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Numerical Simulation of an Induction-Conduction
Model Arising in Steel Hardening
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Abstract—We study a mathematical model for the
description of the heating-cooling industrial process
of a steel workpiece. The complete thermomechani-
cal model is governed by a nonlinear coupled partial
differential system of equations involving the electric
potential, the magnetic vector potential, the temper-
ature, the stress tensor and the displacement field to-
gether with a system of ordinary differential equa-
tions for the steel phase fractions. In this situation,
the electric conductivity on the workpiece depends
strongly on the temperature b = b(z,0), ¢ being the
temperature. Usually one has b(z,s) — 0 when s — o0
uniformly on the workpiece, leading to degenerate
parabolic/elliptic equations. Our analysis considers
the case 0 < C /(1 + |s]) < b(z, s) < C2, C1 and C2 being
constant values. Also we have performed some 2D
numerical simulations of the heating-cooling process
in a simplified version of the model.

Keywords: Steel hardening, phase fractions, nonlinear
parabolic-elliptic equations, Sobolev spaces, finite ele-
ments method.

1 Introduction

The mathematical analysis and numerical simulations of
hypoeutectoid steel hardening including phase transitions
has been extensively studied during the last years ([1,3-
5]). Consider the following system of PDE/ODE:

V- (b(0)Vy) = 0 in Qr =Q x (0,T), (1)
V-A=0inDr=Dx(0,T), @)

bo(0)As + V X (i-VxA) +5o(0)Ve=0in Dz, (3)

A(U) = AD in Q) (4)
—-V-a:fin!%-zﬂsx({],T), (5)
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i K(E(u) . Gq(z)f—[:'y(ﬂ.z,zt)Sd':) . (6)

z = F(0,z,0) in QF, (7)
z(0) = zp in 0, (8)
a(f,z,0)0:— V- (k(0)V0O) + 3kq(2)0V - uy
= bo(60)|A¢ + Vipl?
+(pL + tr 007 + 9x6%q(2)q) 2
+7(0, 2, 2)|S|? in O, (9)
0(0) = 0Op in O°. (10)

where 2, D ¢ R¥, N = 2 or 3, are bounded, connected
and Lipschitz-continuous open sets such that Q c D,
Q=0°UN*US is the set of conductors, O the induc-
tor (usually made of copper), (2° the steel workpiece, 02°
and ©° being open sets, and § = Q°N Q° is the sur-
face contact between Q¢ and QF, Q° N Q° = & (see Fig-
ure 2 below); T stands for the final time of observation;
¢ the electrical potential; A the magnetic vector poten-
tial; o the stress tensor; e(u) = 1(Vu + VuT) the strain
rate tensor; f a given external force; u the displacement
field; @ the temperature; z = (21, 22), z1 and 2z are the
phase fractions ([1,2,6]) of austenite and martensite, re-
spectively, whereas ¢(z) = q121 + 222 + qo(1 — z1 — 22),
and ¢; represents the expansion coefficient of austenite
(i = 1), martensite (i = 2) and of the original mix-
ture of phase fractions (i = 0); F = (F, F3) gives the
phase fractions model; k(@) is the thermal conductiv-
ity; b(@) the electrical conductivity (by b(¢) we mean the
function (z,t) — b(z,6(x,t)), and also for k(8), etc.);
bo(z,8) = b(z,s) if z € Q, bo(z,s) = 0 elsewhere;
u = p(z) is the magnetic permeability; p the density;
k = 1(3)\ + 271) the bulk modulus of elasticity, A and
ji being the Lamé coefficients; L = (L, Lg) is the latent
heat; § = V.q; S = o — } tro¥, that is, the trace free part
of the stress tensor o; the term f; v(0, z, z,)S dT models
the transformation induced plasticity. Finally, « is of the
form
a(8,0,2) = pee — trog(z) — 9kq(2)%6,

where the constant ¢, is the specific heat capacity at
constant strain. System (1-10) is supplied with suitable
boundary conditions.

