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Abstract—We report in this paper the evolution of a 

physically based drop size distribution coupling the Maximum 
Entropy Formalism and the Monte Carlo method to solve the 
coagulation equation. Using the discrete or continuous 
population balance equation, the Mass Flow Algorithm is 
formulated taking into account interactions between droplets 
via coalescence. After proposing a kernel for coalescence, we 
solve the time dependent drop size distribution equation using a 
Monte Carlo method which is convergent. The evolution of the 
drop size distribution shows the effect of spray droplets 
coalescence. 
 

Index Terms— Monte Carlo Method, Maximum Entropy 
Formalism, Coalescence, Spray, Mass Flow Algorithm.  
 

I. INTRODUCTION 

  Over the past decades, atomization, defined as the 
disintegration of a bulk liquid material via an atomizer into 
droplets in a surrounding gas or vacuum with or without a 
spray chamber, has been extensively developed and applied 
to a variety of industrial areas such as humidification, 
medication, pharmaceutical coatings, semiconductor 
processing, spray drying, and vaporization of volatile 
anaesthetic agents [1].  

Despite of its enormous industrial application domain, 
spray modeling remains a challenge for computational 
methods and experimental measurements when one wants to 
predict the drop size distribution . Droplet generation is an 
extremely complex process that cannot be precisely 
determined. Current approaches are either semi-empirical or 
need to be adjusted to each operating conditions. Based on 
the ultrasonic atomization which is widely used now, we 
have proposed a physically based drop size distribution in our 
previous studies [2,3]. This approach is necessary for 
obtaining a specific drop size distribution which can be 
required in specific applications. In some cases it must have a 
particular form, narrow or wide, with few small or large 
drops for some optimizing operation. Small droplet size is 
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desired in spray combustion for rapid heat transfer and 
vaporization. An ideal atomizer should possess the ability of 
providing energy-efficient and cost-effective atomization 
over a wide range of operating conditions. In jet printing, 
satellite droplets have to be avoided.  
In traditional approaches precise drop size distribution is 
usually time-independent. Here we propose a modeling of the 
time-dependent drop size distribution, by using the 
Maximum Entropy Formalism (MEF). We derive the 
distribution evolution equation and we use the Mass Flow 
Algorithm (MFA) for the simulation of the equation with a 
Monte Carlo method. 

II. DROP-SIZE DISTRIBUTION EVOLUTION EQUATION 

Due to external environment we assume that the real 
physical drop size distribution varies with time, expressing 
for example the effect of coalescence and breakup. The MEF 
traditionally used ignores the temporal effect on the 
distribution. In the following section we undertake an 
analysis combining our physically based MEF approach [2,3] 
with the balance population method to allow the evolution of 
the drop size distribution. The different effects to be taken 
into account for spray droplets are:   

 Interactions droplets-gas: evaporation, drag, heat 
transfer; 

 Interactions between droplets: coalescence and 
breakup. 

The evolution of the distribution function is governed by a 
Boltzmann type equation [4,5]. We focus on the effects of 
coalescence and breakup and we neglect the evaporation and 
nucleation phenomena. Using the drop size distribution in a 
formulation where it depends only on time t , and volume 

V (instead of the diameter), and assuming a velocity )(VV


for 

each droplet of volume V , the balance population equation 
for the distribution ),( tVfn

 can be expressed as : 
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The right-hand side of the equation represents source and 
sink terms due to fragmentation (rf) and coalescence (rc). 
The probability of finding a drop with a volume between 

iV  

and VVi   is the same as the probability of finding a drop 

with a diameter between 
iD  and DDi  . The change of 

formulation between volume and diameter is carried out 
using the following relationship 
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),( tVfn  being the number-based drop size distribution to be 

determined by our analysis. The equation relating 
number-based and volume-based drop size distribution is 
given by: 
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The source terms considered are breakup and coalescence. In 
this work we consider only binary interactions where broken 
drop splits into two smaller ones and two droplets can 
coalesce to form a bigger one, this before impacting on the 
substrate. 
General expression for coalescence term could be expressed 
as: 
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Let’s establish the equation of evolution of the drop size 
distribution.  By adopting a treatment by Discrete Population 
Balance (DPB) or Classes Method (CM),  using a minimum 
volume 

minV  and a maximum volume 
maxV ; and neglecting 

advection effect, it means in other word to use a frame 
moving at spray mean velocity of a given volume containing 
spray droplets. Defining class q  as all the volume between 

2/VVq   and 2/VVq  , from (1), by integrating, 
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)(tN  being the number total of particles at time t. 

we deduce,  
 

 )(.=
),(

i
i VRV
t

tVn



                               (7) 

III. MONTE CARLO METHOD: COALESCENCE EFFECT 

 
Using the previous results the problem can lead to the 
following equation (8), which could be compared to 
Smoluchowski equation, the precise resolution of such 
differential systems of equations is out of range of classical 
approach. For this reason, we have chosen to use 
Monte-Carlo methods. We recall the form established, 
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 Where we set ),(),( jicc VVKjik  . 

