
 
 

 

  
Abstract—The paper presents a method to analyse the 

thermal processes occurring in the cast composite solidification. 
The domain of cast is formed by parallel fibres bundle randomly 
immersed in a host metal matrix. The heat is transferred from 
the metal matrix and absorbed by fibres. The objective of this 
paper is to evaluate the volumetric fraction of fibres for which 
the solidification of metal matrix occurs. Our method is to 
compute Voronoi diagrams with Voronoi regions representing 
the geometry location of the fibres in the metal matrix and to use 
these regions as control volume within a variant of Control 
Volume Method. 
 
 

Index Terms—cast composition solidification, heat transfer, 
Voronoi diagrams.  
 

I. INTRODUCTION 

Heat conduction is a relevant topic in many industrial 
processes. Knowledge of the thermal conduction phenomena 
and its effective description are essential for the analysis of 
the heat transport processes occurring in heterogeneous 
media. An example of industrial importance is the 
solidification process of metal matrix composite (MMC) 
[1]–[7]. The formation of microstructures can be altered 
during the solidification process as is the case of fibre 
reinforced aluminium composite with the extended ends of 
the fibres cooled by a heat sink. MMC solidification has been  
investigated in various fibre arrangement scenarios including 
fixed inline or staggered fibre in a variety of spacing 
distributions. The presence of fibres has a reinforcing effect 
on mechanical properties of MMCs compared to monolithic 
metals. Superior mechanical, electrical and thermal properties 
of MMCs depend on the appropriate choice of the matrix and 
fibre materials, their shape and fabrication method. 

The problem we consider is the solidification of the metal 
(the matrix) in the presence of fibres. The aim of our 
investigation is to determine the volumetric fraction of fibres 
for which the solidification of metal matrix proceeds in 
‘a natural way’ due to the heat exchange between the matrix 
and fibres.  

II.  MATHEMATICAL MODEL 

We consider a hypothetic process of the synthesis of MMC 
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by casting. During this process the fibres do not undergo 
phase change because their melting temperature is much 
higher than that of the matrix. The solidifying matrix and 
fibres are contained within a cavity with adiabatic walls and 
the only possible energy exchange process is the heat transfer 
form the matrix to the fibres so the fibres serve as a heat sink. 
The dominant mechanism of energy transport in the cavity is 
diffusion.  

The governing equations for the conservation of energy [8], 
including the presence of the fibres bundle are: 
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where cm(T) is the specific heat per unit of volume, λm(T) is 
thermal conductivity, T, x, y, t denote the temperature, 
geometrical co-ordinates and time. Index m = 1 identifies the 
matrix sub-domain and m = 2 identifies the fibres sub-domain. 
The term qV is the source function and this term can be written 
in the form 
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where L is the latent heat per unit of volume, fS is the solid 
state fraction at the neighbourhood of the considered point 
(x, y). Pure metals (e.g. aluminium) solidify in a constant 
temperature T*. The function fS changes from 0 (molten 
metal: for T1(x, y, t) > T*) to 1 (solid body: for T1(x, y, t) < T*).  

The value of λm(T) is determined by relation  
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where λL, λS are thermal conductivities of the liquid and solid 
state of the metal matrix and λfib is the thermal conductivity of 
the fibres bundle. In a similar way one can determine cm(T). 

On the contact surface between the matrix and fibre a 
continuity of temperature and a continuity of heat flux are 
assumed 
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where ∂/∂n denotes a normal derivative. On the external 
surface of the domain the boundary condition in the form 
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is given. For time t = 0 the initial condition is also known 
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III.  VORONOI TESSELLATION AND MESH GENERATION 

In a numerical modelling of the solidification process 
considered the metal-matrix and fibre sub-domains are 
divided into small cells (control volumes), known as the 
Voronoi polygons (also called the Thiessen or Dirichlet cells 
in two dimensions) [9]–[13]. The Voronoi polygons are one 
of the most fundamental and useful constructs defined by 
irregular lattices. For a set X = {x1, x2, ..., xN} of N distinct 
points in R2, the Voronoi tessellation is the partition of R2 into 
N polygons. The polygon that contains point xi (central point) 
is denoted by ∆Vi. Each region ∆Vi is defined as the set of 
points in R2 which are closer to xi than to any points in X: 
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where d(⋅,⋅) is the Euclidean distance function. All of the 
Voronoi regions are convex polygons. In Fig. 2 the example 
of Voronoi polygons is shown. A single polygon is defined by 
the lines that bisect the lines between the central point and its 
surrounding points. The bisecting lines and the connection 
lines are perpendicular to each other. When we use this rule 
for every point in the area, the area will be completely covered 
by adjacent polygons. Some of them are infinite (“open”) 
because they have no neighbouring points in that direction. 

