onal series expansion. In this paper, we present a
Padé-type approach to treat the problem. To better
reconstruct a function, we utilize an amplified Padé-
type approximation that takes into account the jump
discontinuities of the function. The effectiveness of
the proposed method is measured in terms of the
Gibbs constant and steepness of the approximant at
the location of the discontinuity. We present numer-
ical examples to demonstrate the reconstruction.
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1 Introduction

It is well-known that the use of a partial Fourier sum or
a truncated orthogonal polynomial expansion in general
provides a convergent and highly accurate approxima-
tion for smooth functions [1, 3]. Sadly their suitability
for nonsmooth functions is adversely challenged by the
presence of any discontinuity. It is shown in [3] that for
a piecewise continuous function f , the convergence of the
Nth partial sum of the Fourier or an orthogonal series is
non-uniform with a rate of O(1) in the vicinity the jump
locations; elsewhere in the domain, convergence is slow
with a rate of O( 1

N ). This convergence problem has come
to be known as the Gibbs phenomenon. Graphically, this
phenomenon is characterized by overshoots and under-
shoots (oscillatory behavior) of the approximant at the
vicinity of the jumps. Figure 1 describes this scenario for
the case of the sawtooth function defined by

S(x) =

{
x− π, 0 ≤ x ≤ π
x+ π, −π ≤ x < 0

approximated by the 50th partial Fourier sum.

∗Division of Physical Sciences and Mathematics, University of
the Philippines in the Visayas, Miag-ao, Iloilo, Philippines. Email:
altampos@yahoo.com
†Institute of Mathematics, University of the Philippines Dili-

man, Quezon City, Philippines. Email: ernie@math.upd.edu.ph

Figure 1: Partial Fourier sum approximation of S(x).

The Gibbs constant is defined as the maximum overshoot
or undershoot of the approximant. The steepness, given
by the approximant’s derivative at the point of discon-
tinuity, measures the approximant’s ability to reproduce
the discontinuity. Generally, for an Nth partial Fourier
sum or a truncated series approximant, the Gibbs con-
stant is about 9% of the magnitude of the jump and its
steepness is 4

π (N + 1) [4]. Strangely, however, increas-
ing the number of terms in the series does not diminish
the amplitude of the overshoot although its interval of
occurrence gets smaller.

The task of remediating the Gibbs phenomenon has been
the subject of many studies (e.g., [1, 3, 5, 6]). The method
ranges from modifying the truncated series through fil-
tering [2], to using a rational function (Padé-type) ap-
proximant [1, 5, 6]. Some Padé-type methods operate in
the absence of the knowledge of jump locations. These
methods argue that poles of the approximants are close
enough to the singularities of the function. However, re-
alizing that poles do not adequately reproduce the jump
behavior, Driscoll and Fornberg [1] developed the Singu-
lar Fourier-Padé (SFP) method of correcting the Gibbs
phenomenon which incorporate the singularities of the
function into the process. Following their lead, we derive
a similar approach using a transformed Chebyshev series
and assimilate their concept into a Padé-Chebyshev ap-
proximation.
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2 Singular Fourier-Padé Correction of
the Gibbs phenomenon

Consider a function f with formal power series∑∞
k=0 ckx

k and a rational function defined by R(N,M) =
PN/QM , where PN and QM are the polynomials

PN (x) =
N∑
i=0
pix
i, QM (x) =

M∑
j=0
qjx
j �= 0.

We say that R(N,M) is the (linear) Padé approximant of
order (N,M) to the formal series if

QM (x)f(x)− PN (x) = O
(
xN+M+1) (as x→ 0).

Finding the approximant R(N,M) involves determining
the coefficients of polynomials PN and QM through the
following linear system:

M∑
j=0
cN−j+kqj = 0, k = 1, . . . ,M (2.1)

k∑
j=0
ck−jqj = pk, k = 1, . . . , N. (2.2)

For this system to be well-determined, we usually employ
a normalization by setting, say, q0 = 1.

Let f be a piecewise analytic function defined over [−π, π)
with s jump locations at x = ξk ∈ [−π, π), k = 1, . . . , s.
The complex Fourier series of f is given by

f(x) =
∞∑

n=−∞
cne
inx, cn =

1
2π

ˆ π
−π
f(x)e−inxdx.

