
 
 

 

 
Abstract— In this paper an algorithm for minimization of a 
nondifferentiable function is presented. The algorithm uses the 
Moreau-Yoshida regularization of the objective function and its 
second order Dini upper directional derivative. It is proved that 
the algorithm is well defined, as well as the convergence of the 
sequence of points generated by the algorithm to an optimal 
point. An estimate of the rate of convergence is given, too. 
 

Index Terms— Moreau-Yoshida regularization, non-smooth 
convex optimization, second order Dini upper directional 
derivative.  
 

I. INTRODUCTION 
The following minimization problem is considered: 

)(xfmin
nRx∈

                             (1) 

where { }∞+∪→ RRf n:  is a convex and not necessary 

differentiable function with a nonempty set *X  of minima. 
For nonsmooth programs, many approaches have been 

presented so far and they are often restricted to the convex 
unconstrained case. In general, the various approaches are 
based on combinations of the following methods: 
subgradient methods; bundle techniques and the 
Moreau-Yoshida regularization.  

For a function f  it is very important that its 
Moreau-Yoshida regularization is a new function which has 
the same set of minima as f and is differentiable with 

Lipschitz continuous gradient, even when f  is not 
differentiable. In [10], [11] and [19] the second order 
properties of the Moreau-Yoshida regularization of a given 
function f are considered.  

Having in mind that the Moreau-Yoshida regularization of 
a proper closed convex function is an 1LC  function, we 
present an optimization algorithm (using the second order 
Dini upper directional derivative (described in [1] and [2])) 
based on the results from [3]. That is the main idea of this 
paper. 

We shall present an iterative algorithm for finding an 
optimal solution of problem (1) by generating the sequence 
of points { }kx  of the following form: 
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0,...,1,01 ≠=+=+ kkkkk dkdxx α                     (2) 

where the step-size kα  and the directional vector kd  are 
defined by the particular algorithms. 

Paper is organized as follows: in the second section some 
basic theoretical preliminaries are given; in the third section 
the Moreau-Yoshida regularization and its properties are 
described; in the fourth section the definition of the second 
order Dini upper directional derivative and the basic 
properties are given; in the fifth section the semi-smooth 
functions and conditions for their minimization are 
described. Finally in the sixth section a model algorithm is 
suggested and its convergence is proved, and an estimate rate 
of its convergence is given, too. 

 

II. THEORETICAL PRELIMINARIES  

Throughout the paper we will use the following notation. 
A vector s  refers to a column vector, and ∇ denotes the 

gradient operator 
T

nxxx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂ ,...,,

21

. The Euclidean product 

is denoted by ⋅⋅,  and ⋅  is the associated norm; ( )ρ,xB  is 

the ball centred at x with radius ρ . For a given symmetric 

positive definite linear operator M  we set ⋅⋅=⋅⋅ ,:, M
M

; 

hence it is shortly denoted by 
MM

xxx ,:2 = .The smallest 

and the largest eigenvalue of M we denote by λ  and Λ  
respectively. 

The domain of a given function { }∞+∪→ RRf n:  is 

the set ( ) ( ){ }+∞<∈= xfRxfdom n . We say that f  is 

proper if its domain is nonempty.  
The point ( )xfminargx

nRx∈
=*  refers to the minimum 

point of a given function { }∞+∪→ RRf n: . 

The epigraph of a given function { }∞+∪→ RRf n:  

is the set ( ) ( ){ }xfRRxfepi n ≥×∈= αα , . The 

concept of the epigraph gives us a possibility to define 
convexity and closure of a function in a new way. We say that 
f  is convex if its epigraph is a convex set, and f  is closed 

if its epigraph is a closed set. 
In this section we will give the definitions and statements 

necessary in this work. 
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Definition 1. A vector nRg∈  is said to be a subgradient of 

a given proper convex function { }∞+∪→ RRf n:  at a 

point nRx∈  if the next inequality 

( ) ( ) ( )xzgxfzf T −⋅+≥       (3) 

holds for all nRz∈ . The set of all subgradients of ( )xf  at 
the point x , called the subdifferential at the point x , is 
denoted by ( )xf∂ . The subdifferential ( )xf∂  is a 

nonempty set if and only if ( )fdomx∈ . 

