
Common Fixed Point Iterations of a Finite
Family of Quasi-nonexpansive Maps

Abdul Rahim Khan ∗

Abstract—It is proved that Kuhfittig iteration pro-
cess converges to a common fixed point of a finite
family of quasi-nonexpansive maps on a Banach space.
This result is extended to the random case. Our work
improves upon several well-known results in the cur-
rent literature.
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1 Introduction and Preliminaries

Approximation of fixed points of a quasi-nonexpansive
map by iteration has been investigated in [8, 10, 16, 18].
Ghosh and Debnath [9] have approximated common fixed
points of a finite family of quasi-nonexpansive maps in a
uniformly convex Banach space. Rhoades [20] established
weak convergence of Kuhfittig iteration scheme to a com-
mon fixed point of a finite family F of nonexpansive maps
while Khan and Hussain [13] have obtained strong con-
vergence of this scheme to a common fixed point of the
family F on a nonconvex domain.

In this paper, we introduce an iteration process for any
finite family of quasi-nonexpansive maps and study its
convergence to a common fixed point of the family in a
Banach space. We also provide a random version of this
scheme and study its convergence.

Let C be a subset of a Banach space. A selfmap T of C is
nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, for all x, y ∈ C. We
denote the set of all fixed points of T by F (T ). A gen-
eralization of a nonexpansive map with at least one fixed
point is that of a quasi-nonexpansive map; T is quasi-
nonexpansive if ‖Tx − p‖ ≤ ‖x − p‖, for all x ∈ C and
all p ∈ F (T ). In general, a quasi-nonexpansive map may
not be nonexpansive (see Dotson [6]). For various classes
of quasi-nonexpansive maps and their strong connection
with iterative methods, we refer to Berinde [4].

Let C be a convex set and x0 ∈ C. Mann [17], in 1953,
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defined an iterative procedure as:

xn+1 = (1− αn)xn + αnTxn, (1.1)

where αn ∈ [0, 1], n = 0, 1, 2, . . .

Ishikawa [11], in 1974, devised an iteration scheme:

xn+1 = (1− αn)xn + αnTyn, yn = (1− βn)xn + βnTxn,
(1.2)

where αn, βn ∈ [0, 1], n = 0, 1, 2, . . . . If βn = 0 for all n,
then (1.2) becomes (1.1).

We introduce the Kuhfittig iteration scheme [14] as fol-
lows: Let x0 ∈ C, U0 = I (identity map), αn, βjn ∈
(0, 1], n = 0, 1, 2, . . . , j = 1, 2, . . . , k,

U1 = (1− β1n)I + β1nT1U0,

U2 = (1− β2n)I + β2nT2U1,

· · · · · · · · · · · · · · · · · ·
Uk = (1− βkn)I + βknTkUk−1,

xn+1 = (1− αn)xn + αnTkUk−1 xn .

(1.3)

Indeed, if k = 2 and T1 = T2 = T in (1.3), then we get
the Ishikawa iteration (1.2).

We now state two useful conditions: A real sequence
{αn} is said to satisfy Condition A if 0 ≤ αn ≤ b < 1,

n = 0, 1, 2, . . ., and
∞∑

n=0

αn = ∞ (see [12]). The map

T : C → C with F (T ) �= φ is said to satisfy Condition B if
there exists a nondecreasing function f : [0,∞)→ [0, ∞)
with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such
that ‖x − Ty‖ ≥ f(d(x, F (T ))) for x ∈ C and all cor-
responding y = (1 − t)x + tTx, where 0 ≤ t ≤ β < 1
and d(x, F (T )) = inf

z∈F (T )
‖x − z‖ (see [16]). Note that if

t = 0, Condition B reduces to Condition I of Senter and
Dotson, Jr. [21].

We need the following known results.

Lemma 1.1 [19, Lemma 2]. If a sequence of numbers
{an} satisfies that an+1 ≤ an for all n = 1, 2, . . . and
lim inf
n→∞ an = 0, then lim

n→∞ an = 0.

