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Abstract—Self-similarity is a ubiquitous concept in
the physical sciences used to explain a wide range of
spatial- or temporal-structures observed in a broad
range of applications and natural phenomena. In-
deed, they have been predicted or observed in the
context of Raman scattering, spatial soliton fractals,
propagation in the normal dispersion regime with
strong nonlinearity, optical amplifiers, and mode-
locked lasers. These self-similar structures are typ-
ically long-time transients formed by the interplay,
often nonlinear, of the underlying dominant physi-
cal effects in the system. A theoretical model shows
that in the context of the universal Ginzburg-Landau
equation with rapidly-varying, mean-zero dispersion,
stable and attracting self-similar pulses are formed
with parabolic profiles: the zero-dispersion similari-
ton. The zero-dispersion similariton is the final so-
lution state of the system, not a long-time, inter-
mediate asymptotic behavior. An averaging analysis
shows the self-similarity to be governed by a nonlin-
ear diffusion equation with a rapidly-varying, mean-
zero diffusion coefficient. Indeed, the leading-order
behavior is shown to be governed by the porous me-
dia (nonlinear diffusion) equation whose solution is
the well-known Barenblatt similarity solution which
has a parabolic, self-similar profile. The alternating
sign of the diffusion coefficient, which is driven by
the dispersion fluctuations, is critical to supporting
the zero-dispersion similariton which is, to leading-
order, of the Barenblatt form. This is the first an-
alytic model proposing a mechanism for generating
physically realizable temporal parabolic pulses in the
Ginzburg-Landau model. Although the results are of
restricted analytic validity, the findings are suggestive
of the underlying physical mechanism responsible for
parabolic (self-similar) pulse formation in lightwave
transmission and observed in mode-locked lasers.
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1 Introduction

Self-similarity is a ubiquitous phenomena exhibited in
a broad range of physical and biological systems [4].
It is particularly prevalent in nonlinear dissipative sys-
tems where initial transients are attenuated and the
solution approaches a self-similar form at long times,
i.e. the intermediate asymptotic regime [4]. In this
manuscript, we show that a rapidly-varying, mean-zero
dispersion fluctuation in the Ginzburg-Landau equation
results in the spontaneous formation of breathing, self-
similar parabolic structures (Barenblatt solutions). This
attracting state, from a Poincaré map point of view, is
the steady-state of the system and not a transient, in-
termediate pulse form typical of self-similarity solutions.
Such solutions have been recently observed experimen-
tally [12] and touched upon theoretically [3] in the con-
text of a mode-locked laser. However, the previous the-
ory fails to capture the detailed pulse shape, its attract-
ing nature, and its broader applicability. Here, we pro-
vide the first theoretical description of such an attracting

state which arises in the context of the Ginzburg-Landau
model with rapidly-varying, mean-zero dispersion. The
breathing parabolic nature of the solution is driven by
the mean-zero dispersion fluctuations while the attract-
ing behavior arises from the dissipative terms in the GL
equation. Thus the self-similar parabolic structures result
as a novel hybrid of dispersion-management techniques
and dissipative self-similarity.

The existence of self-similarity implies a certain spa-
tial and/or temporal order in the system that can not
only be used to gain insight into the inter-dependences
of a given system, but can often be exploited from an
analytic point of view. The simplest example of self-
similar behavior arises from considering the heat equa-
tion, which is the prototypical model for introducing
the concept of self-similarity and its transient, long-time
behavior [7]. Certain nonlinear generalizations of the
heat equation, i.e. the porous media equation, have also
been considered and their self-similar behavior (Baren-
blatt solutions) assessed [14]. Much of the extensive in-
terest in the porous media equation arises from nonlin-
ear diffusive phenomenon in thermal waves [20], flow of
thin films [19], groundwater flow [5], population dynam-
ics [16], dispersion-managed systems [6] and mode-locked
lasers [3]. The mathematical analysis of the porous me-
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dia equation suggests that unlike its linear counterpart,
its solutions have compact support and finite speeds of
propagation. In contrast to these diffusive processes, self-
similarity has also been exhibited as the long-time tran-
sient in certain amplifier systems [2, 8]. The term “simi-
lariton” commonly implies the combination of some un-
derlying self-similar structure with soliton-like (dissipa-
tive soliton) persistence of a localized solution. This use
of the term “similariton” in the context of mode-locked
lasers has been widely used and is also observed in a broad
range of other applications.