 

 
 

Fig. 1. The Voronoi polygons for a set of arbitrarily 
distributed points 

 
Many algorithms to construct the Voronoi polygons can be 

found in literature. One popular method is based on the 
Delaunay triangulation [9]–[12]. This triangulation can be 
formulated in a circle criterion. The Delaunay triangulation 
DT of a set X of points in the plane is such a triangulation 
DT(X) that consists of non-overlapping triangles and contains 
no points of X inside the circumcircle of any triangle in 

DT(X). This triangulation is the dual structure of the Voronoi 
tessellation. The polygons are defined by lines that bisect the 
connection lines between neighbouring points and the centers 
of circumcircles are the vertices of the Voronoi polygons. In 
the case of unbounded polygons whose center points lie on the 
convex hull of set X, they are bound by the boundaries of the 
domain Ωp − see Fig. 1. 

Positions of points in the set X are usually determined 
randomly and hence the mesh of control volumes is 
unstructured. We additionally impose the requirement that the 
minimal distance between two points must be greater than 
the pre-assigned value. It makes the polygons more uniform 
and the central point lies nearer the middle of the polygon.  

In Fig. 2 an example of the structure of cast composites 
with 40% fibres is shown. The domain has been divided into 
2351 control volumes. Gray control volumes determine the 
fibre sub-domain. If we assume the fibres bundle is parallel 
then on the section considered one obtains the discrete set of 
circles. The position of the fibre center Pj = (x0j, y0j), where j is 
an index of the fibre considered, is determined in a random 
way. Also the fibre radius rj is randomly determined 
rj ∈ [rmin, rmax]. The number of CV should assure a good 
approximation of fibre circular cross-sections. The positions 
of central points in CV close to the contact between fibre and 
metal-matrix are analytically determined in order to achieve a 
better approximation of the fibres shape. The geometrical 
parameters of a system matrix-fibres are chosen on the basis 
of the optical micrographs presented in [14]. It can be seen 
that the fibres diameters are different, and also their mutual 
positions are rather incidental. The only unquestionable 
information concerning the geometry of the system results 
from the volumetric fraction of the fibres in the domain 
analyzed. So, the numerical procedure realizing the mesh 
generation, fibres localization, values of fibres radii bases on 
the application of random numbers generation. On the stage 
of mesh generation, the type of sub-domain (m = 1, 2) for 
every CV is assigned. 

 

 
 

Fig. 2. Example of mesh 
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IV.  NUMERICAL MODELLING 

The control volume method (CVM) [8], [15]–[17] 
constitutes the effective tool for numerical computations of 
the heat transfer processes. The domain analyzed is divided 
into N volumes. The CVM algorithm allows to find the 
transient temperature field at the set of nodes corresponding 
to the central points of the control volumes. The nodal 
temperatures can be found on the basis of energy balances for 
the successive volumes. In order to assure the correctness and 
exactness of the algorithm proposed we generate the control 
volumes in the shape of the Voronoi polygons (see: Fig. 3). 

 

 
 

Fig. 3. Control volume ∆V0 
 

Let us consider the control volume ∆V0 with the central 
node x0 . It is assumed here that the thermal capacities and 
capacities of the internal heat sources are concentrated in the 
nodes representing elements, while thermal resistances are 
concentrated in the sectors joining the nodes. 

The energy balance for the control volume ∆V0 can be 
written in the form  
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where ∆H0 is a change of control volume enthalpy during the 
time interval ∆t, Qe − the heat conducted at the time ∆t from 
the adjoining nodes to the node x0, qV − a mean capacity of 
internal heat sources in the control volume ∆V0. 

If one assumes that the heat fluxes flowing to the element 
∆V0 are proportional to the temperature differences at the 
moment t = t f, then we shall obtain a solving system of the 
type 'explicit scheme'. So 
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where f
eR0 is the thermal resistance between points x0 and xe 

[8], ∆Ae surface limiting the domain ∆V0 in the direction e. If 
we denote by he the distance between the nodes x0 , xe then 
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where f
0λ  and f

eλ are the thermal conductivities in the control 

volumes ∆V0 and ∆Ve at the moment t = t f. The other 
definition of thermal resistance should be introduced for the 
boundary volumes [8]. For the boundary condition (5) we 

assume ∞=f
eR0  (in numerical realization e.g. 10

0 10=f
eR )  

if the surface limiting the domain ∆V0 in the direction e is 
a part of the boundary - it assures to zero heat flux in the 
direction e.  

The change of enthalpy of the control volume ∆V0 during 
the time ∆t equals [8], [15] 
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where c0

f is the volumetric specific heat, f, f+1 denotes two 
successive time levels.  

Let us write the balance equation in the explicit scheme 
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In order to assure the stability of the above explicit scheme the 
coefficient W0 must be positive. 

