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Abstract—On-line quality control during produc-
tion calls for monitoring produced items according
to some prescribed strategy. It is reasonable to as-
sume the existence of system internal non-observable
variables so that the carried out monitoring is only
partially reliable. In this note, under the setting of a
Hidden Markov Model (HMM) and assuming that the
evolution of the internal state changes are governed
by a two-state Markov chain, we derive false-alarm
and non-detection malfunctioning probabilities.
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1 Introduction

Limited by the cost function a sampling interval m is
selected and classical on-line quality control during pro-
duction adopts the procedure of monitoring the sequence
of items, independently produced, by examining a single
item at every m produced items. Based on the qual-
ity requirements and on the distribution of the examined
variable a control region C is pre-specified. If the exam-
ined item satisfies the control limits, the process is said
to be in control and the production continues; otherwise,
the process is declared out of control and the production
is stopped for adjustments. After adjustments the pro-
duction is resumed and it is in control again. At each
stoppage a new production cycle is defined (see, for ex-
ample, [4]). Suppose now the internal working status
of the system is non-observable and may change from a
good working condition (on control) to a deteriorating
status (out of control). In [3] it is proposed a model
where these changes are governed by a two-state Markov
chain {θn}n≥0. When θn = 0 the process is said to be
in control at time n; and, if θn = 1 the process is out of
control. In their proposal, an observable random variable
Xn, related to characteristics of interest, is examined at
every m produced items. It is assumed that Xn has a
Gaussian distribution, N (μ, σ2), with μ = μθn

. And val-
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ues of m as well as the parameter d of the control region
C = (μ0− dσ, μ0 + dσ) were determined by considering a
given cost function to be minimized.

Here, in the framework of a Hidden Markov Model
(HMM), we compute and propose estimation techniques
for the false-alarm and non-detection probabilities. False-
alarm occurs if the observed variable falls outside the con-
trol region but the non-observable internal system state
is 0, a good working state. When the opposite occurs
we have a non-detection situation. It is assumed that all
the working (good) states are lumped together as state 0
and the deteriorating states are gathered as state 1. The
Markov chain {θn}n≥0 describes the evolution of the state
of the production system. Associated with this chain
we observe a sequence of conditionally independent ran-
dom variables {Xn}n≥1, with the distribution of each Xn

depending on the corresponding state θn. This process
{θn, Xn} is generally referred to as a HMM. More specif-
ically, we have

P (Xn+1 ∈ A|X1, . . . , Xn, θ0, . . . , θn)

= P (Xn+1 ∈ A|θn) (1)

and

P (X1 ∈ A1, . . . , Xn ∈ An|θ1, . . . , θn)

=

n∏
j=1

P (Xj ∈ Aj|θj). (2)

In section 2, for given transition matrix of {θn} and con-
ditional densities of Xn given θn the false-alarm and the
non-detection probabilities are computed and, in section
3, using results from [1] estimates are presented.

2 False-alarm and Non-detection

For the HMM process {θn, Xn} assume that for some
0 < p < 1 the chain {θn} has transition probabilities
given by

P =

(
1− p p
0 1

)
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The conditional distribution of Xn given θn is known
and based on this distribution a control region C is pre-
selected. It is assumed that

P (Xn ∈ A|θn = i) =

∫
A

f(x|i)dx,

0 < q0 =

∫
Cc

f(x|0)dx < 1

and

0 < q1 =

∫
Cc

f(x|1)dx < 1. (3)

For the sampling interval m the on-line quality
monitoring adopts the following strategy : items
Xm, X2m, X3m, . . . are inspected and verified whether
Xm ∈ C, X2m ∈ C, . . .; maintenance is required at time
km if Xm ∈ C, . . . , X(k−1)m ∈ C and Xkm /∈ C. Thus we
can define the alert times by

τX = inf{km : k ≥ 1, Xkm /∈ C}.

False-alarm occurs at time k if τX = k but the non-
observable internal system state θk is 0, a good working
state. Let τθ be defined as the first time, after time 0,
the system reaches state 1,

τθ = inf{k : k ≥ 1, θk = 1}.

Then false-alarm and non-detection correspond, respec-
tively, to the events (τX < τθ) and (τX > τθ). Note that,
starting from a good working status, θ0 = 0, we have
from (2)

P (τX = m, τθ > m)

= P0(Xm /∈ C, θ1 = · · · = θm = 0)

= P (θ1 = · · · = θm = 0)P (Xm /∈ C|θm = 0)

= (1 − p)mq0

and

P (τX = km, τθ > km)

= P (Xm ∈ C, · · · , X(k−1)m ∈ C, Xkm /∈ C,

θ1 = · · · = θkm = 0)

= (1− p)km[

k−1∏
j=1

P (Xjm ∈ C|θjm = 0)].

P (Xkm /∈ C|θkm = 0)

= (1− p)km(1 − q0)
(k−1)mq0.