For a convex function f  it follows that 

( ) ( ) ( ){ }zxgzfmaxxf T

Rz n
−+=

∈
 holds, where ( )zfg ∂∈  

(see [4]). 
The concept of the subgradient is a simple generalization 

of the gradient for nondifferentiable convex functions. 
Lemma 1. Let { }∞+∪→ RSf :  be a convex function 

defined on a convex set nRS ⊆ , and Sintx ∈′ . Let { }kx  

be a sequence such that xxk ′→ , where kkk sxx ε+′= , 

0,0 →> kk εε  and ssk → , and ( )kk xfg ∂∈ . Then all 

accumulation points of the sequence { }kg  lie in the set 

( )xf ′∂ . 
Proof.  See in [7] or [6]. 

Definition 2. The directional derivative of a real function 
f defined on nR  at the point nRx ∈′  in the direction 

nRs∈ , denoted by ( )sxf ,′′ , is 

( ) ( ) ( )
t

xfstxflimsxf
0t

′−⋅+′
=′′

↓
,                    (4) 

when this limit exists. 
Hence, it follows that if the function f  is convex and 

fdomx ∈′ , then  

( ) ( ) ( ) ( )tosxftxfstxf +′′⋅+′=⋅+′ ,                 (5) 

holds, which can be considered as one linearization of the 
function f  (see in [5]). 

Lemma 2. Let { }∞+∪→ RSf :  be a convex function 

defined on a convex set nRS ⊆ , and Sintx ∈′ . If the 

sequence xxk ′→ , where kkk sxx ε+′= , ,0>kε  

0→kε and ssk →  then the next formula: 

( ) ( ) ( )
( )

gsmaxxfxflimsxf T

xfg
k

k

k ′∂∈∞→
=

′−
=′′

ε
,     (6) 

holds. 
Proof.  See in [6] or [14]. 

Lemma 3.  Let  { }∞+∪→ RSf :  be a convex function 

defined on a convex set nRS ⊆ . Then ( )xf∂  is bounded 

for SintBx ⊂∈∀ , where B is a compact. 
Proof. See in [7] or [9]. 

Proposition 1 Let { }∞+∪→ RRf n:  be a proper convex 
function. The condition:  

( )xf∂∈0                         (7) 

is a first order necessary and sufficient condition for a global 
minimizer at nRx∈ . This can be stated alternatively as: 

1, =∈∀ sRs n

( )
0≥

∂∈
gsmax T

xfg
.                  

(8) 

Proof. See [13]. 
Lemma 4. If a proper convex function 

{ }∞+∪→ RRf n:  is a differentiable function at a point 

( )fdomx∈ , then:  

 ( ) ( ){ }xfxf ∇=∂ .         (9) 

Proof. The statement follows directly from Definition 2. 
Definition 3. The real function f defined on nR  is 1LC  

function on the open set nRD ⊆  if it is continuously 
differentiable and its gradient f∇ is locally Lipschitz, i.e. 

( ) ( ) yxLyfxf −≤∇−∇  for Dyx ∈,               (10) 

for some 0>L . 
 

III.  THE MOREAU-YOSHIDA REGULARIZATION 

Definition 4. Let { }∞+∪→ RRf n:  be a proper closed 
convex function. The Moreau-Yoshida regularization of a 
given function f , associated to the metric defined by M, 
denoted by F, is defined as follows: 

( )
⎭
⎬
⎫

⎩
⎨
⎧ −+=

∈

2

2
1)(:

MRy
xyyfminxF

n
               (11) 

The above function is an infimal convolution. In [15] it is 
proved that the infimal convolution of a convex function is 
also a convex function. Hence the function defined by (11) is 
a convex function and has the same set of minima as the 
function f (see in [5]), so the motivation of the study of 
Moreau-Yoshida regularization is due to the fact that 

( )xfmin
nRx∈

 is equal to ( )xFmin
nRx∈

. 