The transformation z = eix which maps the interval
[−π, π) into the unit circle in the complex plane trans-
forms the Fourier series into the following Laurent series
in z which can split into

f(z) =
∞∑

n=−∞
cnz
n =

∞∑′

n=0
cnz
n +

∞∑′

n=0
c−nz−n

= f+(z) + f−
(
z−1) ,

where the primed sums indicate that the zeroth term
should be halved.

The Fourier-Padé (FP) approximation of f± consists in
looking for polynomials P±N (z) and Q

±
M (z) such that

P±N (z)−Q±M (z)f±(z) = O
(
zN+M+1) (as z → 0).

The resulting approximant is then defined as

P+
N (z)
Q+
M (z)

+
P−N (z−1)
Q−M (z−1)

.

However, Driscoll and Fornberg noted that this approxi-
mant does not reproduce very well the jumps of the func-
tion. They then suggested that every jump in value of f
at x = ξ can be attributed to a logarithm of the form

log
(
1− z
eiξ

)
. (2.3)

This logarithmic singularity in f±, which is difficult for
the Padé approximant to simulate, can be exploited to
enhance the approximation process. This is the rationale
behind the Singular Fourier-Padé (SFP) method, intro-
duced in [1], which modifies the FP approach to satisfy
the following condition

P±N (z) + L = f
±(z)Q±M (z) +O

(
zη+1) . (2.4)

Here,

L =
s∑
k=1
R±k (z) log

(
1− z
eiξk

)

for some polynomials Rk, k = 1, . . . , s, and η is deter-
mined by s and the degrees of PN , QM , and the Rk’s.
The unknown coefficients of these polynomials are ob-
tained through the linear system arising from (2.4) which
is similar in structure to the system (2.1)–(2.2).

3 Padé-Chebyshev Reconstruction

Let x ∈ [−1, 1] and n be a nonnegative integer. The
Chebyshev polynomials of the first kind, denoted by
Tn, are defined as Tn(x) = cos(nθ), θ ∈ [0, π] and
θ = arccosx. These polynomials are orthogonal in
the interval [−1, 1] with respect to the weight function
ω(x) = 1√

1−x2 , that is,

ˆ 1

−1
Tm(x)Tn(x)

1√
1− x2

dx =

⎧⎪⎨
⎪⎩
0, n �= m
π
2 , n = m �= 0
π, n = m = 0

.

Define the orthogonal expansion of f in Chebyshev by

f(x) =
∞∑′

n=0
cnTn(x),

where the coefficients cn are given by the formula

cn =
2
π

ˆ 1

−1

f(x)Tn(x)√
1− x2

dx. (3.1)

When deriving cn analytically using this formula becomes
unwieldy, inexact expansion coefficients may be obtained
by estimating the integral through the following Gauss-
Chebyshev quadrature rule

ˆ 1

−1
h(x)ω(x)dx ∼=

m∑
k=1
Akh (xk) , (3.2)

where {xk} are the zeros of the Chebyshev polynomials
Tm(x), h(x) = f(x)Tn(x), ω(x) = 1√

1−x2 , and Ak = π
m

for all k.
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By the definition of the Chebyshev polynomials, we may
express the Chebyshev expansion of f as

f(x) = c0
2
+
∞∑
n=1
cn cos (nθ) , θ = cos−1(x)

= c0
2
+ 1
2

∞∑
n=1
cn
(
einθ + e−inθ

)
,

since cos(nθ) = 1
2
(
einθ + e−inθ

)
. Via the tranformation

z = eiθ, the Chebyshev expansion of f is transformed
into the following Laurent expansion in z

f(z) = c0
2
+ 1
2

∞∑
n=1
cn
(
zn + z−n

)
which can be rewritten as

f(z) = 1
2

( ∞∑′

n=0
cnz
n +

∞∑′

n=0
cnz
−n
)
.

Letting

g(z) =
∞∑′

n=0
cnz
n, (3.3)

we have f(z) = 1
2
(
g(z) + g(z−1)

)
. As the Chebyshev

coefficients cn’s are real, g
(
z−1) = g(z). Thus,

f(z) = 1
2

(
g(z) + g(z)

)
= �e (g(z)) . (3.4)

We refer to g(z) in (3.3) as the transformed Chebyshev
series associated with f(x).