Theorem 1.2 [12, Theorem 1]. Let C be a closed subset
of a Banach space X, and T a nonexpansive map from
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C into a compact subset of X. Suppose that there exists
{αn} satisfying the Condition A. If {xn} is defined by
(1.1) with xn ∈ C for all n, then T has a fixed point in
C and {xn} converges strongly to a fixed point of T .

Theorem 1.3 [16, Theorem 1]. Let C be a nonempty
closed convex subset of a uniformly convex Banach space
X, and T a quasi-nonexpansive selfmap of C satisfying
the Condition B. Then, the Ishikawa iteration scheme
(1.2), with 0 < a ≤ αn ≤ b < 1 and 0 ≤ βn ≤ β < 1,
converges strongly to a fixed point of T .

Lemma 1.4 [5, Theorem 8.4]. Let C be a bounded closed
convex subset of a uniformly convex Banach space X, and
T : C → X a nonexpansive map. Then:

(i) If {xn} is a weakly convergent sequence in C with
weak limit x0 and if (I − T )xn converges strongly to
y in X, then (I − T )x0 = y.

(ii) (I − T )(C) is a closed subset of X.

2 Convergence Theorems

Throughout this section, F =
k⋂

i=1

F (Ti) is assumed to be

nonempty.

Theorem 2.1 Let C be a nonempty closed convex subset
of a Banach space X, and {Ti : i = 1, 2, . . . , k} a family
of quasi-nonexpansive selfmaps of C. Then the sequence
{xn} in (1.3) converges strongly to a common fixed point
of the family if and only if lim inf

n→∞ d(xn, F ) = 0.

Proof. We will only prove sufficiency of the condition;
the necessity is obvious. It can be shown by induction
that TkUk−1 is quasi-nonexpansive. Let z ∈ F . Then

‖xn+1 − z‖ = ‖(1− αn)(xn − z) + αn(TkUk−1xn − z)‖
≤ (1− αn)‖xn − z‖+ αn‖TkUk−1xn − z‖
≤ (1− αn)‖xn − z‖+ αn‖xn − z‖
= ‖xn − z‖.

This implies that d(xn+1, F ) ≤ d(xn, F ) for all n =
0, 1, 2, . . . So, by Lemma 1.1 and lim inf

n→∞ d(xn, F ) = 0,

we get lim
n→∞ d(xn, F ) = 0.

Next we prove that {xn} is a Cauchy sequence. We have
that

‖xn+m − z‖ ≤ ‖xn − z‖, (2.1)

for all z ∈ F and m,n = 0, 1, 2, . . . .

Since lim
n→∞ d(xn, F ) = 0, for each ε > 0, there exists a

natural number N1 such that d(xn, F ) ≤ ε

3
, for all n ≥

N1. Thus, there exists a z1 ∈ F such that

‖xN1 − z1‖ = d(xN1 , z1) ≤ ε

2
(2.2)

From (2.1) and (2.2), for all n ≥ N1,

‖xn+m − xn‖ ≤ ‖xn+m − z1‖+ ‖xn − z1‖
≤ ‖xN1 − z1‖+ ‖xN1 − z1‖
≤ ε

2
+

ε

2
= ε.

Thus {xn} is a Cauchy sequence and so converges to p ∈
X.

Now we show that p ∈ F . For any ε > 0, there exists a
natural number N2 such that

‖xn − p‖ ≤ ε

4
, for all n ≥ N2. (2.3)

Again lim
n→∞ d(xn, F ) = 0 implies that there exists

a natural number N3 ≥ N2 such that d(xn, F ) ≤
ε

12
for all n ≥ N3. Therefore there exists a p ∈ F

such that
‖xN3 − p‖ = d(xN3 , p) ≤

ε

8
. (2.4)

From (2.3) and (2.4), we obtain, for any Ti, i = 1, 2, . . . , k,

‖Tip−p‖ = ‖Tip−p+p−TixN3+TixN3−p+p−xN3+xN3−p‖ ≤ ε.

Since ε is arbitrary, it follows that Tip = p, i =
1, 2, . . . , k. Thus p ∈ F .

Remark 2.2 (i) Theorem 2.1 is an extension of Corol-
lary 1 of Qihou [19] for a family of quasi-nonexpansive
maps.