The thermomechanical model (1)-(10) describes the heat-
ing process of a steel workpiece by induction and conduc-
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Figure 1: Car steering rack.

tion. Once the desired high temperature is reached at
certain critical parts along the workpiece, the supplied
electric current is switched off and the workpiece is then
quenched in order to cool it down rapidly. The goal is
to produce martensite (hard and brittle steel phase tran-
sition) in these critical parts, keeping the rest ductile.
Usually, these parts correspond to particular structural
components whose surface is going to be highly stressed
during its mechanical lifetime. This is the case of the car
steering rack (see Figure 1).

The mathematical analysis of a system like (1)-(10) has
been done in [6]. In that work it is assumed that the
electric conductivity b(s) is bounded above and below far
from zero; it also assumes the Coulomb gauge condition
for the magnetic vector potential, namely, V- A = 0.
In our analysis, we have dropped out this condition since
this makes appear an undesired pressure gradient in equa-
tion (3); this leads us to include a penalty term in this
equation of the form —dV(V - A), d > 0 being a small
parameter.

2 A simplified model

The heating-cooling process produces a small amount of
thermoelastic deformation on the workpiece inherent to
the austenite-martensite transformation. In our analysis
we consider a simplified model by neglecting mechanical
effects.

We split the time interval [0,7] into two intervals:
[0,T] = [0,Th) U [Th, Te], Th,Te > 0. The first inter-
val [0,T}) corresponds to the heating process. All along
this time interval, a high frequency alternating current is
supplied through the conductor which in its turn induces
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a magnetic field. The combined effect of both conduction
and induction gives rise to a production term in the en-
ergy balance equation (9), namely b(#)|A; + Vi|?. This
is Joule’s heating. At the instant ¢ = Ty, the current
is switched off and during the time interval [T}, T¢] the
workpiece is cooled down by means of aqua-quenching.

Heating model

The current passing through the set of conductors 2 =
QU is modeled with the aid of an auxiliary smooth sur-
face T’ C Q° cutting the inductor Q€ into two parts, each
one of them having a surface contact over the boundary
of the workpiece £° (see Figure 2).

V- (b(6)Vy) = 0 in 2 x (0, Th), (11)

b(e)%:!; =00n 89 x (0,Th), (12)

[b(e)gni} = jonT x (0,T3), (13)

bo(6)Ar + V x (iv x A) — 3V(V - A)

+bo(@)Ve =0in D x (0,Ty), (14)

A =0o0ndD x (0,Ty), (15)

A(0) = Ao in ©, (16)

2 = F(,z) in O x (0,Th), an

z(0) = 2z in O, (18)
pedi— ¥ - (k(0)V0) = bo(0)|A; + V]2

+pLz; in Q2 x (0, Th), (19)

-g—fi = 00n 02 x (0,T), (20)

6(0) = 0o in 9. (21)

In (13) [-] stands for the jump across the inner surface I'.
The function j represents the external source current den-
sity. The domain D containing the set of conductors is
taken big enough so that the magnetic vector potential
A vanishes on its boundary 0D.

Cooling model

Once the heating process ends, aqua-quenching begins.
This situation is modeled via the Robin boundary condi-
tion given in (25).

We put zr, = z(Ty), that is, zp, is the phase frac-
tion distribution at the final heating instant 7}, obtained
from (17). In the same way, we define 0g, = 6(T},). Ob-
viously, these functions will be taken as the initial phase
fraction distribution and temperature, respectively, in the
cooling model.
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Z = F(Q,z} in 2% x (Th)TC]!
2(Th) = 27, in O,

(22)
(23)

pely— V - (k(0)V8) = pLzq in Q x (Th, Te),(24)
(25)
(26)

-.fe(.fa)g'ni = B(6 — 6c) on 8Q x (T, Te),
8(Ty) = Or, in Q.

In (25), the constant value @, stands for the temperature
of the spray water quenching the workpiece during the
cooling time interval [Ty, T.]. Also, the function G is a
heat transfer coefficient and is given by

0 on 90 N oNE,

Blayt) :{ Bo(t) on OR NN,

where fg(t) > 0 (usually taken to be constant).