Definition 5. The minimum point ( )xp  of the function (11): 

( )
⎭
⎬
⎫

⎩
⎨
⎧ −+=

∈

2

2
1)(:

M
Ry

xyyfargminxp
n

         (12) 

is called the proximal point of x .  
Proposition 2. The function F defined by (11) is always 
differentiable. 

Proof. See in [5]. 

The first order regularity of F is well known (see in [5] and 
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[10]): without any further assumptions, F has a Lipschitzian 
gradient on the whole space nR . More precisely, for all 

nRxx ∈21,  the next formula: 

( ) ( ) ( ) ( ) 2121
2

21 , xxxFxFxFxF −∇−∇Λ≤∇−∇  (13) 

holds (see in [10]), where )(xF∇ has the following form: 

( ) ( )( )xpfxpxMxFG ∂∈−=∇= ))((:             (14) 

and ( )xp  is the unique minimum in (11). So, according to 
above consideration and Definition 3, we conclude that F is 
an 1LC  function (see in [11]). 

Note that the function f  has nonempty subdifferential at 

any point p of the form ( )xp . Since ( )xp  is the minimum 
point of the function (11) then (see in [5] and [10]): 

( ) gMxxp 1−−=  where ( )( )xpfg ∂∈ .             (15) 

In [10] it is also proved that for all nRxx ∈21,  the next 
formula: 

( ) ( ) ( ) ( ) ( )2121
2

21 , xpxpxxMxpxp
M

−−≤−  (16) 

is valid, namely the mapping ( )xpx →  , where ( )xp  is 

defined by (12), is Lipschitzian with constant 
λ
Λ  (see 

Proposition 2.3. in [10]). 
Lemma 5: The following statements are equivalent: 

(i) x  minimizes f ;          (iv) x  minimizes F ; 

(ii) ( ) xxp =                     (v) ( )( ) ( )xfxpf = ; 

(iii) ( ) 0=∇ xF                (vi) ( ) ( )xfxF =  
Proof. See in [5] or [19]. 
 

IV.  DINI SECOND UPPER DIRECTIONAL DERIVATIVE 
We shall give some preliminaries that will be used in the 

remainder of the paper. 
Definition 6. [18] The second order Dini upper directional 
derivative of the function 1LCf ∈  at the point nRx∈  in 

the direction nRd ∈ is defined to be 

( ) ( ) ( )[ ]
α

α
α

dxfdxfsuplimdxf
T

D
⋅∇−+∇

=′′
↓0

, . 

If f∇ is directionally differentiable at kx , we have 

( ) ( ) ( ) ( )[ ]
α

α
α

dxfdxflimdxfdxf
T

kkD
⋅∇−+∇

=′′=′′
↓0

,,

for all nRd ∈ . 

Since the Moreau-Yoshida regularization of a proper 
closed convex function f  is an 1LC  function, we can 
consider its second order Dini upper directional derivative at 

the point nRx∈  in the direction nRd ∈ , i.e.: 

( ) ,, 21 dgglimsupdxF
0

D αα

−
=′′

↓

( )( ) ( )( )xpfgdxpfg ∂∈+∂∈ 21 ,α  

where ( )xF  is defined by (11). 

Lemma 6: Let RRf n →:  be a closed convex proper 
function and F is its Moreau –Yoshida regularization in the 
sense of definition 5. Then the next statements are valid. 

(i) ( ) ( )dxFkkdxF kDkD ,, 2 ′′=′′  

(ii) ( ) ( ) ( )( )2121 ,,2, dxFdxFddxF kDkDkD ′′+′′≤+′′  

(iii) ( ) 2, dKdxF kD ⋅≤′′ , where K is some constant. 

Proof. See in [18] and [2]. 
Lemma 7. Let RRf n →:  be a closed convex proper 
function and let F be its Moreau –Yoshida regularization. 
Then the next statements are valid. 