(ii) If the family {Ti : i = 1, 2, . . . , k} is commutative,
then the assumption F �= φmay be omitted (see Theorem
4 in [7]).

In the sequel, we obtain some results for a family of
maps {Ti : i = 1, 2, . . . , k} without the condition
lim inf
n→∞ d(xn, F ) = 0.

Theorem 2.3 Let C be a nonempty compact convex sub-
set of a strictly convex Banach space X, and {Ti : i =
1, 2, . . . , k} a family of nonexpansive selfmaps of C. Then
the sequence {xn}, in (1.3) with {αn} satisfying Condi-
tion A and βjn = βj for all n and j = 1, 2, . . . , k, con-
verges strongly to a common fixed point of the family.

Proof. It is easy to show that Uj and TjUj−1, j =
1, 2, . . . , k are nonexpansive selfmaps of C, and the fam-
ilies {T1, . . . , Tk} and {U1, . . . , Uk} have the same set of
common fixed points.
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By Theorem 1.2, the sequence {xn} in (1.3) converges
strongly to a fixed point y of TkUk−1. We show that y
is a common fixed point of Tk and Uk−1 (k ≥ 2). For
this, we first show that Tk−1Uk−2 y = y. Suppose not.
Then the closed line segment [y, Tk−1Uk−2 y] has positive
length. Let

z = Uk−1 y = (1− β(k−1)n) y + β(k−1)nTk−1Uk−2 y.

Since F �= φ and {T1, . . . , Tk} and {U1, . . . , Uk} have the
same common fixed point set, Tk−1Uk−2 p = p for p ∈ F .

From the quasi-nonexpansiveness of TkUk−2 and Tk,

‖Tk−1Uk−2 y − p‖ ≤ ‖y − p‖ (2.5)

and
‖Tkz − p‖ ≤ ‖z − p‖.

In view of Tkz = TkUk−1 y = y, it follows that ‖y − p‖ ≤
‖z − p‖. As X is strictly convex, for noncollinear vectors
a and b in X, we have ‖a+ b‖ < ‖a‖+ ‖b‖, which implies
that

‖y − p‖ ≤ ‖z − p‖
= ‖(1− β(k−1)n) y + β(k−1)nTk−1Uk−2 y

−(1− β(k−1)n) p − β(k−1)n p‖
< (1− β(k−1)n)‖y − p‖+ β(k−1)n‖Tk−1Uk−2 y − p‖.

So, we get

‖y − p‖ < ‖Tk−1Uk−2 y − p‖

which contradicts (2.5). Hence, Tk−1Uk−2 y = y. Subse-
quently,

Uk−1 y = (1− β(k−1)n)y + β(k−1)nTk−1Uk−2 y = y

and
y = TkUk−1 y = Tk y.

Thus, y is a common fixed point of Tk and Uk−1.

Since Tk−1Uk−2 y = y, we may repeat the above proce-
dure to show that Tk−2Uk−3 y = y and hence y must be a
common fixed point of Tk−1 and Uk−2. Continuing in this
manner, we conclude that T1U0 y = y and y is a common
fixed point of T2 and U1. Consequently, y is a common
fixed point of {Ti : i = 1, 2, . . . , k}.

Theorem 2.4 Let C be a nonempty closed convex subset
of a uniformly convex Banach space X, and {Ti : i =
1, 2, . . . , k} a family of quasi-nonexpansive selfmaps of C.
Let {xn} be defined by (1.3) with 0 < a ≤ αn ≤ b < 1
and 0 < βjn ≤ β < 1. If the map TkUk−1 satisfies the
Condition B, then {xn} converges strongly to a common
fixed point of the family.

Proof. A uniformly convex space is strictly convex, so
one can use the arguments of the proof of Theorem 2.3
with the exception that one employs Theorem 1.3 in lieu
of Theorem 1.2.

Remark 2.5 Theorem 2.4 extends ([16], Theorem 1)
and ([21], Theorems 1-2).