A perturbed version of the porous media equation arises
in the dynamics of the GL equation with a rapidly-
varying, mean-zero dispersion. The resulting self-similar,
parabolic structure results directly from the dispersion
fluctuations. The importance of dispersion-management
(DM) and its impact on physical systems is well known.
DM solitons are critical for characterizing dispersion
managed systems which arise, for instance, in optical fiber
communication systems [10, 11, 18] and Bose-Einstein
condensates (BECs) [13, 17]. These solutions arise in a
Hamiltonian system context and have a Gaussian form.
Thus they are not attractors to the underlying system.
In contrast, more general Ginzburg-Landau models in-
clude dissipative effects that modify the behavior so that
attracting states are possible. It is these dissipative
terms that render the parabolic breathers an attractor.
Such an example arises in mode-locked lasers [3, 12] and
BECs [15]. Thus the periodic, mean-zero dispersion fluc-
tuations with dissipative effects are critical for supporting
the attracting parabolic states.

2 Governing Equations

The cubic-quintic Ginzburg-Landau (GL) equation

iut+
1

2
d(t)uxx+|u|2u= iδu+iβ|u|2u+iαuxx−iσ|u|4u (1)

describes a variety of nonequilibrium phenomena (See [19]
and references therein). In the context of mode-locked
lasers, t is the propagation distance that the pulse trav-
els in a laser cavity, x is the retarded time, u is the com-
plex envelope of the electric field, d is the group velocity
dispersion coefficient, δ is the linear gain-loss coefficient,
iαutt accounts for spectral filtering (α > 0), β|u|2u rep-
resents the nonlinear gain which arises from saturable
absorption (β > 0), and σ (> 0) is the saturation of the
nonlinear gain.

Here, d(t) characterizes the given dispersion fluctuations
(map) in the system. If the right-hand side of (1) is per-
turbatively small, the leading-order equation is the well-
known nonlinear Schrödinger equation (NLS) whose soli-
ton solution (d > 0) results from a fundamental balance
between linear dispersion and cubic nonlinearity. The
evolution of the laser cavity dynamics governed by (1) is
demonstrated in Fig. 1.

Figure 1: Attracting dynamics of the solution (a) and
its breathing dynamics (b) obtained from numerical sim-
ulation of the GL equation (1) from a Gaussian initial
condition with δ = α = 0, β = σ = 0.1, and ε = 0.5. (a)
The output is shown at the beginning of each dispersion
map while (b) shows the last four intra-period fluctua-
tions. (c) Comparison of the numerical solution (solid)
with a quadratic Barenblatt profile (dashed) and hyper-
bolic secant pulse (dots). The tail structure is exhibited
in experiments [12].

In this manuscript, we investigate (1) when the dispersion
length T is much longer than the typical period P of the
dispersion map, so that

ε = P/T � 1 (2)

and the dispersion fluctuations occur on a rapid scale.
The period P is simply determined by the physical length
of the laser cavity while the dispersion length T is related
to the pulse width of the mode-locked pulses. Specifi-
cally, the dispersion length is the length it takes for the
full-width, half-maximum pulse width to double in the
absence of nonlinearities [1]. For convenience and sim-
plicity, we let

d = d(t/ε) = cos(2πt/ε). (3)

Note that although the results apply to a general d(t), it
will prove helpful to consider the particular case here of
a simple sinusoidal dispersion map.

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



Simulations suggest that the dispersion fluctuations must
occur on a rapid-scale in order for the parabolic states to
persist. Such a clear scale separation between the dis-
persion map period and the fundamental dispersion and
nonlinearity scale suggests the application of a multi-scale
transformation technique. The transformation procedure
considered relies on the Green’s function of the linear part
of the left hand side of (1) since it accounts explicitly for
the dispersion fluctuations. Using Fourier transforms, it
is easy to calculate that the Green’s function for the lin-
ear Schrödinger equation [6]

iGt +
1

2
d(t/ε)Gxx = 0, (4)

with G(x, x′, 0) = δ(x− x′) is given by

G(x, x′, t) =
exp(iπ/4)√

4πμ(t)
exp

(−i(x− x′)2

4μ(t)

)
. (5)

Here 2μ(t) =
∫ t

0
d(s)ds ∼ O(ε) is the accumulated dis-

persion for a rapidly-varying, mean-zero map.

The transformation is performed by introducing the new
function A(x, t) defined by

A(x, t) =

∫
G

†(x, x′, t)u(x′, t)dx′. (6)

The evolution equation for A can be found by using the
adjoint relation u(x, t) =

∫
G(ξ, x, t)A(ξ, t)dξ. Plugging

this into the governing equation (1), making use of (4),
then multiplying by the adjoint G

†(ξ, x, t) and integrat-
ing with respect to ξ gives an exact transformation. At
this point no approximations have been made-the trans-
formation from u to A is simply a linear change of vari-
ables. Since μ ∼ ε � 1, the integrals can be approxi-
mated using stationary-phase asymptotics [6]. Expand-
ing the integrals about the stationary phase points gives
an approximate evolution for A where qi can be any of
the small parameters δ, α, μ, β, or σ. This gives the
effective evolution for A(x, t) that neglects higher order
terms since the equation parameters δ, α, β, and σ are
small and μ ∼ ε � 1.