(i) ( )dxFD ,′′  is upper semicontinous with respect to 

( )dx,  i.e. if xxi → and ddi → , then  

      ( ) ( )dxFdxFsuplim DiiD
i

,, ′′≤′′
∞→

 

(ii) ( ) ( ){ }xFVVddmaxdxF T
D

2, ∂∈=′′   

Proof. See in [18] and [2]. 
 

V.  SEMI-SMOOTH FUNCTIONS AND OPTIMALITY CONDITIONS 

Definition 7: A function nn RRF →∇ :  is said to be 

semi-smooth at the point nRx∈  if F∇  is locally 

Lipschitzian at nRx∈  and the limit 

{ } ( )hxFVVhlim
dh

λ
λ

+∂∈
↓
→

2

0

,  exists for any nRd ∈ . 

Note that for a closed convex proper function, the gradient 
of its Moreau-Yoshida regularization is a semi-smooth 
function. 
Lemma 8. [18]: If nn RRF →∇ :  is semi-smooth at the 

point nRx∈  then F∇  is directionally differentiable at 
nRx∈  and for any ( ) 0,2 →+∂∈ hhxFV  we have: 

( ) ( ) ( )hohxFVh =′∇− , . Similarly we have that 

( ) ( )2, hohxFVhhT =′′− . 

Lemma 9: Let RRf n →:  be a proper closed convex 

function and let F  be its Moreau-Yoshida regularization. 
So, if nRx∈  is solution of the problem (1) then 

( ) 0, =′ dxF  and ( ) 0, ≥′′ dxFD  for all nRd ∈ . 

Proof.  From the definition of the directional derivative 

and by Lemma 5 we have that ( ) ( ) 0, =∇=′ dxFdxF T . 

Since nRx∈  is a solution of the problem (1) then according 
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to Lemma 5, theorem 23.1 in [15] and the fact that the next 

inequalities ( ) ( ) ( )( ) 01, ≥−+≥+′ xFtdxF
t

dtdxF   

hold we have 

 ( ) ( ) ( ) 0,,,
0

≥
′−+′

=′′
↓ t

dxFdtdxFlimsupdxF
t

D ■ 

Lemma 10. Let RRf n →:  be a proper closed convex 

function, F  its Moreau-Yoshida regularization, and x  a 

point from nR . If ( ) 0, =′ dxF  and ( ) 0, >′′ dxFD  for all 
nRd ∈ , then nRx∈  is a strict local minimizer of the 

problem (1). 
Proof.  Suppose that nRx∈ is not a strict minimum of the 

function f . According to Lemma 5 that means that nRx∈  
is not a strict minimum of the function F, nor a proximal point 
of the function F. Then there exists a sequence 
{ } xxx kk →,  such that ( ) ( )xFxF k ≤  holds for every k . 

If we define the sequence { } xxx kk →,  by dtxx kk += , 

where 
d

xx
t k

k

−
=  then by Lemma 8 and Lemma 6 it 

follows that 

( ) ( ) ( ) ( ) ( )22 ,
2
1 dodxFtdxFtxFxF Dk

T
kk +′′=∇−−  

holds. Since ( ) 0=∇ xF (from assumption of Lemma 10) it 

follows that ( ) 0,
2
1 2 ≤′′ dxFt Dk , which contradicts the 

assumption.■ 
  

VI.  A MODEL ALGORITHM 
In this section an algorithm for solving the problem (1) is 

introduced. We suppose that at each nRx∈  it is possible to 
compute ( ),),( xFxf  ( )xF∇  and ( )dxFD ,′′  for a given 

nRd ∈ . 
At the k-th iteration we consider the following problem  

( ) ( ) ( ) ( )dxFdxFddmin kD
T

kkk
Rd n

,
2
1, ′′+∇=ΦΦ

∈
 (17) 

where ( )dxF kD ,′′  stands for the second order Dini upper 

directional derivative at kx  in the direction d . Note that if 

Λ  is a Lipschitzian constant for F  it is also a Lipschitzian 
constant for F∇ . The function ( )dkΦ  is called an 

