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Abstract—We analyse dispersion of contaminants
in turbulent boundary layer using centre manifold
technique. The method describes long-term asymp-
totics of the contaminant concentration as it becomes
spread across the entire layer and is weakly distorted
by the velocity shear. The dispersion is investigated
in two cases: (a) logarithmic and (b) power veloc-
ity profile across the layer according to a traditional
and a more recent theory respectively. We deduce
an advection-diffusion equation for the depth-average
concentration in each case. The equation represents a
leading approximation of the dynamics and can be ex-
tended to include higher-order derivatives for better
precision.
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1 Introduction

Dispersion of contaminants in channels under velocity
shear and diffusion can be described by low-dimensional
models written in terms of depth-average concentration
as a function of time, t, and downstream coordinate, x.
In the 1950s Taylor [1] formulated the advection-diffusion
equation for such concentration. Mercer and Roberts [2]
deduced the same equation from more rigorous principles
of centre manifold theory and showed that the equation
is only a leading approximation of a more accurate de-
scription involving higher-order spatial derivatives. Chik-
wendu and Ojiakor [3] subdivided the flow into two zones,
the fast zone near the surface and the slow zone near the
bottom and empirically constructed a system of coupled
equations for the average concentrations in each zone.
Roberts and Strunin [4] applied the technique [2] to build
a two-zone model on the firm foundation of the centre
manifold theory. A more extensive list of publications
on the shear dispersion in channels can be found in the
above mentioned papers.

The models [2, 4] are best applicable to laminar flows;
turbulent flows are more difficult to model. We point
to a principle difference between the two cases: for the
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laminar flows, cross-flow (molecular) diffusion coefficient
is independent of the advection, with or without shear,
whereas the turbulent diffusion coefficient is essentially
linked to the shear because the turbulence is caused by
the shear. A possible approach is to use one of aver-
aged models of turbulence, for example the k-ε model,
in conjunction with the advection-diffusion equation for
the contaminant. In this approach, the fields of the tur-
bulent energy and its dissipation rate would be part of
solution alongside with the contaminant concentration.
Mei et al. [5] and Georgiev et al. [6, 7] used the k-ε, k-ω
and other models for low-dimensional modelling of floods.
However, in such an approach a number of empirical co-
efficients appear both in the dynamical equations and
boundary conditions bringing uncertainty into the mod-
elling. But most critically, the very form of the boundary
conditions appears not to be unique.

In this paper we assume that the flow is given, steady
and the velocity profile has one of the forms character-
istic of the turbulent boundary layer. Traditionally a
logarithmic profile is adopted for the boundary layer [8].
However, Barenblatt et al. [9] argued that close examina-
tion of the experimental data rather provides evidence in
favour of power profile, an important feature of which is
dependence on the Reynolds number. Without offering a
discussion of the two types of the profile, we separately
use them in our low-dimensional modelling of dispersion.
As an approximation we extrapolate the velocity profiles
beyond the boundary layer and adopt them for the entire
open channel flow.

For the power profile, Barenblatt [10] studied three cases
of dispersion in the boundary layer with sources of con-
taminant located on the bottom. He assumed that entire
amount of the contaminant remained inside the boundary
layer, which was reflected in the boundary condition of
zero concentration at y = ∞ (y is the distance from the
bottom). Hence, this formulation represents asymptotics
of the dispersion at small times, specifically before the
contaminant reaches outer regions of the boundary layer.
In the present paper we investigate the opposite extreme
case — the dispersion at large times, that is after the
contaminant reaches the free surface and consequently
becomes distributed over the entire cross-section of the
flow. Our centre manifold approach produces a dynamic
equation for the depth-average concentration, which can
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be considered in conjunction with various boundary and
initial conditions depending on the concrete problem of
interest. While the solutions of the equation are not nec-
essarily self-similar as in [10], most importantly, the equa-
tion itself represents attractive dynamics, that is a uni-
versal dynamical law of dispersion.

