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An Algorithm For Minimization Of
A Nondifferentiable Convex Function

Nada DJURANOVIC-MILICIC ', Milanka GARDASEVIC-FILIPOVIC®

Abstract— In this paper an algorithm for minimization of a
nondifferentiable function is presented. The algorithm uses the
Moreau-Yoshida regularization of the objective function and its
second order Dini upper directional derivative. It is proved that
the algorithm is well defined, as well as the convergence of the
sequence of points generated by the algorithm to an optimal
point. An estimate of the rate of convergence is given, too.

Index Terms— Moreau-Yoshida regularization, non-smooth
convex optimization, second order Dini upper directional
derivative.

[. INTRODUCTION

The following minimization problem is considered:

min f(x) (1)
xeR"

where f:R" > RU {+ oo} is a convex and not necessary

differentiable function with a nonempty set X " of minima.

For nonsmooth programs, many approaches have been
presented so far and they are often restricted to the convex
unconstrained case. In general, the various approaches are
based on combinations of the following methods:
subgradient methods; bundle techniques and the
Moreau-Yoshida regularization.

For a function f it is very important that its
Moreau-Yoshida regularization is a new function which has
the same set of minima as f and is differentiable with

Lipschitz continuous gradient, even when f is not

differentiable. In [10], [11] and [19] the second order
properties of the Moreau-Yoshida regularization of a given

function f are considered.
Having in mind that the Moreau-Y oshida regularization of

a proper closed convex function is an LC : function, we
present an optimization algorithm (using the second order
Dini upper directional derivative (described in [1] and [2]))
based on the results from [3]. That is the main idea of this
paper.

We shall present an iterative algorithm for finding an
optimal solution of problem (1) by generating the sequence

of points {xk} of the following form:
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X, =x+od, k=0]1,..d #0 )

where the step-size @, and the directional vector d, are
defined by the particular algorithms.

Paper is organized as follows: in the second section some
basic theoretical preliminaries are given; in the third section
the Moreau-Yoshida regularization and its properties are
described; in the fourth section the definition of the second
order Dini upper directional derivative and the basic
properties are given; in the fifth section the semi-smooth
functions and conditions for their minimization are
described. Finally in the sixth section a model algorithm is
suggested and its convergence is proved, and an estimate rate
of its convergence is given, too.

II. THEORETICAL PRELIMINARIES

Throughout the paper we will use the following notation.
A vector § refers to a column vector, and V denotes the

T
gradient operator [8 4 o j . The Euclidean product

ox, ox, ox,
is denoted by <,> and HH is the associated norm; B(x, p) is
the ball centred at x with radius p . For a given symmetric

positive definite linear operator M we set <-,->M = <M -,->;

hence it is shortly denoted by ”x”; ::<x,x>M .The smallest

and the largest eigenvalue of M we denote by A and A
respectively.

The domain of a given function f :R" — RU {+ oo} is
the set dom(f )= {x e R"[f(x)< +OO}. We say that f is

proper if its domain is nonempty.

The point X = arg min f (x) refers to the minimum

xeR"
point of a given function f :R" — RU {+ oo}.

The epigraph of a given function f:R" — R {+ oo}
is the set epif = {(a,x) € Rx R"|0( > f(x)} . The
concept of the epigraph gives us a possibility to define
convexity and closure of a function in a new way. We say that
f is convex if its epigraph is a convex set, and [ is closed
if its epigraph is a closed set.

In this section we will give the definitions and statements
necessary in this work.
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Definition 1. A vector g € R" is said to be a subgradient of
a given proper convex function f : R" — RU {+ oo} at a

point x € R" if the next inequality
f(2)z f(x)+g"(z—x) @)

holds for all z € R". The set of all subgradients of f° (x) at
the point x, called the subdifferential at the point X, is
denoted by Of (x) . The subdifferential Of (x) is a
nonempty set if and only if x € dom( f )

function f it follows that

flx)= lzfggc{f(z)jt g (x- Z)} holds, where g € 0f(z)
(see [4]).

The concept of the subgradient is a simple generalization
of the gradient for nondifferentiable convex functions.

Lemma 1. Let f: S —)RU{+ OO} be a convex function

For a convex

defined ona convex set S < R”,and x' €intS . Let {xk}
be a sequence such that x, — x", where x, =x"+¢&.5,,
& >0,6, >0 and s, > s5,and g, e@f(xk). Then all
accumulation points of the sequence {gk} lie in the set
o (x').

Proof. See in [7] or [6].