iteration function. It is easy to see that ( ) 00 =Φ k  and 

( )dkΦ  is Lipschitzian on nR . We generate the sequence 

{ }kx of the form kkkk dxx α+=+1 , where the direction 

vector kd  is a solution of the problem (17), and the step-size 

kα  is a number satisfying ( ) 10, <<= qq ki
kα , where 

( )ki  is the smallest integer from { },...2,1,0  such that  

( )( ) ( ) ( ) ( )( )kkD
ki

kk
ki

k dxFqxFdqxF ,
2
1 ′′−≤−+ σ  (18) 

where [ [ ),0),0: +∞→+∞σ  is a continuous function 

satisfying ( ) ttt 21 δσδ ≤≤  and 10 21 <<< δδ . 
We suppose that  

( ) 2
2

2
1 , dcdxFdc kD ≤′′≤                  (19) 

hold for some 1c  and 2c  such that 210 cc << .  

Lemma 11. Under the assumption (19) the function ( )⋅Φ k  is 
coercive. 

Proof. From the assumption there exists 0>K  
(

210 cKc ≤≤< ) such that ( )
( )

2

2
, dKVddmaxdxF T

xFV
D ==′′

∂∈
. 

Since F∇  is locally Lipschitzian we have that  

( ) ddxF T
k Λ≤∇  holds (see in [17]), therefore 

( ) ddxF T
k Λ≤⋅+∇ 0

2
1  holds and hence we have that: 

( ) ( ) ddKdxFdxF D
T

k Λ≤−′′+∇ 2

2
1,

2
1 . Hence, we have: 

( ) ( ) 22

2
1,

2
1

2
1 dKddxFdxFdKd D

T
k +Λ≤′′+∇≤+Λ−  

and 
( ) dK

d
ddK k

2
1

2
1

+Λ≤
Φ

≤+Λ− .  

This establish coercivity of the function kΦ .■ 

Remark. Coercivity of the function kΦ  assures that the 
optimal solution of problem (17) exists (see in [18]). It also 
means that, under the assumption (19) the direction sequence 
{ }kd  is bounded sequence on nR  (proof is analogous to the 
proof in [18]). 

Proposition 3. If  the Moreau-Yoshida regularization ( )⋅F of 

the proper closed convex function ( )⋅f  satisfies the 
condition (19), then: 

(i) the function ( )⋅F  is uniformly and, hence, strictly 
convex; 

(ii) the level set ( ) ( ) ( ){ }00 : xFxFRxxL n ≤∈=  is a 
compact convex set, and 

(iii) there exists a unique point *x  such that 

( )
( )

( )xFminxF
xLx 0

*

∈
= . 

Proof. (i) From the assumption (19) and the mean value 
theorem it follows that for all ( )0xLx∈  ( 0xx ≠ ) there 

exists ( )1,0∈θ  such that: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )00
2

0100

000000

2
1

,
2
1

xxxFxxcxxxF

xxxxxFxxxFxFxF

TT

D
T

−∇>−+−∇≥

−−+′′+−∇==− θ
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that is, ( )⋅F  is uniformly and consequently strictly convex 

on ( )0xL . 

(ii) From [16] it follows that the level set ( )0xL  is 

bounded. The set ( )0xL  is closed and convex because the 

function ( )⋅F  is continuous and convex. Therefore the set 

( )0xL  is a compact convex set. 

(iii) The existence of *x  follows from the continuity of the 
function ( )⋅f , and therefore and ( )⋅F , on the bounded set 

( )0xL . From definition of the level set it follows that: 

( )
( )

( ) ( )xFminxFminxF
DxxLx ∈∈

==
0

*  

Since ( )⋅F  is strictly convex it follows from [15] that 
*x is a unique minimizer.■ 

Lemma 12. The following statements are equivalent: 
(i) 0=d  is globally optimal solution of the problem (17) 
(ii) 0 is the optimum of the objective function in (17) 
(iii) the corresponding kx  is such that ( )kxf∂∈0  
Proof. (i) ⇒ (ii:) is obvious 
(ii)⇒ (iii): Let 0 be a global optimum value of (17), then 

for any 0>λ  and nRd ∈ : 

( ) ( ) ( ) ( )

( ) ( )dxFdxF

dxFdxFd

kD
T

k

kD
T

kkk

,
2
1

,
2
100

2 ′′+∇=

′′+∇=Φ≤Φ=

λλ

λλλ
 

where the last equality holds by Lemma 6. Hence dividing 
both sides by λ  and letting 0↓λ we have that 

( ) 0≥∇ dxF T
k  holds for any nRd ∈ , and consequently 

it follows that kx  is a stationary point of the function F , i.e. 

