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False-alarm and Non-detection Probabilities for
On-line Quality Control via HMM
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Abstract—On-line quality control during produc-
tion calls for monitoring produced items according
to some prescribed strategy. It is reasonable to as-
sume the existence of system internal non-observable
variables so that the carried out monitoring is only
partially reliable. In this note, under the setting of a
Hidden Markov Model (HMM) and assuming that the
evolution of the internal state changes are governed
by a two-state Markov chain, we derive false-alarm
and non-detection malfunctioning probabilities.
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1 Introduction

Limited by the cost function a sampling interval m is
selected and classical on-line quality control during pro-
duction adopts the procedure of monitoring the sequence
of items, independently produced, by examining a single
item at every m produced items. Based on the qual-
ity requirements and on the distribution of the examined
variable a control region C is pre-specified. If the exam-
ined item satisfies the control limits, the process is said
to be in control and the production continues; otherwise,
the process is declared out of control and the production
is stopped for adjustments. After adjustments the pro-
duction is resumed and it is in control again. At each
stoppage a new production cycle is defined (see, for ex-
ample, [4]). Suppose now the internal working status
of the system is non-observable and may change from a
good working condition (on control) to a deteriorating
status (out of control). In [3] it is proposed a model
where these changes are governed by a two-state Markov
chain {0, },>0. When 6,, = 0 the process is said to be
in control at time n; and, if #,, = 1 the process is out of
control. In their proposal, an observable random variable
X, related to characteristics of interest, is examined at
every m produced items. It is assumed that X,, has a
Gaussian distribution, NV'(p, 02), with p = pg, . And val-
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ues of m as well as the parameter d of the control region
C = (up — do, o + do) were determined by considering a
given cost function to be minimized.

Here, in the framework of a Hidden Markov Model
(HMM), we compute and propose estimation techniques
for the false-alarm and non-detection probabilities. False-
alarm occurs if the observed variable falls outside the con-
trol region but the non-observable internal system state
is 0, a good working state. When the opposite occurs
we have a non-detection situation. It is assumed that all
the working (good) states are lumped together as state 0
and the deteriorating states are gathered as state 1. The
Markov chain {6, },,>0 describes the evolution of the state
of the production system. Associated with this chain
we observe a sequence of conditionally independent ran-
dom variables { X, },>1, with the distribution of each X,
depending on the corresponding state #,. This process
{0, X,,} is generally referred to as a HMM. More specif-
ically, we have

P(Xn41 € AlXq,..., Xn, 00, -+, 0n)
= P(Xu41 € Al6) 1)
and
P(X1 € AL, Xn € AplOr,...,00)
=TI P(x; € 4516)). (2)
Jj=1

In section 2, for given transition matrix of {6, } and con-
ditional densities of X,, given 6,, the false-alarm and the
non-detection probabilities are computed and, in section
3, using results from [1] estimates are presented.

2 False-alarm and Non-detection

For the HMM process {6,, X} assume that for some
0 < p < 1 the chain {6,} has transition probabilities

given by
_(l-p P
P=(o " 1)
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The conditional distribution of X, given 6, is known
and based on this distribution a control region C' is pre-
selected. It is assumed that

P(X, € Alf, =1i) = /A f(a|i)da,

0<qo= f(x]0)dx < 1
CC
and

0<q= flz|l)dz < 1. (3)
CC

For the sampling interval m the on-line quality
monitoring adopts the following strategy items
X, Xom, X3m, ... are inspected and verified whether
Xm € C, Xop, € C,...; maintenance is required at time
kmif X, € C,..., X(o—1ym € C and Xpp, ¢ C. Thus we
can define the alert times by

7x = inf{km: k> 1, Xp,,, ¢ C}.

False-alarm occurs at time k if 7x = k but the non-
observable internal system state ) is 0, a good working
state. Let 79 be defined as the first time, after time 0,
the system reaches state 1,

7o =inf{k: k >1,0, =1}.

Then false-alarm and non-detection correspond, respec-

tively, to the events (7x < 79) and (7x > 79). Note that,

starting from a good working status, 8y = 0, we have

from (2)
P(rx m,Tg > m)

PO(X'm ¢ Cael - "':e'm :O)

Plr1=---=0,=0))P( X ¢ C|0,n=0)

(1-p)"q

and
P(rx km, 19 > km)
P(XmeC,-, Xk—1ym € C, Xpm ¢ C,
O == Opm = 0)
k—1
1= p)*[[] P(Xjm € Cl0jm = 0)].

j=1
P(ka ¢ O|9km = 0)
(1 _ p)km(l _ qo)(k—l)mqo.