3 An existence result

We consider the system (11)-(21) describing the heating
process by conduction-induction. Besides the assump-
tions on data already mentioned along the Introduction,
we will considered the following hypotheses.

(H.1) 99° is piecewise C.
(H.2) On the electric conductivity.

b%(s)
b*(s)

ifzeQ° seR,
ifre, sek.

b(z,s) = {

where b°,b° € C(R) and there exist positive constant
values by, bs, Cy and C5 such that

0< by <b°(s) <bg, forall seR,
0< 2! <b¥(s) < Cy forallseR.
1+ |s] = .

(H.3) j € L*=(0,T; H-Y*(I')) and
(4(t),1)r = 0, almost everywhere t € (0,T).

Here, (-,-)r stands for the duality pair between
H-1/2(T') and HY2().

(H.4) Ao € H'(Q).

(H.5) F € L*(R?)NNC(R?) and there exists a constant
L such that

|F(s1,82) — F(s1,83)| < Lr|s2 — s3l,
for all 5,582,583 € R.

(H.8) zo = (201,202) € L>°(9°)? and

0 < zo1, 202, 201 + 202 < 1.
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(H.7) k € C(R) and there exist two positive constant
values k; and ko such that

0<k <k(s)<ks, forallseR.
(H.8) u € L*®(D) and there exists a constant value .
such that 0 < g, < pin D.

(H.9) 6 € L(R), 6o > 0.

(H.10) p and c, are strictly positive constant values.
Le L™®(L>®(Q®*)?) and L=0ifz € D\ Q.

Remark We could assume more general hypotheses, for
instance p, ¢, and L may depend on the temperature .
Anyway the main difficulty is still found in the nonuni-
formly elliptic character of the function b® leading to a
very complex analysis from a mathematical standpoint.

Remark In the situation described here, we are just
considering the evolution of two phase fractions which
correspond to austenite and martensite. Of course, we
may consider a more general setting which includes other
phase fractions like bainite, pearlite and ferrite or a mix-
ing of them all (see [4]).

Variational formulation

As it has been pointed out, the main difficulty in the
mathematical analysis of the system (11)-(21) is found in
the nonuniformly elliptic character of the diffusion coef-
ficient bp. In particular, the gradient of ¢ may not lie
in the Sobolev space H(2) with respect to spatial vari-
able. The same comment may be said about the time
derivative of A appearing in the equation (14).

The variational formulation corresponding to the sys-
tem (11)-(21) is as follows:

To find ¢,0 : 2 x (0,T) — R, A: D x (0,T,) — RN and

2 : % x (0, T,) — R? measurables, such that

(€ L}((0,Th) x Q), b(6)*/2p € L=(L*()),

b(0)'/2|Vp| € L*(L*(R)), and

4 f b(6)VeVudz + (§,v)r =0, (27)
Q

for all v € H*(2) and

L almost everywhere t € (0,T});

(A e L=(Hj(D)N),
b(6)/2A, € LA(L3()V), and

/ b(0) Arv dz +[ lUx AV x vds
Q D K (28)

+e | V-AV-vdz+ [ b(@)Vypvdz =0,
D Q
for all v € H}(D)N and
\ almost everywhere t € (0, Th);
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Figure 2: Domains D, 2 = 25U Q°U S and the interface
I' € Q¢ The inductor ¢ is made of copper. The work-
piece contains a toothed part to be hardened by means of
the heating-cooling process described above. It is made
of a hypoeutectoid steel.

(0 € LY(W19(R2)), for all g € [1, %’—f) and
Th Th
B f f pecbCy da dt + f / K(0)VOVC de dt
1] {2 0 i1
Th
4 =fﬂ L(bg(&)|A;+Vw|2+pLz;)Cdxdt

- [ rectu(a)cco.2)da,
for all ¢ € D([0,Th] x Q) such that

| «T)=0inQ
(29)
z € WH®(L*(0#)?), and
ze = F(6,2) in [0, T3] x QF, (30)

z(0) = zp in ©°.