( ) 0=∇ kxF . Hence, by Lemma 5 it follows that kx  is a 

minimum point of the function f . 

(iii)⇒ (i): Let kx  be a point such that ( )kxf∂∈0 . Then 
by (14), Lemma 5 and Lemma 9 it follows that 

( ) 0≥∇ dxF T
k                                   (20) 

for any nRd ∈ . Suppose that 0≠d  is the optimal solution 
of the problem (17). From the property of the iterative 
function Φ it follows that: 

( ) ( )kkDk
T

k dxFdxF ,
2
1 ′′−≤∇              (21) 

Hence, (21) implies:  

( ) 0<∇ k
T

k dxF  .                                     (22) 

The above two inequalities (20) and (22) are 
contradictory.■ 

Now we shall prove that there exists a finite ( )ki , i.e. 

since kd  is defined by (17), that the algorithm is 

well-defined. 
Proposition 4. . If 0≠kd is a solution of (17), then for any 

continuous function [ [ ),0),0: +∞→+∞σ  satisfying 

( ) ttt 21 δσδ ≤≤  (where 10 21 <<< δδ ) there exists a 

finite ( )ki* such that for all ( ) ( )( )kiki qq
*

,0∈  

( )( ) ( ) ( ) ( )( )kkD
ki

kk
ki

k dxFqxFdqxF ,
2
1 ′′−≤−+ σ  

holds. 
Proof . According to Lemma 9.3 from [8] and from the 

definition of kd  it follows that for 0,1 >+=+ ttdxx kkk  
we have 

( ) ( ) ( ) ( )

( )( ) 22

2

2222
1

2
,

2
1

2
,

2
1

2

kkkD

kkkDkk
T

kkk

dtdxFt

dtdxFtdtdxFtxFxF

Λ
+′′−≤

Λ
+′′−≤

Λ
+∇≤−+

σ
δ

(23) 

If we choose ( )( )
2
,

k

kkD

d
dxFt

Λ

′′
=
σ  and put in (23), we get  

( ) ( ) ( )( )
2

2

2

2
1

,1
2
1

k

kkD
kk

d
dxF

xFxF
Λ

′′−
≤−+

σ
δ
δ ( )( )kkD dxFtK ,

2
′′−= σ  

where 01
2

2 <−=
− K
δ

δ
. Taking ( ) [ ]

q
Ktq ki =

*

, i.e. 

( ) [ ]
q
Ktlogki q=*  we have that the claim of the theorem 

holds for all ( ) ( )( )kiki qq
*

,0∈ .■ 

Convergence theorem. Suppose that f is a proper closed 

convex function and F is its Moreau-Yoshida regularization 
satisfies (19). Then for any initial point ∞→∈ xxRx k

n ,0 , 

as +∞→k , where ∞x  is a unique minimal point of the 

function f . 

Proof. . If 0≠kd is a solution of (17), it follows that 

( ) ( )00 kkk d Φ=≤Φ . Consequently, we have by the 
condition (19) that 

( ) ( ) 0
2
1,

2
1 2

1 <−≤′′−≤∇ kkkDk
T

k dcdxFdxF  

From the above inequality it follows that the vector kd is a 

descent direction at kx , i.e. from the relations (18) and (19) 
we get 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) 2
11

1

2
1,

2
1

,
2
1

k
ki

kkD
ki

kkD
ki

kk
ki

kkk

dcqdxFq

dxFqxFdqxFxFxF

−≤′′−≤

′′−≤−+=−+

δ

σ
 

for every 0≠kd . Hence the sequence ( ){ }kxF  has the 
descent property, and, consequently, the sequence 
{ } ( )0xLxk ⊂ . Since ( )0xL is by the Proposition 3 a 

compact convex set, it follows that the sequence { }kx  is 
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bounded. Therefore there exist accumulation points of the 
sequence { }kx . 

