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Abstract— Condition based maintenance (CBM) is
a powerful tool for improvement of system reliabil-
ity and reduction of system downtime. This research
considers CBM under which the system state is peri-
odically observed with or without observational error,
and maintenance is imperfect. System availability is
maximized by determining the optimal maintenance
threshold and the time interval between consecutive
inspections of the state of the system. The optimal
solution can be obtained numerically using a sequen-
tial uniform design algorithm.
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1 Introduction

This paper deals with condition based maintenance
(CBM) of systems that experience soft failures that oc-
cur in a continuously degrading system when degradation
reaches a failure threshold.

In CBM, the system is monitored from time to time. If
the state of the system is detected to have deteriorated
to a certain pre-determined level, maintenance is carried
out. Since maintenance is carried out only when alarms
occur, CBM is more effective than preventive mainte-
nance (PM) under which maintenance is carried out at
fixed time intervals irrespective of the condition of the
system.

Most results in the literature on maintenance of degrad-
ing systems consider the case when the system is contin-
uously monitored. Grall et al. [4] present a PM struc-
ture for a gradually degrading single-unit system, Liao et

al. [7] consider a CBM model for continuously degrad-
ing systems under continuous monitoring, Marseguerra et
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al. [8] study a continuously monitored multi-component
system and use generic algorithm to determine the op-
timal degradation level. In some cases, due to various
constraints, it is impractical to monitor the system con-
tinuously. In such cases, the system may be monitored
by inspecting the system at regular time intervals. For
such a system, Sarker and Sarker [9] obtain recursive ex-
pressions for availability of two types of models under
perfect repair. Biswas et al. [1] derive the expressions
of availability of the system which is maintained through
a fixed number of imperfect repairs before replacement
or perfect repair, without considering CBM. Jamali et

al. [6] considers joint optimal periodic and conditional
maintenance policy, while their study involve only per-
fect maintenance.

Furthermore, in most research it is assumed that obser-
vations of the state of system are error-free, that is, the
observations indicate the true state of the system without
any error. In practice, however, not all observations are
error-free. Common types of error includes systematic er-
ror [10, 11] which can be eliminated by precise calibration
of the sensors, and random measurement error which can
be regarded as Gaussian white noise [2, 5] and treated
statistically.

In this paper, we consider a continuously degrading sys-
tem which is being monitored at regular time intervals,
and propose a CBM policy assuming maintenance is im-
perfect. It is assumed that the system deteriorates ac-
cording to a Gamma process, and the system fails when
its state of deterioration reaches a failure threshold. An
optimal threshold to carry out maintenance and an op-
timal time interval for monitoring the system are deter-
mined to maximize the Achieved Availability (AA) of the
system [7]. To maximize the AA, various heuristic meth-
ods can be employed.

2 Description of the system

Consider a system which experiences continuous degrada-
tion during operation. Let the state of the system at time
t be represented by a continuous nondecreasing function
X(t), where X(0) = 0. As t increases, X(t) increases as
the system deteriorates. Suppose that there is a failure
threshold DF such that when X(t) reaches DF , failure of
the system will occur immediately.
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Degrading of the system can be modeled as a gamma
process, such that for any s, t > 0, the increment X(s+
t) −X(s) is a random variable depending on t only and
having a gamma distribution with mean αβt, variance
αβ2t and probability density function

Ga(x|α, β, t) =
exp(− x

β
)xαt−1

Γ(αt)βαt ,

where Γ(z) =
∫∞
0 uz−1e−u du is the gamma function and

α, β > 0 are constants. Similar models of a continuously
degrading system can also be found in [4].

Suppose that after the system has started to operate at
time t = 0, the system is inspected periodically, under
which the state X(t) of the system is observed at dis-
crete times and the time separation between two succes-
sive observations of X(t) is τ > 0, where τ is a constant.
Under CBM, preventive maintenance for the system will
be carried out whenever the observation of X(t) is above
DL, where DL < DF is a pre-determined positive mainte-
nance threshold. Assume that the time taken to observe
X(t) and the waiting time for the maintenance service are
small and negligible. After completion of maintenance,
the system resumes operation.