It follows that

P (τX < τθ) =
(1− p)mq0

1− (1− p)m(1− q0)
. (4)

Similarly, we have

P (τX = τθ = m) = (1− p)m−1pq1

and, in general,

P (τX = τθ = km) = (1− p)km−1(1 − q0)
k−1pq1

Adding up we have

P (τX = τθ) =
∑

k≥1(1− p)km−1(1 − q0)
k−1pq1

=
(1− p)m−1pq1

1− (1− p)m(1− q0)
.

This along with (4) gives

P (τX > τθ) =
1− (1 − p)m−1(1− p + pq1)

1− (1− p)m(1− q0)
. (5)

Proposition 1. If the chain {θn, Xn} has transition ma-
trix P and θ0 = 0 then the false-alarm probability is given
by (4) and the non-detection probability is given by (5).

Next, assume that some of the deteriorating states
lumped together as state 1 can recuperate and this al-
lows transitions from state 1 to 0 with a small probability
ε > 0. The corresponding transition matrix becomes

Pε =

(
1− p p
ε 1− ε

)

0 < p < 1 , ε > 0 and p + ε < 1. (6)

Proposition 2. If the chain {θn, Xn} has transition ma-
trix Pε then, pending on the initial state, we have

P (τX < τθ|θ0 = 0) =
(1− p)mq0

1− (1− p)m(1− q0)

and

P (τX < τθ|θ0 = 1) =
ε(1− p)m−1q0

1− (1− p)m(1− q0)
.

For m ≥ 2, the non-detection probabilities are

P (τX > τθ|θ0 = 0) =
1− (1− p)m−1(1− p + pq1

1− (1− p)m(1− q0)

and

P (τX > τθ|θ0 = 1) = 1−
ε(1− p)m−2[(1− p)q0 + pq1

1− (1− p)m(1− q0)
.

For further details and related results, see [1].
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3 Estimation Results

In this section we assume that the hidden Markov chain
{θn} has transition matrix Pε given by (6), but unknown.
As for the process {Xn}, we assume that the conditional
densities are known and satisfy condition (3).

Note that, since all entries of P are strictly positive, {θn}
is an ergodic chain and the stationary (limiting) distri-
bution exists, πP = π,

π(0) =
ε

p + ε
and π(1) =

p

p + ε
. (7)

Define the mixture density function

f(x) = π(0)f(x|0) + π(1)f(x|1). (8)

Then, in some sense, f(·) represents the density of {Xn}
when the process reaches some ”stable” regime. Though
we are assuming known conditional densities, the stable
regime density (8) may indicate which type of distribu-
tion one should assume for the variables Xn as well as
gives insight concerning the control region C to be se-
lected. Theorem 1 below gathers results [1] and [2] al-
lowing us to estimate f(x) as well as the equilibrium
probabilities (7). For a probability density K on R define

f̂n(x) =
1

nh

n∑
k=1

K(
Xkm − x

h
)

with

h = hn ↓ 0 , nhn →∞ as n→∞.

Typically one takes K(·) either a Gaussian density or an
uniform density centered at x.

Theorem 1. Assume that the process {θn, Xn} satisfies
(3) and (6). Then for any initial distribution of θ0 and
for any given δ > 0, there exist constants c1 = c1(δ) > 0
and c2 = c2(δ) > 0 such that

P (

∫
|f̂n(y) − f(y)|dy ≥ δ) ≤ c1 exp{−c2n}.

And, with probability 1

π̂n(0) → π(0) and π̂n(1)→ π(1) as n →∞.

Where for some x∗ chosen so that f(x∗|0) �= f(x∗|1) we
define

π̂n(0) =

∣∣∣∣∣
f̂n(x∗) − f(x∗|1)

f(x∗|0)− f(x∗|1)

∣∣∣∣∣

and
π̂n(1) = 1− π̂n(0). (9)

Observe that, in long-run, the false-alarm can be com-
puted as

P (θkm = 0|Xkm /∈ C)

=
P (Xkm /∈ C|θkm = 0)P (θkm = 0)

P (Xkm /∈ C)
.

But P (Xkm /∈ C|θkm = 0) = q0 and by Theorem 1

lim
n→∞

P (θkm = 0) = π(0)

and

lim
n→∞

P (Xkm /∈ C) =

∫
Cc

f(x)dx

with f(·) given by (8). Since both π(0) and f(·) can be
estimated by Theorem 1, we can obtain an estimate for
the false-alarm probability. Similarly, we have for non-
detection

P (θkm = 1|Xkm ∈ C)

=
P (Xkm ∈ C|θkm = 1)P (θkm = 1)

P (Xkm ∈ C)
.

These results can be summarized by:

Corollary 1. Assume that the process {θn, Xn} satisfies
(3) and (6). Then, regardless whether θ0 is 0 or 1, we
have

q0π̂n(0)∫
Cc

f̂n(x)dx
→ P (false-alarm)

and
(1− q1)π̂n(1)∫

C
f̂n(x)dx

→ P (non-detection).
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