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Abstract—This paper is concerned with adaptive
numerical methods for initial value problems gov-
erned by systems of ordinary differential equations.
Here we introduce a novel step selection algorithm
based on the simple idea that locally all continuous
functions can be suitably approximated by a straight
line. Finally we present two sample numerical com-
putations performed by our step selection algorithm.

Keywords: initial value problems, adaptive numerical

methods, local error control approaches, stability ap-

proach, linearity approach.

1 Introduction

We consider the adaptive strategies used for the numeri-
cal integration of initial value problems (IVPs) governed
by systems of ordinary differential equations

du

dt
= f(u) , t ∈ [t0, tmax]

u(t0) = u0 ,
(1)

where u(t) : IR→ IRk, u0 ∈ IRk and f(u) : IRk → IRk.

We note that any adaptive algorithm should put more
grid points in the regions where the solution undertakes
a great variability. Accepted strategies for variable step
size selection are based mainly on the inexpensive moni-
toring of the local truncation error, or residual monitor-
ing, or the definition of a suitable monitor function, or the
utilization of scaling invariance properties. The relevant
bibliography can be listed as follows:

1. local error control, first introduced by Milne’s device
in the implementation of predictor-corrector meth-
ods [16, pp. 107-109] or [14, pp. 75-81]. Extensions
to embedded Runge-Kutta methods have been de-
veloped by Sarafyan [17], Fehlberg [12], Verner [21]
and Dormand and Price [8];
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2. local error control based on Richardson local extrap-
olation, see Bulirsch and Stoer [6] and the treatment
reported by Hairer et al. [13, pp. 228-233];

3. residual (or size of the defect) monitoring, proposed
by Enright [9], see also his survey paper [10];

4. monitoring the relative change in the numerical so-
lution, proposed by Shampine and Witt [19] and re-
cently justified by Jannelli and Fazio [15]. It will be
shown below that this approach is related to moni-
toring the stability of the numerical computation.

5. adaptivity by scaling invariance, proposed for the
numerical solution of blow-up problems by Budd et
al. [4, 5].

The main aim of this work is to present a new strategy
based on monitoring the approximate local linearity of
the computed solution. This is a novel approach, which
is based on the simple idea that locally every continuous
function behaves like a linear function.

In the next section we describe some of the approaches
listed above, explaining in full details our linearity mon-
itoring.

2 Adaptive step size strategies

Given a step size ∆tn and an initial value un at time tn,
a one-step method computes an approximation un+1 at
time tn+1 = tn + ∆tn. Henceforth, any adaptive strategy
deals with a prescribed criterion in order to define or
modify the current step size ∆tn.

2.1 Local error control and Adaptivity

The most common used strategy for the adaptive numer-
ical solution of IVPs is to take into account some kind of
local truncation error control. In the following we recall,
briefly, how this is done in the case of embedded Runge-
Kutta methods. The local error (LE) is defined as the
error made by the numerical method within a single step

LEn+1 = w(tn+1)− un+1
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where w(tn+1) is the exact solution of the reference IVP
dw

dt
= f(w)

w(tn) = un .
(2)

Note that for a method of order p, we have LE =
O(∆tp+1). Many routines make use of two methods of
different order to estimate the LE: a method of order p
computes a first approximation un+1 and a method of or-
der p̃ > p provides a more accurate approximation ũn+1,
so that, we can define

est = ũn+1 − un+1

= ũn+1 − w(tn+1) + [w(tn+1)− un+1]
= O

(
∆tp+2

)
+ LEn+1 ,

here we infer that L̃En+1 = ũn+1 − w(tn+1) is at least
O
(
∆tp+2

)
because we assumed that p̃ > p. Henceforth,

est is an asymptotically correct estimate of the LE for
the lower order method.

The relationship between local and global error (GE) is
given by

GEn+1 = u(tn+1)− un+1

= u(tn+1)− w(tn+1) + LEn+1 .

u(tn+1) − w(tn+1) is the exact solution of the governing
system with initial data given by

u(tn)− w(tn) = u(tn)− un

= GEn ,

so that, it depends on the analytical stability of the gov-
erning system. In other words, at each step the GE is
made by two addends: the GE evolved by the govern-
ing system plus the current LE. If the IVP is unstable,
then, no matter the order of the LE, any small error,
like roundoff errors, will grow within the numerical solu-
tion. On the contrary, in the case of a stable IVP, the
GE evolution would be damped, that is

‖u(tn+1)− w(tn+1)‖ ≤ ‖GEn‖ ,

and the global error of a method of order p will be an
O(∆tp).

2.2 Extrapolation and Adaptivity

A different way to provide an estimate of the LE is to ap-
ply the same method with two different time steps. The
simplest case is to use ∆tn and ∆tn/2. We can compute
the solution yn+1(∆tn) by a single step and yn+1(∆tn/2)
by two half-steps. With a method of order p we can define
the extrapolated value

ŷn+1 =

(
1
2

)p
yn+1(∆tn)− yn+1 (∆tn/2)(

1
2

)p − 1

which has an order of accuracy p + 1. Now, an extrapo-
lated estimation of the LE can be obtained as

ext = ŷn+1 − yn+1

= ŷn+1 − u(tn+1) + u(tn+1)− yn+1

= O
(
∆tp+2

)
+ LEn+1 .