Since F∇ is continuous, then, if ( ) +∞→→∇ kxF k ,0  

it follows that every accumulation point ∞x  of the sequence 

{ }kx  satisfies ( ) 0=∇ ∞xF . Since F  is (by the 
Proposition 3) strictly convex, there exists a unique point 

( )0xLx ∈∞  such that ( ) 0=∇ ∞xF . Hence, the sequence 

{ }kx  has a unique limit point ∞x  and it is a global 

minimizer of F  and by Lemma 5 it is a global minimizer of 
the function f . 

Therefore we have to prove that ( ) +∞→→∇ kxF k ,0 . 

Let 1K  be a set of indices such that ∞∈
= xxlim kKk 1

. Then 

there are two cases to consider: 
a) The set of indices ( ){ }ki  for 1Kk ∈ , is uniformly 

bounded above by a number I . Because of the descent 
property, it follows that all points of accumulation have the 
same function value and 

( ) ( ) ( ) ( )[ ]

( ) ( )[ ]∑

∑

∈
+

+∞

=
+∞

−≤

−=−

1

1

0
10

Kk
kk

k
kk

xFxF

xFxFxFxF

( ) ( )( )∑
∈

′′−≤
1

,
2
1

Kk
kkD

ki dxFq σ  

 ( )∑
∈

′′−≤
1

,
2
1

1
Kk

kkD
I dxFq δ ∑

∈

−≤
1

2
12

1
Kk

k
I dcq  

Since ( )∞xF is finite, it follows that 0→kd . 1,, Kkk ∈∞→  

By Lemma 12 it follows that 0=∞d  is a globally optimal 
point of the problem (17) and, that the corresponding 
accumulation point ∞x  is a stationary point of the objective 

function F, i.e. ( ) 0=∇ ∞xF . From Lemma 5 and Lemma 12 

it follows that ∞x  is a unique optimal point of the function 

f . 

b) There is a subset 12 KK ⊂  such that ( ) +∞=
∞→

kilim
k

. By 

definition of ( )ki , we have for 2Kk ∈  that  

( )( ) ( ) ( ) ( )( )kkD
ki

kk
ki

k dxFqxFdqxF ,
2
1 11 ′′−>−+ −− σ  (24). 

Suppose that ∞x  is an arbitrary accumulation point of { }kx , 

but not a stationary point of F , i.e. f . Then, from Lemma 

12 it follows that the corresponding direction vector 0≠d . 

Now, dividing both sides in the expression (24) by ( ) 1−kiq  

and using ( )
2

1 ,0 Kkqlim ki

k
∈=−

∞→
, we get 

( ) ( )( ) ( ) ( )∞∞∞∞∞∞∞∞ ′′−>′′−>′′−>∇ dxFdxFdxFdxF DDD
T ,

2
1,

2
1,

2
1

2δσ  

But, from the property of the iterative function in (17), we 

have ( ) ( )∞∞∞∞ ′′−≤∇ dxFdxF D
T ,

2
1 . Therefore, we get a 

contradiction.■ 
 
Convergence rate theorem.  Under the assumptions of the 
previous theorem we have that the following estimate holds 
for the sequence { }kx  generated by the algorithm. 

( ) ( ) ( ) ( )
( )

,...3,2,1

11
1

1

0
2

1
200

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∇
−

+≤−

−
−

=

+
∞ ∑

nfor

xF
xFxFxFxF

n

k k

kk
n η

μμ
 

where ( ) ( )∞−= xFxF 00μ and ( ) +∞<=η0xLdiam  (since 

by Proposition 3 it follows that ( )0xL is bounded). 
Proof . The proof directly follows from the Theorem 9.2, 
page 167, in [8]. 
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