Each time after X(t) is observed, it is possible that X(t)
increases to DF and the system fails before X(t) is ob-
served next time. When the system fails, it is replaced
immediately. Suppose that the time required to replace
the system is ξ > 0, and after replacement the system
is as-good-as-new. A cycle starts when the system starts
to operate, and ends when replacement of the system is
completed.

As shown in Figure 1, R+
0 denotes the starting time of a

cycle, Ri (1 ≤ i ≤ n ≤ N) denotes the starting time of
the ith maintenance action, R+

i (1 ≤ i ≤ N) denotes the
completion time of the ith maintenance action, RN+1,
Rn+1 and R1 denote the starting time of replacement of
the system, T1 denotes the operating time (uptime) of
the system before the 1st maintenance action, Ti (2 ≤
i ≤ n ≤ N) denotes the operating time (uptime) of the
system between the (i − 1)th and the ith maintenance
actions, Mi (1 ≤ i ≤ n ≤ N) denotes the time required
to perform the ith maintenance action (downtime).

Figure 1 shows two possible cases, Case A and Case B, for
the system to complete a cycle. In Case A, the system
has been maintained for N times; between the ith and
(i+1)th maintenance actions (i = 0, 1, ..., N−1),X(t) has
been observed for ki times, where the first ki− 1 of these
observations give X(t) < DL, but the last observation
gives DL ≤ X(t) < DF so that the system is maintained
at t = Ri (i = 1, ...N); after the Nth maintenance action
is completed at t = R+

N , X(t) has been observed for kN

times, where the first kN − 1 of these observations give
X(t) < DL, but the last observation gives DL ≤ X(t) <

DF so that the system is replaced at t = RN+1. In Case

Figure 1: State Transition with Maintenance and Re-
placement

B, X(t) has been maintained for n times, where 0 ≤
n ≤ N ; after the nth maintenance action is completed at
t = R+

n , X(t) has been observed for kn times, where all
these observations give X(t) < DL; after X(t) has been
observed for the last time, X(t) increases to DF within
the next time period τ (which causes system failure) so
that the system is replaced at the end of this time period.
In Case B, as shown in Figure 1, the downtime of the
system after failure until the start of replacement is T W

n .
Figure 1 shows the following three situations where either
maintenance or replacement is to be carried out.

1) If DL ≤ X(Rn) < DF and 1 ≤ n ≤ N , carry out
maintenance at Rn.

2) If DL ≤ X(RN+1) < DF , replace the system at RN+1.

3) If X(t) = DF at some time t′′ ∈ (R+
n , Rn+1] so that

the system fails at t = t′′, replace the system at t = Rn+1

(0 ≤ n ≤ N).

2.1 Maintenance result and maintenance
time

Suppose that the ith maintenance action restores the sys-
tem to state g(i) (i = 1, 2, ...), and that g(0) = 0 = X(0).
Hence X(R+

i ) = g(i). Assuming that maintenance is
imperfect, so that g(i) is an increasing function of i.
Perfect maintenance corresponds to g(i) = X(0) (for all
i = 0, 1, 2, ...). A possible form of g(i) is

g(i) = c+ di, i = 1, · · · , N, (1)

where c and d are constants (which may be known or
estimated from historical data).

Assuming that a more severely degraded system needs
longer time to maintain than one which is not so severely
degraded, we let the expected value E(Mi) of the main-
tenance time Mi be an increasing function of i, X(R+

i−1)
and DL. A model for E(Mi) may be the following

E(Mi) = γ0DL exp(iγ1X(R+
i−1)), (2)
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where γ0 > 0 and γ1 ≥ 0 are constants, which are in-
dependent of DL and can be estimated from historical
data. It follows from (2) that E(Mi) > E(Mj) for any
i > j ≥ 1 (since X(R+

i−1) > X(R+
j−1)), and that E(Mi)

reduces to the constant γ0DL if γ1 = 0.