It follows that

(1-p)"q0

Plrx <19) = =1 =p)m(1—g0)
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Similarly, we have

P(rx =9 =m)=(1—p)" 'pn

and, in general,
P(rx =79 =km) = (1—p)"" ' (1 —q0)* 'pn

Adding up we have

P(rx = 19) —q0)*pqy

11— p)Fmi(1

(1—p)™ 'pq
1—(1-=p)™(1—qo)

This along with (4) gives

1-(1-=p)™'(1-p+pq)

R e R ey

(5)

Proposition 1. If the chain {6,, X,,} has transition ma-
trix P and 6y = 0 then the false-alarm probability is given
by (4) and the non-detection probability is given by (5).

Next, assume that some of the deteriorating states
lumped together as state 1 can recuperate and this al-
lows transitions from state 1 to 0 with a small probability
€ > 0. The corresponding transition matrix becomes

_(1-pp
PE_<€ l—e)

O<p<l,e>0andp+e<l.

(6)

Proposition 2. If the chain {6,, X,,} has transition ma-
trix P. then, pending on the initial state, we have

(1-p)"q0

Plrx <7l = 0) = 7= = imi — o)

and

e(1—p)™ g0

Plrx <19l =1) = = (—p)"(l—qo)

For m > 2, the non-detection probabilities are

1-(1-p)™ '(1—p+pn
1—(1-p)™(1—qo)

P(Tx>Tg|90:0):

and

e =p)"*[(L = p)go +par_

e T (R T

For further details and related results, see [1].
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3 Estimation Results

In this section we assume that the hidden Markov chain
{0, } has transition matrix P. given by (6), but unknown.
As for the process {X,,}, we assume that the conditional
densities are known and satisfy condition (3).

Note that, since all entries of P are strictly positive, {6,,}
is an ergodic chain and the stationary (limiting) distri-
bution exists, 7P =,

W(O):p; and ”(1):pie' (7)
Define the mixture density function
f(@) =m(0)f(2]0) + m(1) f(z|1). (8)

Then, in some sense, f(-) represents the density of {X,,}
when the process reaches some ”stable” regime. Though
we are assuming known conditional densities, the stable
regime density (8) may indicate which type of distribu-
tion one should assume for the variables X,, as well as
gives insight concerning the control region C' to be se-
lected. Theorem 1 below gathers results [1] and [2] al-
lowing us to estimate f(x) as well as the equilibrium
probabilities (7). For a probability density K on R define

hZ

fn(x ka -

with
h=h, |0, nh, - oco0asn— oco.

Typically one takes K(-) either a Gaussian density or an
uniform density centered at x.

Theorem 1. Assume that the process {6,, X, } satisfies
(3) and (6). Then for any initial distribution of 6y and
for any given ¢ > 0, there exist constants ¢; = ¢1(§) >0
and cg = c2(6) > 0 such that

P([ 1£a(0) -

And, with probability 1

y)|dy > §) < ¢1 exp{—can}.

7n(0) — w(0) and 7,(1) — 7(1) as n — co.

Where for some x, chosen so that f(z.]|0) # f(z.|1) we
define R
fn(@s) — f24]1)

Tl = 510y~ Flaa L)
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and
(1) =1 — 7,(0). (9)

Observe that, in long-run, the false-alarm can be com-
puted as

P(bxm = 0|Xgm ¢ C)

P(Xgm ¢ ClO0km = 0)P(0km = 0)
P(Xgm ¢ C)

But P(Xkm ¢ C|0km = 0) = qo and by Theorem 1
lim P(bkm = 0) = w(0)

and

lim P(Xpm ¢ C) = f(z)dx

n— oo Ce
with f(-) given by (8). Since both 7(0) and f(-) can be
estimated by Theorem 1, we can obtain an estimate for
the false-alarm probability. Similarly, we have for non-
detection

POrm = 1|Xpm€C)

P(ka S C’\Okm = 1)P(9km - 1)
P(Xpm € C) ’

These results can be summarized by:

Corollary 1. Assume that the process {6,,, X,,} satisfies

(3) and (6). Then, regardless whether 6y is 0 or 1, we
have A

Ln(o) — P(false-alarm)

Joe fn(x)da
and

(1= ()
fc fa(z)dx

— P(non-detection).
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