The following existence result for the variational formu-
lation (27)-(30) holds (see [5]).

THEOREM 1 There exists a solution to the system (11)-
(21) in the sense of the variational formulation (27)-(30).

Moreover, there exists v > 1 such that ¢ € L"(W'7(9)),
A € L7((0,Th) x Q)N and 1/b(8) € L7((0,Th) x Q).

4 Numerical simulation

We have carried out some numerical simulations for the
approximation of the solution to the problem (27)-(30).
We want to describe the hardening treatment of a car
steering rack during the heating-cooling process. The
goal is to produce martensite along the tooth line to-
gether with a thin layer in its neighborhood inside the
steel workpiece.

Figure 2 shows the open sets D, 2 = QU Q°U S and
the inferface I' which intervene in the setting of the prob-
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Figure 3: Domain triangulation. The triangulation of D
contains 72088 triangles and 36095 vertices.

lem. The inductor 92¢ is made of copper. The workpiece
contains a toothed part to be hardened by means of the
heating-cooling process described above. It is made of
a hypoeutectoid steel. The open set D \ Q is air. The
magnetic permeability u in (28) is then given by

Mo ifreD \ Q,
p(x) =4 0.99995u0 if z € Q°,
2.24 x 10%u, if z € 05,

where pg = 47 x 10~7 (N/A?) is the magnetic constant
(vacuum permeability).

The martensite phase can only derive from the austen-
ite phase. Thus we need to transform first the critical
part to be hardened (the tooth line) into austenite. For
our hypoeutectoid steel, austenite only exists in a tem-
perature rank close to the interval [1050,1670] (in °K
degrees). During the first stage, the workpiece is heated
up by conduction and induction (Joule’s heating) which
renders the tooth line to the desired temperature. In or-
der to transform the austenite into martensite, we must
cool it down at a very high rate. This second stage is
accomplished by spraying water over the workpiece (this
is called aquaquenching).

In this simulation, the final time of the heating process
is T}, = 5.5 seconds and the cooling process extends also
for 5.5 seconds, that is T, = 11.

We have used the finite elements method for the space
approximation and a Crank-Nicolson scheme for the time
discretization. Figures 3 and 4 show the triangulation
of D in our numerical simulations. We have used P2-
Lagrange approximation for ¢, A and € and P1 for 2.

In Figure 5 we can see the evolution of the temperature
distribution of the rack along the tooth line. The ini-
tial temperature is 6y = 300 °K. At ¢t = 5.5 the heating
process ends and the computed temperature shows that
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NAY

Figure 4: Domain triangulation: zoom around three
teeth.

the temperature along the rack tooth line lies in the in-
terval [1050,1670].

Figure 7 shows the austenization along the tooth line
at time instants ¢ = 0.8, 2, 4 and 5.5 seconds, and the
austenite transformation attained at the final heating in-
stant ¢ = 5.5 along the rack tooth line.

Figure 5: Heating process: Temperature at time instants
t=0, 1, 3, 5, and 5.5 seconds.

Figure 8 shows the formation of martensite from austenite
along the rack tooth line during the cooling stage at time
instants ¢t = 6.02545, 7.08227, 8.55636 and 11 seconds,
and the martensite transformation attained at the final
cooling instant ¢ = 11 along the rack tooth line. We have
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Figure 6: Cooling process: Temperature at time instants
t = 5.57, 5.97, 6.23, 7.08, and 11 seconds.

good agreement versus the experimental results obtained
in the industrial process.
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Figure 7: Heating process. Austenite evolution at time Figure 8: Cooling process. Martensite transformation
instants t = 0.8, 2, 4, and 5.5 seconds. The last figure at time instants ¢ = 6.50, 7.08, 8.56, and 11 seconds,

shows the attained austenite at ¢ = 5.5 along the rack and martensite at the final instant of the aquaquenching
tooth line. stage, t = 11, along the rack tooth line.
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