The transport equation for the ensemble-average concen-
tration, c(x, y, t), has the form

∂tc + u(y)∂xc = ∂y[D(y)∂yc] , (1)

where u(y) is the velocity and D(y) is the turbulent diffu-
sion coefficient. The boundary conditions stipulate that
the flux through the surface, y = h, and the bottom,
y = 0, is zero:

D∂yc|
y=0

= D∂yc|
y=h

= 0 . (2)

2 Centre manifold approach

Suppose for a moment that u(y) and D(y) in (1) are in-
dependent of each other. If it was not for the advection,
or, more precisely, the velocity shear, the concentration
would quickly become constant across the channel be-
cause of the diffusion. The concentration can have any
value and such a state is neutrally stable. The centre
manifold approach treats the velocity shear as a pertur-
bation which, loosely speaking, makes the system drift
from one neutral state to another. The mechanism can
be illustrated by the following simple example from [11]:

da/dt = −ab ,

db/dt = −b + a2 − 2b2 .
(3)

The linearised system (3), da/dt = 0, db/dt = −b, is
characterised by zero eigenvalue for the slow variable a
and a negative eigenvalue for the fast variable b. It can
be shown that all trajectories of (3) are attracted to a
single curve

b = a2 (4)

called the centre manifold. If it was not for the nonlinear
terms, the variable b would quickly fall onto the equilib-
rium state b = 0 while a would stay in the neutral state
a =const. However, for the full system (3) this does not
occur; instead, the trajectories drop onto the manifold
(attractor) (4), on which the perturbation, a2 − 2b2, is
comparable to the linear term, −b. On the manifold the
motion is slow and, taking into account (4), is described
by da/dt = −ab = −a3. Observe that on the manifold the
variable b depends on t not independently, but through a
to which it is connected algebraically, (4).

Performing the Fourier transformation of (1) we get

∂tĉ = L[ĉ] − iku(y)ĉ , (5)

where ĉ(k, t) is the Fourier transform defined as
1/(2π)

∫

∞

−∞
exp(−ikx)c dx and the linear operator L[ĉ] =

∂y[D(y)∂y ĉ] expresses the cross-flow turbulent diffusion
and has a discrete spectrum of eigenvalues. One of them
is equal to zero, corresponding to the neutral eigenmode
ĉ =const, that is any constant concentration across the
channel. All the other eigenvalues are negative. This ex-
presses the fact that the diffusion makes non-uniformities
of the concentration across the channel decay under the
zero-flux boundary conditions.

We intend to reformulate our dispersion problem in a way
that makes it similar to (3). After sufficiently long time,
variations of the concentration along the channel, that is
in x direction, become slow; so we suppose that the wave
number k is small. Adjoin to (5) the trivial equation
∂tk = 0 in order to formally treat the wave number k
as a variable and the term kĉ as a “nonlinear” term. As
governed by (5) and ∂tk = 0, the dynamics exponentially
quickly evolve to a low-dimensional state, when each of
the decaying (fast) modes of ĉ depends on t via the slow
neutral mode. As a measure of the “amplitude” of the
neutral mode we choose the depth-average concentration,
Ĉ. As a result, we have

ĉ = ĉ(Ĉ, y) such that ∂tĈ = G(Ĉ) . (6)

With (6) taken into account, equation (5) becomes

L[ĉ] =
∂ĉ

∂Ĉ
G + ikuĉ . (7)

Since the problem is linear, we assume linear asymptotics

ĉ =

∞
∑

n=0

cn(y)(ik)nĈ , G =

∞
∑

n=1

gn(ik)nĈ . (8)

The definition of Ĉ as the depth-average implies the con-
ditions

1

h

∫ h

0

c0 dy = 1 ,

∫ h

0

cn dy = 0 for n = 1, 2, . . . . (9)

Substituting (8) into (7) and collecting same order terms
on the small parameter k we obtain a sequence of equa-
tions for the unknown functions cn(y) and coefficients gn:

L[c0] = 0 , (10)

L[cn] =
n

∑

m=1

cn−mgm+u(y)cn−1 for n = 1, 2, . . . . (11)

Integrating (11) across the channel and using the zero-
flux boundary conditions, we get

gn = −u(y)cn−1 for n = 1, 2, . . . , (12)

where overline denotes averaging across the channel. Suc-
cessively one can calculate gn and cn for any n. Retaining
only two leading terms in the G series in (8) we get

∂tĈ = g1(ik)Ĉ + g2(ik)2Ĉ . (13)
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Now, taking the inverse Fourier transform of (13) , we
obtain the advection-diffusion equation for the depth-
average concentration