Definition 2. The directional derivative of a real function
f defined on R" at the point x' € R" in the direction

s €R", denoted by f'(x',s), is

f'(x',s):lim f(x'+t-s)—f(x')

40 t

“4)

when this limit exists.
Hence, it follows that if the function f  is convex and

x"edom [, then

F+2-5)=f(x)+2-£(x,5)+olt) ®)
holds, which can be considered as one linearization of the
function f* (see in [5]).

Lemma 2. Let f:S —>Ru{+ OO} be a convex function
defined on a convex setS  R", and x' €intS . If the
sequence X, = X' , where x, =x"+¢&,5,, & >0,

&, = 0and s, — s then the next formula:

f'(x,s)=lim —f(x" )=/ () =max s'g (6)
k—o0 gk ge@(f)

holds.
Proof. Seein [6] or [14].
Lemma3. Let f:S—>RU {+ OO} be a convex function

defined on a convex setS < R". Then Of (x) is bounded

ISBN:978-988-18210-1-0

for Vx € B cint S, where B isa compact.

Proof. See in [7] or [9].
Proposition 1 Let f : R" —> RU {—i— oo} be a proper convex
function. The condition:

0edf(x) ()

is a first order necessary and sufficient condition for a global

minimizer at X € R". This can be stated alternatively as:

VseR", s”:l max s'g >0
gedf (x)
®)
Proof. See [13].
Lemma 4. If a proper convex  function

f:R" >Ry {+ OO} is a differentiable function at a point
x e dom(f), then:
of (x)={v/ ()} ©)
Proof. The statement follows directly from Definition 2.
Definition 3. The real function f defined on R" is LC'

function on the open set D C R" if it is continuously

differentiable and its gradient V" is locally Lipschitz, i.e.

||Vf(x)— Vf(ym < L”x - y” for x,ye D

for some L >0.

(10)

III. THE MOREAU-YOSHIDA REGULARIZATION
Definition 4. Let f:R" — RV {+ oo} be a proper closed
convex function. The Moreau-Yoshida regularization of a
given function f*, associated to the metric defined by M,
denoted by F, is defined as follows:

1
F(x):: mir;t{f(y)+—||y—x||jl} (11)
yeR 2

The above function is an infimal convolution. In [15] it is
proved that the infimal convolution of a convex function is
also a convex function. Hence the function defined by (11) is
a convex function and has the same set of minima as the

function f (see in [5]), so the motivation of the study of
Moreau-Yoshida regularization is due to the fact that
min f(x) is equal to min F(x).
xeR" xeR"
Definition 5. The minimum point p(x) of the function (11):
px)= arg;;znin{f(y)+%||y—x";} (12)
ye

is called the proximal point of x .

Proposition 2. The function F defined by (11) is always
differentiable.

Proof. See in [5].

The first order regularity of F is well known (see in [5] and
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[10]): without any further assumptions, F has a Lipschitzian
gradient on the whole space R". More precisely, for all

X,,X, € R" the next formula:
[VE(x,)-VE(x, )" < AVF(x,)-VF(x,)x, —x,) (13)
holds (see in [10]), where VF'(x)has the following form:

G =VF(x)=M(x- p(x)) e o (p(x))

and p(x) is the unique minimum in (11). So, according to

(14)

above consideration and Definition 3, we conclude that F is
an LC" function (see in [11]).
Note that the function f* has nonempty subdifferential at

any point p of the form p(x). Since p(x) is the minimum
point of the function (11) then (see in [5] and [10]):

p(x)=x—M"g where g €df(p(x)).

In [10] it is also proved that for all x;,x, € R " the next

(15)

formula:

”p(xl )—p(x2 m; = <M(x1 —X )’p('xl )_p(xz )> (16)
is valid, namely the mapping x —> p(x) , where p(x) is
defined by (12), is Lipschitzian with constant % (see

Proposition 2.3. in [10]).
Lemma 5: The following statements are equivalent:

(i) X minimizes f; (iv) x minimizes F’;

(i) p(x)=x W f(p(x))=f(x);
(iii) VF(x)=0 i) F(x)= f(x)
Proof. See in [5] or [19].

IV. DINISECOND UPPER DIRECTIONAL DERIVATIVE

We shall give some preliminaries that will be used in the
remainder of the paper.
Definition 6. [18] The second order Dini upper directional

derivative of the function f € LC' at the point x € R" in

the direction d € R" is defined to be

g(xad)=limsup [Vf(x+ad)_vf(x)]T -d.
alo a

If Vf is directionally differentiable at X, , we have

V= ti (W s +ad) =Y/ ()] -d

[’)’(xk’d):f"(xwd
forall d e R".