A. Coalescence Kernel Determination  

One the difficulty of our approach is to correctly express, 
the kernel, here the coalescence of the spray evolution.  

From [6] the coalescence kernel could be expressed as a 
product of the coalescence efficiency and collision 
frequency,  

),(),(= VVHVVLK fec                          (9) 

Where we assume the coalescence efficiency could be 
expressed by  
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Where ),(,),( VVtVVt contcoal   respectively are average 

coalescence time of particles of volume V and V’, and contact 
time for the particles. The time required for coalescence 
could be estimated using  
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C1 is constant to be adjusted;   surface tension. RV,V’ is the 

equivalent radius of different radii coalescing and is defined 
as [7]: 
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The contact time is estimated from [8] for fluid flowing 

and contribution due to relative velocities between bubbles 
and assumed here for droplets: 
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Where we have neglected turbulent effect. We note 

)',( VVur
 the relative velocity between drop of volume V and 

V’, the determination of this relative velocity will be 
performed as follow. 

The relative velocity could be expressed by estimating the 
limit velocity of falling particles. In fact, we assume in our 
model that coalescence happens only after this regime is 
reached, which is quite good since the relaxation time is 
short. 

 From Newton second law of falling particles, we obtain  
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4
)(2                         (14) 

Rep, Ga respectively being Reynolds and Galileo (or 
Archimed) number 
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For spherical fluid particle at low Reynolds number, the 

Stokes analysis leads to Hadamard-Rybczynski drag law in 
which the shear stress on the surface induces an internal 
motion. The drag coefficient becomes, 
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with viscosity ratio 
Fp  / .  

 
From (15a), we deduce, the limit velocity Vl and the 

relative velocity,  
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 Where we take the average velocity from velocity 
directions 0 to 2/ .                                             

Then we deduce,   the coalescence kernel, 
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With following property verified 0),(),(  ijkjik cc .         

B. Model Equation Reformulation 

The method of moment and the size-binning method are 
valid only for some specific initial distributions and to not 
describe the precise behavior of the drop size distribution. 
Monte Carlo seems to be the most advantageous and describe 
with precision the evolution of the drop size distribution. In 
order to carry out a precise numerical analysis we will 
reformulate it in term of mass conservation [9,10,11] and 
then develop a Mass Flow Algorithm(MFA). 

Multiplying by the volume Vi, lead us to mass conservation 
equation, density of the fluid being considered as constant  
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We can normalize the relation by dividing by 0V  the total 

volume, and we obtain: 
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Where we set  

0/),(),( VtiMtim  ,  

We have of course, due to mass conservation  
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Multiplying by Vi and using the symmetry of the kernel, 
we obtain the following equation,  
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Where we denote  
 

j

c
c V

jikV
jik

),(
),(

~ 0 . We can show that 
ck

~  is bounded, 

knowing )exp(  xxK  . Thus we set  ),(
~

sup
1,

jikK c
ji

c


                      

C.  Monte Carlo Scheme 

Once the problem well formulated we look for the 
drop-size distribution evolution using the Monte Carlo 
scheme. We choose a fixed time step t  such that 

1 
ctK . We set nttn   and )()( imtm nni  . For the 

discrete form we use the finite-difference methods using an 
explicit Euler scheme to approximate temporal derivative. 

Using a forward difference at time nt , 
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Thus, we can deduce )(1 imn  : 
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Using the mass conservation,  
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We express (22b) as: 
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We associate to nm , the probability nP defined on *N  : 
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Then we deduce, 
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Where we denote ),(
~

:),( jiktjip c . 

The Monte Carlo scheme  is then the following. 
We choose N integers, and for all Nn , we approximate 

the solution at time nt by the N following particles denoted,  
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Initialization  
To initiate the computation, we choose N particles  
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Coagulation  

We compute number of particles at time 1nt  using 

number particles at time nt .Let 
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independent real random variables uniformly distributed on 
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Let us assume that all the random variables  

NkX k
nN 1,,  and NkU k

nN 1,, are 

independent. 
 

The new sizes of particles NkkP n
N  1),(1

 are 

defined as: 
 
 



 






OtherwisekP

XPkPpUifXPkP
kP

n
N

k
nN

n
N

n
N

k
nN

k
nN

n
N

n
Nn

N
)(

))(),((),()(
)( ,

1
,,1 (31) 

 

IV. CONTINUOUS-DISCRETE COALESCENCE EQUATION 

 
We recall here the drop-size distribution evolution for 

coalescence. 
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Here f(V, t)dV is the average number of particles of size in 
[V, V+dV] at time t; the function K(V, V’) is the coalescence 
kernel describing the rate (or probability) of formation of a 
particle of size V + V’ by coagulation between two particles 
of size V and V’. The number density f(V, t) may 

• increase by coalescences of two particles of size V−V’ 
and V’ < V (first term on the rhs of the equation), 

• decrease by coalescence of a particle of size V with any 
other particle of size V’ (second term on the rhs of the 
equation). 