∂tC = g1∂xC + g2∂
2
xC . (14)

3 Logarithmic velocity profile

Consider the traditional logarithmic velocity profile,

u =
u∗

κ
ln

(u∗y

ν

)

+ E , (15)

where u∗ is the friction velocity, κ is the von Karman
constant, ν is the kinematic molecular viscosity and E is
constant. The law (15) gives negative infinity at y = 0,
but within viscous sublayer, 0 < y < h1, where roughly
h1 ∼ 70ν/u∗, formula (15) is not applicable. Therefore,
we exclude the region 0 < y < h1 from consideration and
apply the zero-flux boundary condition at y = h1 instead
of y = 0:

D∂yc|
y=h1

= D∂yc|
y=h

= 0 . (16)

The turbulent diffusion coefficient is

D(y) = K(Sc)
u2
∗

∂yu
, (17)

where the non-dimensional coefficient K(Sc) is positive
and generally depends on the Schmidt number. Substi-
tuting (15) into (17) we get

D(y) = κKu∗y . (18)

Now we insert (15) and (18) into the basic equation (1)
and non-dimensionalise using h/u∗ as the time scale and
h as the length scale. As a result, we obtain in non-
dimensional form (keeping the old notations for conve-
nience):

∂tc + u(y)∂xc = κK∂y(y∂yc) , (19)

where

u(y) =
1

κ
ln(Ry) +

E

u∗

for ε < y < 1 , ε = h1/h , (20)

where

R =
u∗h

ν
(21)

is the Reynolds number. We note that

ε = h1/h ∼ 70ν/(u∗h) = 70/R . (22)

At large Reynolds numbers ε is small, so our final results
in this section are obtained by taking the limit ε → 0.
In non-dimensional form the boundary conditions (16)
become

y∂yc|
y=ε

= y∂yc|
y=1

= 0 . (23)

Calculating c0 from (10) under the boundary conditions
(23) and satisfying (9) in non-dimensional form,

∫ 1

0

c0 dy = 1 ,

we readily find

c0 = 1 . (24)

Using (12) for n = 1 and using (20) and (24) we have

g1 = −u(y)c0 = − 1

1 − ε

∫ 1

ε

[

1

κ
ln(Ry) +

E

u∗

]

dy

= − 1

κ
(lnR − 1) − E/u∗ +

1

κ

ε

1 − ε
ln ε .

In the limit ε → 0, taking into account that ε ln ε → 0,
we get

g1 = − 1

κ
(lnR − 1) − E/u∗ . (25)

Using (25) and (24) we can determine c1 from (11) at
n = 1,

L[c1] = c0g1 + u(y)c0 , (26)

giving

∂y(y∂yc1) = − 1

Kκ2
[ln R − 1 + ln(Ry)] . (27)

Integrating (27) once under the boundary conditions (23)
we get

∂yc1 =
1

Kκ2
ln y

and further

c1 =
1

Kκ2
(y ln y − y) + A .

The integration constant A is determined from the con-
dition (9),

∫ 1

ε

c1 dy = 0 .

As a result,

c1 =
1

Kκ2
(y ln y − y) +

3

4Kκ2
. (28)

Using (28) and (12) for n = 2 we determine g2:

g2 = −u(y)c1(y) = − 1

1 − ε

∫ 1

ε

[

1

κ
ln(Ry) + E/u∗

]

×
[

1

Kκ2
(y ln y − y) +

3

4Kκ2

]

dy

= − 1

1 − ε

{

1

Kκ3

[

ln R

(

y2

2
ln y − y2

4

)

+
y2

2
(ln y)

2

−y2

2
ln y +

y2

4

]

+
E/u∗

Kκ2

(

y2

2
ln y − y2

4

)

− 1

Kκ3

(

y2

2
ln R +

y2

2
ln y − y2

4

)

−E/u∗

Kκ2

y2

2
+

3

4Kκ3
[y ln(Ry) − y] +

3E/u∗

4Kκ2
y

}1

ε

. (29)
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Taking the limit ε → 0 in (29) (note that ε ln ε → 0 and
ε2 ln ε → 0) we get the result in the simple form

g2 =
1

4Kκ3
.