Let f(x) be piecewise analytic over [−1, 1] with s jump
locations at x = ξk ∈ [−1, 1], k = 1, . . . , s. Consider
the transformed Chebyshev series g(z) associated with
f(x). The transformation z = eiθ suggests that the jump
representation in (2.3) translates into the form

log
(
1− z
eiθk

)
, (3.5)

where 0 ≤ θk = cos−1(ξk) ≤ π. Consequently, we may
modify (2.4) into

PN (z) +
s∑
k=1
RVk(z) log

(
1− z
eiθk

)
QM (z)

= g(z) +O (zη+1) ,
where

PN (z) =
N∑
j=0
pjz
j , QM (z) =

M∑
j=0
qjz
j �= 0,

RVk(z) =
Vk∑
j=0
r

(k)
j z

j , k = 1, . . . , s,

η = N +M + s+
s∑
k=1
Vk.

We call the modified SFP approximant just defined the
Singular Padé-Chebyshev (SPC) approximant to
g(z) whose real part is the SPC approximant to f(x).
Denote this approximant by SPC(N,M, V1, . . . , Vk). The
unknown coefficients of polynomials P ,Q, and RVk , k =
1, . . . , s, are then computed through the following linear
system:
M∑∗

j=0
cN−j+tqj −

V1∑
j=0
a

(1)
N−j+tr

(1)
j − · · · −

Vs∑
j=0
a

(s)
N−j+tr

(s)
j = 0

M∑∗

j=0
cl−jqj −

V1∑
j=0
a

(1)
l−jr

(1)
j − · · · −

Vs∑
j=0
a

(s)
l−jr

(s)
j = pl.

In the above, t = 1, . . . , η − N , l = 0, . . . , N , and the
asterisk-marked summation indicates that the term with
c0 is halved, and for all n < 0, cn = 0 . It should be
noted that the a(k)

n ’s are the coefficients in the Taylor’s
expansion of (3.5), and for all n ≤ 0, a(k)

n = 0.

4 Numerical Results

We demonstrate the SPC reconstruction for these two
test functions:

1. signum function f1(x) =

{
1, 0 ≤ x ≤ 1
−1, −1 ≤ x < 0

2. absolute value function f2(x) = |x| , x ∈ [−1, 1]

4.1 Reconstructing the Signum Function

The exact Chebyshev expansion coefficients of f1 are

cn =

{ 4
nπ (−1)

n−1
2 , n = 2k + 1, k ≥ 0

0, otherwise.
(4.1)

Since f1 has a jump discontinuity at x = 0 that corre-
sponds to θ = π2 , its SPC approximant is determined
by

P (z) +R(z) log
(
1− zi

)
Q(z)

.

Figure 2 exhibits a remarkable reconstruction of f1 by the
SPC (5,5,7) approximant where the Gibbs phenomenon is
practically eliminated. This reflects the significant effect
of incorporating the singularity of f1 into the process. A
closer look at the approximation near the jump is shown
in Figure 3.

For comparison purposes, let us also plot the Padé-
Chebyshev (PC) approximant PNQM denoted by PC (N,M)
and a truncated Chebyshev (Cheb) approximant PN de-
noted by Cheb (N). Among the three, SPC approximant
provides the best fit for f1 as shown in Figure 4. Further-
more, Figure 5 shows that there is a drastic drop in the
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Table 1: The Gibbs constant of PC and SPC approx-
imants to f1 using exact and inexact expansion coeffi-
cients.

Gibbs Constant
Approximant Exact Inexact
PC (5,5) 0.0585387 0.0606156
SPC (5,5,0) 0.0158730 0.0268526
SPC (5,5,2) 0.0009775 0.0269967
SPC (5,5,5) 0.0000027 0.0717451
SPC (5,5,7) 0.0000494 0.0051746
SPC (5,5,10) 0.0000511 0.0006276

Table 2: The steepness of PC and SPC approximants to
f1 using exact and inexact expansion coefficients.

Steepness
Approximant Exact Inexact
PC (5,5) 19.096826 19.316588
SPC (5,5,0) 2030.9154 2052.5977
SPC (5,5,2) 2001.8786 2052.5868
SPC (5,5,5) 1999.8222 2138.5651
SPC (5,5,7) 2000.0926 2009.2583
SPC (5,5,10) 2000.0963 1789.9199

pointwise error for the SPC case especially at the vicinity
of the jump.