2.2 Formulation of the optimization prob-
lem

An objective of optimal design for maintenance policy
is to maximize the system availability. We consider the
system’s achieved availability [7] defined by

AA =
E[total uptime in a cycle]

E[total time length in a cycle]
. (3)

The value of AA depends on the threshold DL and the
time interval τ between two consecutive times when Xt

is measured. Therefore, the optimal maintenance policy
can be formulated as:

Max AA(DL, τ)
Subject to 0 < DL ≤ DF , τ > 0.

(4)

The optimal values of DL and τ that correspond to the
global maximum of AA can be obtained numerically.

3 Analytic results

A cycle may be completed under Case A or Case B de-
scribed in Section 2. As shown in Figure 1, in a cycle
with n maintenance actions, the expected uptime is

E[uptime|n maintenance actions in a cycle]
= E(T1 + · · ·+ Tn + Tn+1) (0 ≤ n ≤ N).

(5)

The maintenance time in a cycle isM1+· · ·+Mn (n ≤ N).
For Case A, the change of X(t) after time t = R+

N is
depicted by the curve marked “Q2” or “Q3” in Figure
2 (with n replaced by N), and the expected downtime
in a cycle is E(M1 + · · · + MN) + ξ which can be seen
from Figure 1. For Case B, the change of X(t) after time
t = R+

N is depicted by the curve marked “Q1” in Figure
2, the waiting time for replacement is T w

n > 0, and the
expected downtime in a cycle is

E[downtime|n maintenance actions in a cycle]
= E(M1 + · · ·+Mn) + E(T w

n ) + ξ,

(6)
which can be seen from Figure 1. The expression in (6)
also covers Case A, noting that E(T w

n ) = 0 in Case A.

3.1 Expected uptime

Suppose that after the start of the system, n (≤ N) main-
tenance actions have been performed before the system is
replaced. Between the ith and the (i+1)th (1 ≤ i+1 ≤ n)
maintenance actions, X(t) is observed for ki times. The
uptime Ti+1 between the ith and the (i + 1)th mainte-
nance actions can be divided into two parts, the part

Figure 2: State after the nth maintenance actions

just before X(t) is observed for the last kith time, and
the part after. The first part obviously equals kiτ , and
we denote the second part by T L

i . The expected uptime
E(Ti+1) is given by

E(Ti+1) = E(ki) · τ + E(T L
i ). (7)

The value of ki depends on the value of X(R+
i ) = g(i)

which is the state of the system immediately after the ith
maintenance action. The expected value of ki is given by

E(ki) = E[E(ki|X(R+
i ))]

=
∑∞

j=0 j × Pr(X(R+
i ) + Y1 + · · ·+ Yj+1

> DL |X(R+
i ) + Y1 + · · ·+ Yj < DL),

(8)

where Y1, Y2, ... are independent Gamma random vari-
ables Ga(ατ, β) under the Gamma model as described in
Section 2. To obtain an approximate value for E(ki), we
observe that X(t) has to increase from g(i) to DL after it
is maintained for i times, and that the mean degradation
speed of X(t) is αβ. Hence an approximated value for
E(ki) is given by

E(ki) = E[E(ki|X(R+
i ))] ≈

DL−g(i)
αβτ

. (9)

After X(t) is observed for the kith time, it increases to
DL by the time Ri+1 = (ki + 1)τ . If i < n, referring to
Figure 1 we see that Ti+1 = (ki+1)τ , and thus E(Ti+1) =
(ki+1)τ . If i = n, referring to Figure 1 we see that either
Case A or Case B may occur. In Case A, in which the
change in X(t) is described by the curve marked “Q2”
or “Q3” in Figure 2, we have X(Rn+1) ≤ DF , T L

n = τ ,
E[Tn+1] = (E(kn) + 1)τ . In Case B, in which the change
in X(t) is described by the curve marked “Q1” in Figure
2, we have X(t) = DF at t = T L

n < τ , the system fails
at this point, and E[Tn+1] = E(kn)τ + E(T L

n ). Case A
occurs only when n = N , but Case B may occur when
either 0 ≤ n < N or n = N .