See that g2 does not depend on R and hence on u∗. As
we observe from the advection-diffusion equation (14),
g2 characterises the intensity of diffusion along the flow.
Thus, this intensity is independent of the friction velocity
u∗ measuring how fast the fluid flows. However, u∗ is nat-
urally present in the expression (25) for g1 characterising
advection.

4 Power velocity profile

The power velocity profile in the turbulent boundary
layer is proposed in [9] as an alternative to the logarith-
mic profile (15). In dimensional form

u(y) = u∗(1/
√

3 ln Re + 5/2)
(u∗y

ν

)α

, (30)

where

α =
3

2 lnRe

and Re is the Reynolds number. It is different from con-
ventional definitions of the Reynolds number such as (21).
The number Re is not defined by an explicit formula, see
for details [9]. However, Re is connected to the tradi-
tional Reynolds number Reθ based on the momentum
displacement thickness. The tables in [9] show how to
transform one into the other. Further, Reθ can be linked
to R using experimental data on turbulent flows in chan-
nels. However, at this stage we leave this issue out of our
attention and focus on the low-dimensional modelling.

Substituting (30) into the expression for the diffusion co-
efficient

D(y) = K(Re, Sc)
u2
∗

∂yu

we find

D(y) =
u1−α
∗

Kνα

(1/
√

3 ln Re + 5/2)α
y1−α . (31)

The boundary condition on the bottom is set at y = 0, see
(2). In non-dimensional form (hereafter all the quantities
are non-dimensional)

y1−α∂yc
∣

∣

y=0
= y1−α∂yc

∣

∣

y=1
= 0 . (32)

Substituting (30) and (31) into the basic equation (1) and
non-dimensionalising we obtain

∂tc + Rα(1/
√

3 ln Re + 5/2)yα∂xc

=
K

(1/
√

3 ln Re + 5/2)αRα
∂y[y1−α∂yc] .

(33)

The velocity in (33) is

u(y) = Rα(1/
√

3 ln Re + 5/2)yα . (34)

Calculating c0 from (10) under the boundary conditions
(32) we trivially get

c0 = 1 . (35)

Using (35) and (34) in (12) at n = 1, we find

g1 = −u(y)c0 = −Rα (1/
√

3 ln Re + 5/2)

α + 1
. (36)

Now we need to solve (26), that is

L[c1] = c0g1 + u(y)c0 ,

coupled with (35), (34) and (36):

∂y[y1−α∂yc1] = −R2α(1/
√

3 ln Re + 5/2)2α

K(α + 1)

+
R2α(1/

√
3 ln Re + 5/2)2α

K
yα .

(37)

Integrating (37) and satisfying the boundary conditions
(32) we get

c1(y) = −R2α(1/
√

3 ln Re + 5/2)2α

K(α + 1)2
yα+1

+
R2α(1/

√
3 ln Re + 5/2)2α

K(α + 1)(2α + 1)
y2α+1 + B .

(38)

The integration constant B is determined from the con-
dition (9):

B =
R2α(1/

√
3 ln Re + 5/2)2α

K(α + 1)2(α + 2)

− R2α(1/
√

3 ln Re + 5/2)2α

K(α + 1)(2α + 1)(2α + 2)
.

(39)

Now we calculate the coefficient g2 from (12) at n = 2
using (34) and (38):

g2 = −u(y)c1(y) =
R3α(1/

√
3 ln Re + 5/2)3α

K

×
[

1

2(α + 1)3
− 1

(α + 1)(2α + 1)(3α + 2)

]

−Rα(1/
√

3 ln Re + 5/2)B

α + 1
.

(40)

The effective diffusion coefficient, g2, as well as the effec-
tive velocity, g1, both depend on the Reynolds numbers.

5 Conclusion

Using centre manifold technique, we derive the advection-
diffusion equation

∂tC = g1∂xC + g2∂
2
xC
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for the depth-average concentration of contaminant in a
channel using boundary-layer velocity profiles. Two cases
are analysed separately: (a) logarithmic and (b) power
velocity profile. The coefficients g1 and g2 responsible for
the advection and downstream diffusion respectively are
determined in each case in terms of flow parameters. The
model can be extended to include higher-order derivatives
for a more precise description.
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