In this case, ext is an asymptotically correct estimate of
the LE of the method used with the largest step size.

2.3 Stability and Adaptivity

In this sub-section, we recall the simple adaptive proce-
dure defined by Jannelli and Fazio [15]. This procedure
applies the monitor function

ηn =
‖yn+1 − yn‖

Γn
, (3)

where Γn is defined by

Γn =
{
‖yn‖ if ‖yn‖ 6= 0
ε otherwise ,

with 0 < ε � 1, and requires that the step size will be
modified as needed in order to keep ηn between chosen
tolerance bounds, say 0 < ηmin ≤ ηn ≤ ηmax. We would
like to relate, now, this kind of monitor function to the
concept of stability and to this end we start by recalling
the definition of the asymptotic stable numerical method.
For a asymptotic stable method we require that

‖un+1‖ ≤ ‖un‖ .

Now, it is a simple matter to show that

‖un+1‖ − ‖un‖ ≤ ‖un+1 − un‖

so that, with the above adaptivity criterion we also re-
quire that

‖un+1‖ − ‖un‖ ≤ ηmaxΓn .

We remark here that the asymptotic stability requirement
can be enforced by letting ηmax go to zero.

2.4 Linearity and Adaptivity

This novel approach is based on the old idea that, locally,
every continuous solution behaves approximatively like a
straight line. Therefore, a new monitor function can be
defined as follows

ϑn =
r

1 + r
max

j=1,...,k

∣∣∣∣ jun+1 − (1 + r) jun + r jun−1

jun + ε

∣∣∣∣ (4)

where r = ∆tn/∆tn−1, ε is defined as before, and the
notation for the components of a vector introduced by
Lambert [16, p. 3] has been used, so that ju is the
j-th component of the vector u. Again, we can require
that the step size selection is such that ϑn satisfies the
conditions 0 < ϑmin ≤ ϑn ≤ ϑmax, where ϑmin and ϑmax

are tolerance bounds.
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3 Step size selection

For the current step size selection the user should spec-
ify a suitable norm and a tolerance τ . It turns out that
the two cases of a local error control made by two differ-
ent order methods or an extrapolation algorithm can be
treated together. In fact, our aim would be to get

‖err‖ ≤ τ

where err can be est or ext. It has been shown by
Shampine [18] that, both in the case when the step is
rejected and repeated or in the case of a successful step,
the largest factor α to multiply by the current step size
in order to get the next a successful one is given by

α =
(

τ

‖errn‖

)1/(p+1)

.

Henceforth, we can use the new step size ∆tn+1 = α∆tn.

As far as the stability and the linearity strategies de-
scribed above are concerned, their step size selection can
be treated together. The basic guidelines for setting the
step size are given by the algorithm defined by the fol-
lowing steps:

1. Given a step size ∆tn and an initial value yn at
time tn, the method computes a value yn+1 and,
consequently, a monitoring function ηn by the above
formula;

2. If ηmin ≤ ηn ≤ ηmax, then tn is replaced by tn +∆tn;
the step size ∆tn is not changed and the next step,
subject to the check at Step 6, is taken by repeating
Step 1 with initial value yn replaced by yn+1;

3. If ηn < ηmin, then tn is replaced by tn +∆tn and ∆tn
is replaced by ρ∆tn where ρ > 1 is a step size am-
plification factor; the next integration step, subject
to the checks at Step 5 and Step 6, is taken by re-
peating Step 1 with initial value yn replaced by yn+1;

4. If ηn > ηmax, then tn remains unchanged; ∆tn is
replaced by σ∆tn, where 0 < σ < 1 and the next
integration step, subject to the check at Step 5,
is taken by repeating Step 1 with the same initial
value yn;

5. If ∆tmin ≤ ∆tn ≤ ∆tmax, return to Step 1; otherwise
∆tn is replaced by ∆tmax if ∆tn > ∆tmax or by ∆tmin

if ∆tn < ∆tmin, then proceed with Step 1.

6. If tn > tmax, then we set tn = tmax, and ∆tn =
tmax − tn−1.

So that the user have to define the following values:
∆t0 the initial step size;
∆tmin minimum value of the step that can be used;
∆tmax maximum value of the step that can be used;
ρ step amplification factor;
σ step reduction factor;
ηmin lower bound for the tolerance;
ηmax upper bound for the tolerance.

Note that, in the case of linearity monitoring, we have to
replace ηn, ηmin, and ηmax by ϑn, ϑmin, and ϑmax, respec-
tively. Moreover, the stability and linearity adaptive ap-
proaches are based on implementing only one numerical
method, and, in order to advance the computation, they
use two and three numerical approximations obtained at
two and three consecutive time steps, respectively.

4 Test problems and numerical results

In this section we consider a test problem and report
related numerical results.