Since the Moreau-Yoshida regularization of a proper
closed convex function f is an LC' function, we can

consider its second order Dini upper directional derivative at

ISBN:978-988-18210-1-0

the point x € R" in the direction d € R" ,i.e.:

F)(x,d)= Zimsup@d,
a

alo

g€ (plx+ad)).g, €3/ (p(x))
where F(x) is defined by (11).

Lemma 6: Let f:R" — R be a closed convex proper

function and F is its Moreau —Yoshida regularization in the
sense of definition 5. Then the next statements are valid.

(@) F)(x, kd)=k*F}(x,,d)
(it) FD”(xkﬂdl "'dz)S Z(F[’)’(xwdl)_'_FD”(xk’dZ))
(iii) | Fj(x,.d | <K -|d
Proof. See in [18] and [2].

Lemma 7. Let f:R" — R be a closed convex proper

function and let F be its Moreau —Yoshida regularization.
Then the next statements are valid.

2 .
, where K is some constant.

() F [')' (x,d ) is upper semicontinous with respect to
(x,d) ie if x, > xand d, = d , then
limsup F}\(x,.d.) < F(x,d)

(i) F)(x,d)= max{dTVd‘V € 82F(x)}
Proof. See in [18] and [2].

V. SEMI-SMOOTH FUNCTIONS AND OPTIMALITY CONDITIONS

Definition 7: A function VF : R" — R" is said to be
semi-smooth at the point x € R" if VF is locally
Lipschitzian at xeR" and the

lim{Vh}, Ve 82F(x+ ﬂ,h) exists forany d € R".

h—d
0

limit

Note that for a closed convex proper function, the gradient
of its Moreau-Yoshida regularization is a semi-smooth
function.

Lemma 8. /18]: If VF : R" — R" is semi-smooth at the

point x € R" then VF is directionally differentiable at

x€R" and for any V € 82F(x+ h),h — 0 we have:
’

Vh—(VF) (x,h)=o(|A]) .

1V —F"(x, )= o[ )

Similarly we have that

Lemma 9: Let f:R" — R be a proper closed convex
function and let F' be its Moreau-Yoshida regularization.
So, if x€R" is solution of the problem (1) then
F'(x,d)=0 and F)(x,d)>0 forall d € R".

Proof. From the definition of the directional derivative
and by Lemma 5 we have that F'(x,d)= VF(x)Td =0.

Since x € R" is a solution of the problem (1) then according
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to Lemma 5, theorem 23.1 in [15] and the fact that the next
. .. , 1
inequalities F (x + td,d) > —(F(x + ta’)— F(x)) >0
t
hold we have

>0m

) F'\x+td,d)-F'(x,d
F}(x,d)=limsup ( )=F'(x.d)
40 t

Lemma 10. Let f :R" — R be a proper closed convex
function, [ its Moreau-Yoshida regularization, and X a
point from R" . If F'(x,d)z 0 and Fjg(x,d)> 0 for all
d €R", then x€ R" is a strict local minimizer of the
problem (1).

Proof. Suppose that x € R" is not a strict minimum of the

function f . According to Lemma 5 that means that x € R”

is not a strict minimum of the function F, nor a proximal point
of the function F. Then there exists a sequence

{xk }, X, —> x such that F(xk )S F(x) holds for every k .
If we define the sequence {xk },xk —x by x, =x+t,d,
e =

]

where t, = then by Lemma 8 and Lemma 6 it

follows that

F(s)- F ()19 F () d =2 () + ol
holds. Since VF' (x) = ( (from assumption of Lemma 10) it
follows that %t; F) (x, d ) <0 , which contradicts the

assumption.m

VI. A MODEL ALGORITHM
In this section an algorithm for solving the problem (1) is
introduced. We suppose that at each x € R" it is possible to
compute f(x),F (x), VF (x) and F) (x,d ) for a given
deR".