3 Random Iterative Procedures

Let (Ω,
∑
) be a measurable space and C be a nonempty

subset of a Banach space X. Let ξ : Ω → C and
S, T : Ω × C → X. Then: (i) ξ is measurable if
ξ−1(U) ∈ ∑

, for each open subset U of X; (ii) T is
a random operator if, for each fixed x ∈ C, the map
T (., x) : Ω → X is measurable; (iii) ξ is a random fixed
point of the random operator T if ξ is measurable and
T (ω, ξ(ω)) = ξ(ω), for eachω ∈ Ω; (iv) ξ is a random
common fixed point of S and T if ξ is measurable and
for each ω ∈ Ω, ξ(ω) = S(ω, ξ(ω)) = T (ω, ξ(ω));
(v) T is continuous (resp., nonexpansive) if the map
T (ω, ·) : C → X is continuous (resp., nonexpansive). A
mapping ξ : Ω → X is said to be a measurable selec-
tor of a mapping T : Ω → CB(X), nonempty family of
bounded and closed subsets of X, if ξ is measurable and
for any ω ∈ Ω, ξ(ω) ∈ T (ω).

The set of random fixed points of T will be denoted by
RF (T ).

Proposition 3.1 [2, Proposition 3.4]. Let C be a
nonempty bounded closed convex subset of a separable Ba-
nach space X, and T : Ω×C → C a nonexpansive random
operator. Suppose that {ξn} is a sequence of maps from
Ω to C defined by

ξn+1(ω) = (1− α)ξn(ω) + αT (ω, ξn(ω)), for eachω ∈ Ω,
(3.1)

where 0 < α < 1, n = 1, 2, 3, . . . , and ξ1 : Ω → C is
an arbitrary measurable map. Then for each ω ∈ Ω,
lim

n→∞ ‖ξn(ω)− T (ω, ξn(ω))‖ = 0.

If {ξn}, in (3.1), is pointwise convergent; that is, ξn(ω)→
ξ(ω), for each ω ∈ Ω, then closedness of C implies that ξ
is a map from Ω to C. For a continuous random operator
T on C, it follows from ([1], Lemma 8.2.3) that ω →
T (ω, f(ω)) is measurable for any measurable map f from
Ω to C. Thus {ξn} is a sequence of measurable maps and
ξ, being the limit of a sequence of measurable maps, is
itself measurable.

Let {Ti : i = 1, 2, . . . , k} be a family of random operators
from Ω× C to C. Let ξn : Ω→ C be a sequence of maps
where ξ1 is assumed to be measurable. We introduce
random version of the iterative scheme (1.3) as follows:
Let 0 < α < 1. For each ω ∈ Ω, define

ξn+1(ω) = (1−α)ξn(ω)+αTk(ω, Uk−1(ω, ξn(ω))), (3.2)

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



where Ui : Ω×C → C, i = 1, 2, . . . , k, are random opera-
tors given by

U0(ω, ξn(ω)) = ξn(ω),
U1(ω, ξn(ω)) = (1− α)ξn(ω) + α T1(ω, U0(ω, ξn(ω))),
U2(ω, ξn(ω)) = (1− α)ξn(ω) + α T2(ω, U1(ω, ξn(ω))),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uk(ω, ξn(ω)) = (1− α)ξn(ω) + α Tk(ω,Uk−1(ω, ξn(ω))),

for each ω ∈ Ω.

Lemma 3.2 Let C be a nonempty compact convex subset
of a separable Banach space X, and T : Ω × C → C a
nonexpansive random operator. Then T has a random
fixed point ζ and {ξn}, in (3.1), converges strongly to ζ.

Proof. For each n, define Gn : Ω → K(C) by Gn(ω) =
cl{ξi(ω) : i ≥ n} where K(C) is the family of all
nonempty compact subsets of C and cl denotes closure.