The effective equation can be put into a more transparent
form with the amplitude-phase decomposition

A(x, t) =
√

ρ(x, t) exp(iΘ(x, t)). (7)

Inserting (7) into the equation for A(x, t) yields

ρt = μ(t)(ρ2)xx−2ρ(δ−βρ+σρ2)+α
(
ρxx− ρ2

x

2ρ
−2ρΘ2

x

)
(8a)

Θt = −ρ−2μ(t)ρΘxx + α
(
Θxx +

1

ρ
ρxΘx

)
. (8b)

A key observation is for μ > 0 the phase equation (8b) is
ill-posed whereas for μ < 0 the amplitude equation (8a)
is ill-posed. This problem is an artifact of the averaging

Figure 2: Typical evolution of the Barenblatt similar-
ity solution (10) over four dipsersion map periods with
D(t) = cos(2πt/ε). The breathing dynamics is induced
by the periodically varying diffusion coefficient μ(t) ∼
O(ε).

process and can be treated via regularization or by in-
cluding higher order correction terms [6]. In contrast to
other averaging techniques used on dispersion managed
systems [9], we emphasize that the averaging technique
used here retains the critical dependence of the parame-
ter μ on t. This plays a key role in the stabilization of the
parabolic state. Indeed, if the μ(t) parameter is averaged
out to be a constant, the theory fails to correctly capture
the breathing nature of the solutions. Specifically, the
profile undergoes typical self-similar broadening until the
expansion formally breaks down at t ∼ 1/

√
ε [6].

3 leading order barenblatt self-similarity

In the limit where the dissipative perturbations on the
right hand side of (1) are small in comparison with the
dispersion map, i.e. (δ, β, σ, α) � ε < 1, the leading or-
der amplitude equation is governed by the porous media
equation [3]

ρt = μ(t)(ρ2)xx. (9)

The porous media equation has the Barenblatt similarity
solution [4]

|u|2≈ρ(x, t)∼ 1

12(γ+t∗)1/3

[
a2
∗−

(
(x−x∗)

(γ+t∗)1/3

)2
]

+

(10)

where γ = γ(t) = 2
∫ t

0
μ(s)ds, f+ = max(f, 0) and the so-

lution is characterized by the three parameters (a∗, t∗, z∗)
which represent the mass, center position, and pulse-
width of the solution respectively. Note that u ≈ A
when ε � 1 [6]. Here, to first order in μ ∼ ε, the evolu-
tion equation for the amplitude decouples from the equa-
tion for the phase. Figure 2 illustrates the typical time-
dependent evolution of the Barenblatt solution (10) over
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Figure 3: Attracting dynamics of the solution (a) and
its phase-plane (b) obtained from numerical simulation
of the amplitude equation (11) from a Gaussian initial
condition with δ = 0, β = σ = 0.1, and ε = 0.5. The
output is shown at the beginning of each dispersion map.
(c) Comparison of the parabolic solution from solving
(11) numerically (solid black) with the solution from the
full governing Ginzburg-Landau equation (1) (solid grey),
a quadratic Barenblatt profile (dashed) and hyperbolic
secant pulse (dots). The tail structure is also exhibited
in experiments [12].

four cavity round trips. We emphasize that the breath-
ing dynamics results from the periodic fluctuations in the
integral of the cumulative dispersion γ(t). Indeed, the
averaging technique used here retains the oscillatory na-
ture of the dispersion map in the form of a t-dependent
oscillatory coefficient in Eqs. (10). This oscillatory vari-
ation suppresses the structure from undergoing its usual
self-similar broadening and allows for stable self-similar
breathers.