At the k-th iteration we consider the following problem

min®,(d), @, (d)=VF(x, ) d +%Fg(xk,d) a7
deR"
where F) (xk,d) stands for the second order Dini upper

directional derivative at X, in the direction d . Note that if

A is a Lipschitzian constant for [ it is also a Lipschitzian
constant for VF . The function @ k(d ) is called an

iteration function. It is easy to see that @ k(O)Z 0 and

o k(d ) is Lipschitzian on R". We generate the sequence
{xk }of the form x,,, =X, + a,d, , where the direction
vector d + is a solution of the problem (17), and the step-size
o, is a number satisfying o, = qi(k),() <g <1, where
i(k ) is the smallest integer from {0,1,2,...} such that

ISBN:978-988-18210-1-0

1 1 [ "
F(xk + ql(k)dk)_ F(xk)S _qu(k)o-(FD(xk’dk )) (18)

where O : [O,+OO) —)[0,+OO) is a continuous function
satisfying O, < O'(t) <d,t and 0< 9, <9, <1.
We suppose that

e < o d) < oldf (19)
hold for some ¢, and ¢, suchthat 0 <c, <c,.
Lemma 11. Under the assumption (19) the function @, () is

coercive.

Proof. K>0
(0<¢ <K <c,) such that F!(x,d)= max )dTVd =KHdH2-

Ved F(x

From the assumption there exists

Since VF s have that

VF(xk)Td SA”d” holds (see in [17]), therefore

locally Lipschitzian we

VF(xk)Td +%-0 < A”d” holds and hence we have that:

- 1
VF(Xk)Td +§FD(x,d)—EIQ‘dH2

Nl 2 Kid <VP(sY -+ Fylxd)< A+ Kld]
@,(d)
]

This establish coercivity of the function @, .m

< M‘dH . Hence, we have:

and — A+~ K[d| < 25D < n 4 Lgga.
2 2

Remark. Coercivity of the function @, assures that the

optimal solution of problem (17) exists (see in [18]). It also
means that, under the assumption (19) the direction sequence

{d k } is bounded sequence on R" (proof is analogous to the
proof in [18]).

Proposition 3. If the Moreau-Y oshida regularization F’ (-)of
the proper closed convex function f () satisfies the
condition (19), then:

(i) the function F' () is uniformly and, hence, strictly
convex;

(ii) the level set L(x, )= {x e R":F(x)< F(x, )} is a

compact convex set, and

(iii) there exists a unique point x  such that
F(x*): min F(x).
XEL(XO

Proof. (i) From the assumption (19) and the mean value
theorem it follows that for all x € L(xo) (x # X, ) there

exists 0 € (O,l) such that:

PPl =V ) (=343 Bl + ov— ) v-x,)

1
> VF(xO)T(x—x0)+Ecle—x0H2 > VF(xO)T(x—xO)
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that is, F' () is uniformly and consequently strictly convex
on L(xo).

(ii) From [16] it follows that the level set L(x,) is
bounded. The set L(xo) is closed and convex because the
function F () is continuous and convex. Therefore the set
L(xo) is a compact convex set.

(iii) The existence of x" follows from the continuity of the
function f (), and therefore and F (), on the bounded set
L(xo) . From definition of the level set it follows that:

F(x*): min F(x):minF(x)

xeL(x,) xeD
Since F' () is strictly convex it follows from [15] that

xisa unique minimizer.m
Lemma 12. The following statements are equivalent:
(i)d =0 is globally optimal solution of the problem (17)
(ii) 0 is the optimum of the objective function in (17)
(iii) the corresponding X, is such that 0 € Of (xk)
Proof. (i) = (ii:) is obvious
(it) = (iii): Let 0 be a global optimum value of (17), then
forany A >0 and deR":

0=d,(0)<®,(Ad)=AVF(x,) d +%F[','(xk,/1d)

=/1VF(xk)d+ PF)(x,.d)

where the last equality holds by Lemma 6. Hence dividing
both sides by A and letting A4 0 we have that
VF (xk )Td >0 holds for any d € R", and consequently
it follows that x, is a stationary point of the function F', i.e.
VF (xk ) =0. Hence, by Lemma 5 it follows that X, is a
minimum point of the function f .

(iij) => (i): Let X, be a point such that 0 € 8f(xk ) . Then
by (14), Lemma 5 and Lemma 9 it follows that

VF(x,)'d>0 (20)
forany d € R" . Suppose that d # 0 is the optimal solution
of the problem (17). From the property of the iterative
function @ it follows that:

1
VF(x, ) d, < —EFg(xk,dk) 1)
Hence, (21) implies:
VF(x, ) d, <0 . (22)
The above two inequalities (20) and (22) are

contradictory.m
Now we shall prove that there exists a finite i(k ), ie.

since dk is defined by (17), that the algorithm is

ISBN:978-988-18210-1-0

well-defined.