Next, the problem of metal solidification in the control 
volume ∆V0 in a constant temperature T* will be discussed. 
Let us assume that at the time t = t f the temperature T0

f  in 
node x0 is T0

f > T* (the molten metal), and the calculated 
temperature T0

f+1 < T*. The change of enthalpy for ∆V0 during 
the time ∆t is as follows 
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The enthalpy ∆H0 can be divided into two components 
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The change of enthalpy ∆H02 associated with the 
solidification of the control volume ∆V0 is equal to 
 

0
1

002 VfLH f
S ∆∆=∆ +  (18) 

 

where 0
1

0 Vf f
S ∆∆ +  is a solidified part of the considered 

volume ∆V0. So, the energy balance for ∆V0 in which the 
solidification process starts, can be written in the form 
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From the last equation one obtains 
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and simultaneously 
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If in the control volume ∆V0 the first portion of solid metal is 
present then it is assumed that the temperature corresponding 
to ∆V0 equals T* and for the successive steps of time the 
following difference equation is required 
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From the last equation one obtains 
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whereas T0

f+1 = T*. For the one of successive steps of time it 

turns out that 11
0 >+f

Sf , this means that more than the whole 

∆V0 has solidified. The enthalpy connected with this factious 
solidification of ∆V0 above fS = 1 should be recalculated on 
the enthalpy connected with cooling of the solid state 
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hence 
 

( )
1,

1
* 1

0
0

1
01

0 =−−= +
+

+ f
Sf

f
Sf f
c

fL
TT  (25) 

 
In the successive steps of time the energy balance for ∆V0 is of 
the form (13). 
 

V. EXAMPLE OF COMPUTATIONS 

Numerical simulations of a casting process have been 
executed for the matrix-fibre (pure metal Al) with 
thermophysical parameters: cS = 2.943⋅106, cL = 3.07⋅106 

J/(m3 K), λS = 261, λL = 104 W/(m K), L = 1.053⋅109 J/m3, 
T* = 660 °C, initial temperature T1 0 = 700 °C and the fibres 
(Si) with thermophysical parameters: cfib = 1.63⋅106  J/(m3 K), 
λfib = 148 W/(m K), initial temperature T2 0 = 20 °C. The 
considered domain (2D problem) has the dimension 100 µm × 
100 µm. In simulations the fibres fraction has been assumed 
as 40%, 50% and 55%. 

In Figures 4, 5 and 6 the kinetics of the solidification 
process for different fibres fraction are presented. The 
influence of fibres fraction, initial temperatures of 
sub-domains considered on solidification time is very 
essential. In the case of the simulation with the 55% of fibres 
fraction, the whole liquid metal passes to the solid state 

without external thermal interactions. The algorithm 
proposed allows to analyze the thermal processes in a system 
matrix-fibres for the different technological conditions 
(fraction of fibres, initial temperatures, boundary conditions 
etc.). 

From the enthalpy balance approach (for adiabatic system) 
one can determined in an analytical way fibres fraction for 
which the whole liquid metal passes to the solid state. The 
enthalpy balance can be written as follows 
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where fr is fibres fraction in the considered domain, H1 and H2 
are enthalpies of metal-matrix and fibre sub-domains 

respectively and H  is enthalpy of the whole domain. 
Assuming that T10 > T* then the enthalpy H1 is defined by 
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and the enthalpy H2 equals to 
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Assuming that the whole liquid metal passes to the solid state 
and final established temperature of the whole domain (the 
metal matrix sub-domain and fibres sub-domain) is equal to 

T*, then the enthalpy H  is defined by  
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Substituting (27), (28) and (29) into (26) and assuming that 
cL, cS, cfib are constant, one can calculate the value fr 
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For the above thermophysical parameters we obtain the 

value fr = 52,98%. This analytical result confirms the 
correctness of numerical results. 

 

VI.  CONCLUSION 

In the present work, the Voronoi diagrams have been 
exploited to generate a family of meshes for the control 
volume method algorithm. The properties of Voronoi 
diagram permit to find the nodal temperatures in an effective 
manner. When the cast solidifies the shapes of solidified 
domains changes in a peculiar manner around the cooling 
fibres. Thus, the random Voronoi tessellations allow to 
achieve higher correspondence with the temperature field 
than widely used regular tessellations. While the method is 
presently limited to rather simple, circular-fibre-shapes, work 
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Fig. 4. The kinetics of solidification – 40% fibres fraction 
 

   
 

Fig. 5. The kinetics of solidification – 50% fibres fraction 
 

   
 

Fig. 6. The kinetics of solidification – 55% fibres fraction 

 
is presently in progress to extend it to fibres with noncircular 
cross-sections and to metal matrix composites with random 
orientations of cooling fibres. 
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