4 Evolution Dynamics

Although the Barenblatt solution (10) captures the fun-
damental self-similar structure, it is not the attracting
state of the underlying system. This is expected since
we have neglected the dissipative terms needed to cre-

ate an attractor. Further, the Barenblatt soluton has
unphysical discontinuous derivatives at its edges. So al-
though insightful, it is a mathematical idealization that
is physically unrealizable. In many applications, spectral
filtering is much weaker than other dissipative terms, i.e.
α� (δ, β, σ, μ). In this case, the amplitude equation

ρt = μ(t)(ρ2)xx−2ρ(δ−βρ+σρ2) , (11)

is still decoupled from the phase equation. Although ex-
act solutions to (11) are not attainable, this equation
sheds light as to why parabolic states persist in this sys-
tem. Specifically, for small values of the parameters δ, β
and σ, equation (11) is perturbatively close to (9). Like-
wise, the solutions of the two equations should also be
perturbatively close so that the leading order behavior of
(11) inherits the self-similar Barenblatt structure of (10).
Note that this implies that (11) is not strictly self-similar
as certain symmetries associated with (9) are broken. Re-
gardless, the inclusion of dissipative terms allows for an
attracting parabolic breathers to exist for a wide range of
parameter space. Further, numerical simulations suggest
the parabolic states are robust to a variety of perturba-
tions including white-noise fluctuations.

Figure 3 shows the numerical simulation of (11) from ini-
tial amplitude ρ(x, 0) =

√
2exp

[−x2
]
. The output point

in the Poincaré map is taken to be at the beginning
of each map period. Figure 3(a) shows that the initial
Gaussian structure quickly settles to a steady state solu-
tion in the Poincaré map. In contrast to the Barenblatt
solution, the output pulse profile here has finite deriva-
tives at its edges. Figure 3(b) plots the corresponding
(ρ, ρx) phase plane and shows that there is indeed an
attracting homoclinic orbit (solid line) which represents
the steady state solution. To show that this attracting
state has a parabolic profile, the output pulse (once set-
tled to the parabolic breather), along with a Barenblatt
quadratic (dashed) and hyperbolic secant (dotted) fit is
plotted in Fig. 3(c). In addition, the numerical solution
for the Ginzburg-Landau equation (1) with parameters
α = δ = 0, β = σ = 0.1, and ε = 0.5 is included (solid
grey). This shows that the solutions to (1) and (11) are
perturbatively close as expected. Further, the remark-
able agreement between the solution profile of (11) agrees
with experiments [12]. Unlike the Barenblatt solution,
the parabolic solution to (11) is a physically realizable,
smooth profile that correctly captures the tail structure
and attracting nature observed in experiments [12].

Similar to dispersion-managed solitons [10, 11, 18] where
the dispersion map induces Gaussian-like breathing so-
lutions, the periodic variation of μ(t) allows for the
parabolic solution to breath within each period. Fig-
ure 4(a) shows the pulse evolution (once settled to the
parabolic breather) over two periods. Here we see the
varying coefficient μ in (11) forces both broadening and
compression. Indeed, the oscillatory variation suppresses
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Figure 4: Intra-cavity solution (a) and phase plane (b)
obtained from numerical simulation of the amplitude
equation (11) once settled to its stable breathing state
with parameters δ = 0, β = σ = 0.1, and ε = 0.5. The
output is shown over two dispersion map periods. The
restricted space for allowed homoclinic orbits in the phase
plane (gray area) shows that the dispersion map allows
for parabolic pulse propagation.

the parabolic structure from undergoing its usual broad-
ening. This allows for stable self-similar propagation.
Figure 4(b) illustrates the phase-space dynamics in the
(ρ, ρx) plane corresponding to the breathing parabolic
profiles over one period. In essence the rapidly vary-
ing periodic dispersion map restricts the space of the
allowed homoclinic orbits, thus resulting in ZD similari-
ton propagation. It should also be noted that during
the intra-period evolution, the pulse becomes more hy-
perbolic secant-like during certain portions of the cavity
period. This is similar to dispersion-managed solitons
for which the pulse is Gaussian at the period points, but
more hyperbolic secant-like during certain points of the
dispersion map [10, 11, 18].

5 Conclusion

In conclusion, we have shown that the underlying be-
havior in the Ginzburg-Landau equation with rapidly-
varying, mean-zero dispersion results in a perturbed ver-
sion of the nonlinear (porous media) diffusion equation
with mean-zero diffusion coefficient. The dispersion fluc-
tuations are directly responsible for generating the mean-

zero diffusion coefficient which allows the solution to be
a steady-state solution (from a Poincaré map point of
view) as opposed to the standard, long-time self-similar
behavior that is only an intermediate state. The dissipa-
tive contributions in the GL equation make the parabolic
structure an attracting state of the system. Thus the
two driving mechanisms of parabolic propagation are the
mean-zero dispersion map which generates self-similarity
(to first order), and dissipation which makes the self-
similar structure an attractor. The combination of the
two phenomena result in the formation of the parabolic
breathers that have been recently observed experimen-
tally in the context of mode-locked lasers [12]. The the-
ory produces the governing evolution equation (11) that
has solutions that agree well with experiment down to
the observed oscillatory tail structure.
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