Proposition 4. . If d, # 0 is a solution of (17), then for any
continuous ~ function O : [0,+OO) —>[O,+OO) satisfying
o< O'(t)S O,t (where 0 <0, <3, <1) there exists a

finite i*(k)such that for all qi(k) € (O,qi*(k))
Pl +4"d,)- F5)< 2 g olF3(n.d,)

holds.
Proof . According to Lemma 9.3 from [8] and from the
definition of d, it follows that for x,,, =x, +td,,t>0

we have
) —Flx) <tVAx ) d += fHdH <+t F”(xk, )+ Al

| A 23)
S_tﬁo(ﬁg(xk’dk))_’_atz H%Hz

If we choose ¢ = W and put in (23), we get
Alld

6,1 (o)) Ky 4

F (xk+1 ) _F(xk )

2 A" 2
where =—K <0 . Taking q [Kt] ie.
2
i *(k ) = log q M we have that the claim of the theorem

q
holds for all qi(k) € (O,qi*(k)).l

Convergence theorem. Suppose that f is a proper closed

convex function and F’ is its Moreau-Y oshida regularization

satisfies (19). Then for any initial point X, € R", X, > X,

ask — 400, where Xx_ is a unique minimal point of the
function f .

Proof. . If dk # 0 is a solution of (17), it follows that
d k(d k)S 0=0 k(O) . Consequently, we have by the
condition (19) that

1, ]
VF(x, ) d, < —EFD(xk,dk)S —§c1||ark||2 <0

From the above inequality it follows that the vector d (isa

descent direction at X, , i.e. from the relations (18) and (19)

we get
. 1. ,
F(xk+l ) _F(xk) = F(xk + ql(k)dk)_ F(xk) < _E ql(k)a(Fb(xkadk ))

2

L L
< _5 q (k)é‘lFD”(xk NA ) < _5 q ®

for every d ; # 0. Hence the sequence {F (xk )} has the
descent property, consequently, the
{xk}cL(xo). Since L(xo) is by the Proposition 3 a

and, sequence

compact convex set, it follows that the sequence {xk} is
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bounded. Therefore there exist accumulation points of the
sequence {xk}.

Since VF is continuous, then, if VF (xk)—> 0,k >+
it follows that every accumulation point X of the sequence
{xk} satisfies VF (xao)zo Since F

Proposition 3) strictly convex, there exists a unique point
X, € L(xo) such that VF' (xoo) = 0. Hence, the sequence

is (by the

{xk} has a unique limit point X, and it is a global

minimizer of F' and by Lemma 5 it is a global minimizer of
the function f .

Therefore we have to prove that VF (xk) — 0,k — +00.

Let K, be a set of indices such that [im x, =

. Then
kekK, Yoo

there are two cases to consider:
a) The set of indices {l(k)} for k€ K, , is uniformly

bounded above by a number / . Because of the descent
property, it follows that all points of accumulation have the
same function value and

Fle)-Fls)= 3] ) -]
ILEMREY

kek;
<L SytofFy(x.d,)
2,(E,<1
<145 T Fyld) 2 a'a D[
kek, kekK,

Since F{x,)is finite, it follows that |} | 0.,k — o0,k € K|

By Lemma 12 it follows that d =0 is a globally optimal
point of the problem (17) and, that the corresponding

accumulation point X is a stationary point of the objective

function F, i.e. VF (xoo) =0. From Lemma 5 and Lemma 12
it follows that x,_
f.

b) There is a subset K, K, such that /im l(k) = +00. By

k—o

is a unique optimal point of the function

definition of I (k ) ,wehave for k € K , that

. 1
F(xk +ql(k)_1dk)_F(Xk)> _5 ql(k)_lU(Fg(xkadk )) 24).

Suppose that X is an arbitrary accumulation point of {xk } ,
but not a stationary point of F', i.e. f . Then, from Lemma
12 it follows that the corresponding direction vectord # 0.

Now, dividing both sides in the expression (24) by q’-(k)f1

and using llm 1q o)1 = =0,k e K,, we get

VAV d >— G(F"(

1 1
4 )Lkl )L Elx.d)
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But, from the property of the iterative function in (17), we
1
have VF(x, ) d, < —EFg(xw,d

w). Therefore, we get a

contradiction.m

Convergence rate theorem. Under the assumptions of the
previous theorem we have that the following estimate holds

for the sequence {xk} generated by the algorithm.

-1

F(x )—F(x ) yA 1+,uOLZZ]:—F(xk+1)

’ IvFGs )

for n=123,...

where 14 =F(x,)—F(x,) and diaml(x,)=n<+oc (since
by Proposition 3 it follows that L(xo ) is bounded).

Proof . The proof directly follows from the Theorem 9.2,
page 167, in [8].
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