Define G : Ω → K(C) by G(ω) =
∞⋂

n=1

Gn(ω). By the

selection theorem ([15], p. 398), G has a measurable se-
lector ξ : Ω → C. Fix ω ∈ Ω arbitrarily. Now we can
obtain a subsequence {ξnk

} of {ξn} such that
ξnk
(ω)→ ζ(ω), for eachω ∈ Ω. (3.3)

Thus, by Proposition 3.1, we have lim
k→∞

‖ξnk
(ω) −

T (ω, ξnk
(ω))‖ = 0, for eachω ∈ Ω. We utilize nonexpan-

siveness of T to obtain T (ω, ζ(ω)) = ζ(ω), for eachω ∈ Ω.
Moreover,

‖ξn+1(ω)− ζ(ω)‖ = ‖(1− αn)ξn(ω)

+αnT (ω, ξn(ω))− ζ(ω)‖
≤ (1− αn)‖ξn(ω)− ζ(ω)‖

+αn‖T (ω, ξn(ω))− T (ω, ζ(ω))‖
≤ (1− αn)‖ξn(ω)− ζ(ω)‖

+αn‖ξn(ω)− ζ(ω)‖
= ‖ξn(ω)− ζ(ω)‖, (3.4)

for each ω ∈ Ω and any positive integer n.

From (3.3), it follows that for any ε > 0, there exists an
integer n0 such that ‖ξn0(ω)− ζ(ω)‖ < ε, for each ω ∈ Ω.
Thus, by (3.4), we get ‖ξn(ω)−ζ(ω)‖ < ε, for any integer
n ≥ n0 and each ω ∈ Ω. Since ε is arbitrary, therefore
ξn(ω) → ζ(ω), for each ω ∈ Ω. The map ζ : Ω → C,
being the limit of a sequence of measurable maps, is also
measurable. Thus ζ is a random fixed point of T.

The following result generalizes Theorem 1 of Khufittig
[14] for random operators.

Theorem 3.3 Let C be a nonempty compact convex sub-
set of a separable strictly convex Banach space X, and
{Ti : i = 1, 2, . . . , k} a family of nonexpansive random op-

erators from Ω×C to C with D =
k⋂

i=1

RF (Ti) �= φ. Then

{ξn}, in (3.2), converges strongly to a random common
fixed point of the family.

Proof. It is easy to see that ξ : Ω → C is a random
common fixed point of {Ti : i = 1, 2, . . . , k} if and only if
ξ is a random common fixed point of {Ui : i = 1, 2, . . . , k},
for each ω ∈ Ω. Define Si : Ω× C → C by

Si(ω, x) = Ti(ω, Ui−1(ω, x)), i = 1, 2, 3, . . . , k.

Obviously, Ui and Si, i = 1, 2, . . . , k, are nonexpansive.
By Lemma 3.2, {ξn} in (3.2), converges strongly to a
random fixed point ζ : Ω→ C of Sk. By using the argu-
ments of the proof of Theorem 2.3, we can show that ζ is
a random common fixed point of {Ti : i = 1, 2, . . . , k}.
The compact subset C in Theorem 3.3 is replaced by a
bounded closed subset of a uniformly convex space to
obtain:

Theorem 3.4 Let C be a nonempty bounded closed con-
vex subset of a separable uniformly convex Banach space
X, and {Ti : i = 1, 2, . . . , k} a family of nonexpnsive ran-

dom operators from Ω×C to C with D =
k⋂

i=1

RF (Ti) �= φ.

Then {ξn}, in (3.2), converges weakly to a random com-
mon fixed point of the family.

Proof. Suppose that the maps Si, i = 1, 2, . . . , k, are
defined as in the proof of Theorem 3.3. We note that
C is weakly compact in a reflexive space X. Thus as
in the proof of ([3], Theorem 3.2), {ξn} has a subse-
quence {ξnj} converging weakly to ζ : Ω → C. Now
by Proposition 3.1, lim

j→∞
‖ξnj

(ω) − Sk(ω, ξnj
(ω))‖ =

0, for each ω ∈ Ω. Hence by Lemma 1.4, we get
Sk(ω, ζ(ω)) = ζ(ω), for each ω ∈ Ω. That is, ζ is a
random fixed point of Sk. A uniformly convex space is
strictly convex, so one can use arguments similar to the
proof of Theorem 2.3 to show that ζ is a random common
fixed point of {Ti : i = 1, 2, . . . , k}.
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