 
Multiplying equation by V and dividing by,  
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for normalization purpose, and introducing the mass 
density function, 

m(V,t)=Vf(V,t), we obtain, with 

 //),(),( VftVmtVg  , the Mass Flow 

Formulation 
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Normalization condition (mass conservation) leads to  
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Consequently we have,  
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We apply these results to the physically based drop size 

distribution of our new Spray On Demand print-head [2,3]. 
To determine the drop size distribution at initial time, we 
solve the following system for the Maximum Entropy 
Formalism (MEF), with pi the discrete probably [2,3], 
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Where we have shown a physical expression for the Sauter 
Mean Diameter (SMD) and the volume mean diameter 
respectively [2]: 
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By solving the previous system using an algorithm given 

by Agmon et al. in [12], we deduce the following number- 
based drop size distribution: 
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Our previous physically-based model [2,3] allows 

computing by coupling with (38) two of the three parameters 
of the generalized gamma distribution (39). The constraint 
diameter Dq0 and parameter α are determined using the 
following relationship, 
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We deduce the physically based distribution also the initial 

distribution of our Monte Carlo scheme (Fig.1), using:   
 

/0),()0,(  tVVfVg n                    (40) 

And in discrete form as,  

 /)( ViVfig ni                         (41) 

Using (3) and (39) and finally with the Monte Carlo 
scheme (31), we solve the evolution of drop-size distribution 
of our initial distribution submitted to coalescence effect 
using the MFA. 

 
Figure 1: Physical model drop size distribution Validation of a new Spray 

On Demand print-head from [2] 

V. MODELING RESULTS 

 
A. Monte Carlo Scheme Convergence and Validation  

 

We test the model convergence using jijik ),( , 

with this kernel an analytical solution for the model exists. As 
shown in Fig.2, a convergence is obtained for sample of 
numerical particles of N=10000 and time steps of P=400.  

The initial condition being  
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And the analytical expression was given in [13], and the 
second moment is given by: 
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Figure 2: Comparison between analytical and numerical solution of 

second moment 

 
B. Spray Modeling  

 
We carry out some tests on the evolution of the drop size 

distribution. We observe that upon time, there is apparition of 
bigger drop in the spray as shown in Fig.3. The first effect of 
coalescence is observed at time 50ms. At longer time, we 
observe the distribution of coalescence effect, with apparition 
of drops of different size. 

 

 
 
Figure 3: Number based drop size distribution coalescence effect 

apparition at time 50ms 

 
The following result highlights the volume based-drop size 

distribution. We see in Fig.4 and Fig. 5, even if there is great 
number of small droplets, the few big drops represents the 
majority of the mass of the spray when coalescence occurred 
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which is to be avoided for jet printing application for printing 
quality.  

 
 

 
Figure 4: Volume based drop size distribution 

 

 
Figure 5: volume based drop size distribution a zoom for small droplets 

 
An improvement of our scheme could be to adopt the 

Quasi Monte Carlo method (QMC) [11]. 

VI. CONCLUSION 

 
We have established in this paper the evolution and 

resolution of the drop size distribution equation submitted to 
coalescence effect. In this work we consider only binary 
interactions where two droplets can coalesce to form a bigger 
one, this before impacting on the substrate. Based on physical 
hypothesis, we determine the coalescence kernel and couple 
the model with our previous physically-based approach. To 
solve the problem a Monte Carlo Method which is shown to 
be convergent is developed highlighting the apparition of 
new drop due to coalescence. Coalescence preserving the 
total mass of particles, in order to keep constant the number 
of numerical particle, we choose The Mass Flow Algorithm 
(MFA) unlike the Direct Numerical Simulation (DNS). 

As perspective we could improve the method by adopting 
Quasi-Monte Carlo simulation method which consists of 
replacing the (random) Monte Carlo simulation algorithm by 
a deterministic. The principle is to replace pseudo-random 
numbers by deterministic ones. 

 

VII. APPENDIX 

The convergence of the numerical scheme is proven in the 
following sense, If   
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We introduce Bernoulli random variables, 
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Proposition 
For every Nn if  
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It can be shown from proposition using the following lemma 
the convergence of the numerical scheme we present. 
 
Lemma  

Let 1)( NNX  be a sequence of real random variables in L2 

and Rc  . The following conditions are equivalent: 
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