Shown partially in Figure 6 is the SPC (5,5,7) approxi-
mant to f1 with inexact expansion coefficients obtained
using the Gauss-Chebyshev quadrature with m = 100.
The gap reveals a considerable difference between the
SPC (5,5,7) approximants generated using exact versus
inexact coefficients. Further clarification is provided by
their pointwise error plots in Figure 7.

The fitness of the approximant may be gauged by its
Gibbs constant and steepness; it is desirable for the Gibbs
constant to be as small as possible and for the steepness
to be as high as possible. Although specific to the ap-
proximants mentioned, Tables 1 and 2 reveal a sense of
superiority of the SPC over the PC approximants in terms
of their Gibbs constant and steepness. Between the two
cases of exact and inexact coefficients, however, results
are expectedly favorable in the exact case. But as shown
in Figure 6 for instance, under the restriction of having
just the estimated coefficients, those approximants in the
inexact case may be good enough. Generally, our results,
particularly that of the exact case, are far better in com-
parison with those obtained in [4] for the sign function
wherein a Padé-type approximant of order (N,M) has
the Gibbs constant of only 0.008149 with a steepness of
about 35.682482 for the approximant (5,5).

Figure 2: The SPC (5,5,7) approximant of f1.

Figure 3: The graph of SPC (5,5,7) near the jump.

Figure 4: Cheb (15), PC (5,5), and SPC (5,5,7) approxi-
mants to f1.
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Figure 5: Convergence of pointwise error, in logarithmic
scale, of (a) Cheb (15), (b) PC (5,5), and (c) SPC (5,5,7)
approximants to f1.

Figure 6: The difference between f1’s SPC (5,5,7) ap-
proximants with exact and inexact coefficients near the
jump location.

Figure 7: Convergence of pointwise error, in logarithmic
scale, of SPC (5,5,7) approximants to f1 using (a) inexact
and (b) exact coefficients.

Figure 8: Graphs of f2 and its SPC (5,5,5) approximant
near the jump.

Figure 9: C(10), PC(5,5), and SPC(5,5,5) approximants
to f2 near the jump.

4.2 Reconstructing f2

Although f2 is continuous at x = 0, it has a first or-
der jump at that point. Its SPC approximant has the
same form as that of f1. Experiments show that the SPC
method reconstructs f2 very well over the entire domain.
We exhibit in Figure 8 a portion of the SPC (5,5,5) ap-
proximant near the jump location that gives a better view
of its slight deviation from the actual function. In Figure
9, we display a comparison of Cheb (10), PC (5,5), and
SPC (5,5,5) approximations and note how the pointwise
errors in Figure 10 highlight the remarkable performance
of the SPC approximant.

The maximum overshoot of the SPC (5,5,5) approximant
as seen in Figure 8 measures to 0.0008842 which is much
better than that of PC (5,5) approximant which is just
0.0107996.

A comparison near the jump location of the SPC (5,5,5)
approximants using exact versus inexact expansion coef-
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Figure 10: Convergence of pointwise error, in logarithmic
scale, of (a) Cheb (10), (b) PC (5,5), and (c) SPC (5,5,5)
approximants to f2.

Figure 11: SPC (5,5,5) approximant to f2 with inexact
coefficients shoots up at the jump.

Figure 12: Convergence of pointwise error, in logarithmic
scale, of the SPC (5,5,5) approximants to f2 using (a)
inexact and (b) exact coefficients.

ficients is shown in Figure 11. The maximum overshoot
here is 0.0466143. The error plots displayed in Figure 12
clearly show the differences of the two approximants in
terms of accuracy.

5 Conclusion

The Singular Padé-Chebyshev (SPC) method presented
in this paper is shown to remarkably reduce the Gibbs
phenomenon and effectively reconstruct functions with
jump discontinuity. As reflected in the SPC approxi-
mant’s Gibbs constant and steepness, our method sig-
nificantly improves convergence particularly at the vicin-
ity of the jump. While the use of SPC approximants
computed with exact expansion coefficients results in out-
standing function reconstruction, we remark that approx-
imants computed with inexact coefficients offer a poten-
tially good alternative in situations where exact coeffi-
cients are unavailable.
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