The classical two-body problem is a Kepler problem in
which, for instance, a small body like a satellite or a
comet orbits around the sun. Since the gravitational force
is a central one the motion belongs to the plane defined
by the two bodies and the satellite initial velocity. We
can use a Copernican coordinate system and fix the sun
at its origin. The problem is governed by the following
IVP 

d2r
dt2

= −GmM
|r|3

r

r(0) = r0 , and
dr
dt

= v(0) = v0 ,

(5)

where G is the universal gravitational constant, etc.

The total energy E of the satellite is given by

E =
1
2
mv2 − GMm

r
, (6)

where r = |r|, and v = |v|. This total energy is conserved
as is the angular momentum

M = r×mv

their values at all time are equal to the values computed
at the initial time.

We can rewrite the model (5) in the general form (1) by
setting

u = (x, y, v1, v2)T

f =
(
v1, v2,− GmM√

x2+y2(x2+y2)
x,− GmM√

x2+y2(x2+y2)
y

)T

u0 = (x(0), y(0), v1(0), v2(0))T
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Figure 1: Linearity control. Seven orbits computation.

For this kind of problems the natural units for length and
time are the astronomical units (AU): 1 AU = 1.496×1011

m, which equals the mean Earth-Sun distance; and the
AU year: the period needed to travel a circular orbit of
radius 1 AU, respectively.

In the following, as a specific test problem, we con-
sider the following parameters: the mass of the satel-
lite is taken as unitary, the mass of the larger body is
M = 1.99 × 1030 kg, and G = 6.67 × 10−11 m3/(kg
· s2) is the universal constant. Moreover, we use the
following initial conditions: the initial position is given
by x(0) = 1 AU, y(0) = 0, and the initial velocity is
v1(0) = 0, v2(0) = π/2 AU/yr .

For the simulations reported below we used, as a basic
one-step method, the classical fourth order Runge-Kutta
method, see for instance Butcher [7, p. 166].

4.1 Linearity control

First of all, in figure 1 we show the numerical results of a
successful computation. These results were obtained by
setting the following adaptivity parameters: ηmin = 0.01,
ηmax = 10 · ηmin, ρ = 4, and σ = 0.25. Moreover, by
setting ∆t0 = 0.02 our algorithm used 749 successful
steps plus 218 rejections to compute seven complete or-
bits. The used step sizes were included within the range

∆tmin = 7.8125·10−5 and ∆tmax = 0.02. The total energy
given by equation (6) was conserved along the computa-
tion, see figure 2. Figure 3 shows the step size selection

Figure 2: Linearity control. Total, potential and kinetic
energies plot with a total energy conservation.

and the monitor function defined by equation (4). From
figure 3 it might seem that we have chosen an ad hoc
value for the initial time step ∆t0. However, it is worth
noticing that a large selection of ∆t0 will be reduced by
the adaptive algorithm suggesting a suitable value of the
initial time step. This remark can be understood by look-
ing at figure 4.
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Figure 3: Linearity control. Top frame: step selection.
Bottom frame: monitor function.

Figure 4: Linearity control. Step size selection for a large
value of ∆t0.

Next, we report on an inaccurate selection of the adap-
tivity parameters. Figure 5 shows a typical case. For this
computation we used ηmin = 0.05, again ηmax = 10 ·ηmin,
and ∆t0 = 0.001. Let us remark here that the inaccuracy
of the above numerical results can be realized by looking
at figure 6 where the total energy along with the poten-
tial and kinetic energies are plotted. As it is easily seen
the total energy is not conserved in this computation.

5 Conclusions

In the introduction we listed the adaptive step size strate-
gies that have been used in literature. Then, we intro-
duced a novel step selection algorithm based on the sim-
ple idea that locally all continuous functions can be suit-
ably approximated by a straight line. We remark that the
stability and the linearity approaches can be used any-
time the complexity of the problem to be solved calls for a
low complexity numerical implementation of the adaptive
procedure, see the motivations reported by Jannelli and

Figure 5: Linearity control. Not periodic orbit computa-
tion.

Figure 6: Linearity control. Not conservative energy plot.

Fazio [15] or by Vergara and Zunino [20]. On the other
hand, there are differences between these two strategies.
First of all, the stability monitor function (3) is a one-step
criterion whereas the linearity monitor function (4) is a
two-steps one. Furthermore, the formula for ηn is not in-
variant with respect to scaling transformations, whereas
on the contrary ϑn is invariant under rescaling. This scal-
ing invariant property is of interest anytime we use scaling
invariance for solving a challenging problem by rescaling
the solution of a simpler, from a numerical viewpoint,
problem. As an explicative example, see the recent treat-
ment of the van der Pol model by Fazio [11].

Our main topic, that is the adaptive implementation of
numerical methods, is a fundamental one also for the nu-
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merical solution of partial differential problems. As an
example, the adaptive approach based on scale invariance
properties, cited in the introduction, has been extended
to problems with blow-up solutions governed by parabolic
models by Budd and his co-workers [3, 2, 1].
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