(1) 0 ≤ n < N . This happens only under Case B when
the system has been maintained for n times. After the
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nth maintenance action is completed at R+
n , the sys-

tem continuous to operate within a time period of length
knτ and continues to operate for a further time period
T L

n ≤ τ . The movement of X(t) is depicted by the curve
marked “Q1” in Figure 2. Replacement of the system
takes place at t = R+

n + knτ + τ . The uptime T L
n de-

pends on the state X(t) at t = R+
n + knτ < DL. As

we assumed that X(R+
n ) = g(n) and X(R+

n + knτ) −
X(R+

n ) ∼ Ga(knτα, β), denoting the pdf of X(R+
n +knτ)

by fknτ (x), we have

fknτ (x)

= Ga(x−g(n)|knτα,β)∫ DL
g(n)

Ga(u−g(n)|knτα,β)du
, g(n) < x < DL. (10)

Let y = X(R+
n + knτ). Then

E(T L
n ) = E[E(T L

n |X(R+
n + knτ))]

=
∫ DL

g(n) E(T
L
n |y)fknτ (y)dy.

(11)

The CDF of the uptime T L
n (which is the time to failure

starting from y = X(R+
n + knτ) until X(t) reaches the

failure threshold DF , as shown in Figure 2) is given by

Fy(t) =
Γ
(

DF−y

β
,αt

)
Γ(αt) . (12)

The corresponding pdf fy(t) is given by fy(t) =
∂Fy(t)

∂t
.

Therefore, under the condition of 0 < t ≤ τ , the corre-
sponding conditional density of t = T L

n is

fy|t≤τ (t) =
fy(t)∫

τ

0
fy(v)dv

, 0 < t ≤ τ. (13)

The conditional expectation E(T L
n |y) based on the con-

straint 0 < T L
n ≤ τ is given by

E(T L
n |y) = E[E(t|y, t ≤ τ)] =

∫ τ

0 tfy|t≤τ (t)dt

=
∫

τ

0
tfy(t)dt

Fy(τ)
,

(14)

where Fy(·) is defined in (12). Moreover,

∫ τ

0
tfy(t)dt =

∫ τ

0

∫ t

0
fy(t)dsdt =

∫ τ

0

∫ τ

s
fy(t)dtds

=
∫ τ

0
[Fy(τ) − Fy(s)]ds

= τFy(τ) −
∫ τ

0 Fy(s)ds.

(15)
Substituting (15) into (14) gives

E(T L
n |y) = τ −

∫
τ

0
Fy(s)ds

Fy(τ)
. (16)

Then, from (11), the expectation E(T L
n ) is given by

E(T L
n ) = τ −

∫ DL

g(n)
1

Fy(τ)

(∫ τ

0 Fy(s)ds
)
fknτ (y)dy,

(17)
where fknτ (y) is as in (10).

(2) n = N . This can happen under either Case A or Case
B. The system has been maintained for N times. After
the Nth maintenance action is completed at t = R+

N , the
system operates within a time period of length kNτ and

continues to operate for a further time period T L
n ≤ τ .

The system is replaced at t = R+
N + kNτ + τ . If the

system fails at time t < τ (in which case the movement
of X(t) is depicted by the curve marked “Q1” in Figure
2), the uptime T L

N = t. If the system fails at time t = τ

(in which case the movement of X(t) is depicted by the
curve marked “Q2” or “Q3” in Figure 2), the uptime is
T L

N = RN+1 − (R+
N + kNτ) = τ . Then the conditional

expectation of T L
N given that X(R+

N + kNτ) = y is

E(T L
N |y) =

∫ τ

0 tfy(t)dt+
∫∞

τ
τfy(t)dt

=
∫ τ

0 tfy(t)dt+ τ(1 − Fy(τ)).
(18)

From (15), we have

E(T L
N |y) = τ −

∫ τ

0 Fy(s)ds. (19)

Substituting (19) into (11), we have

E(T L
N ) =

∫ DL

g(N)

(
τ −

∫ τ

0
Fy(s)ds

)
fknτ (y)dy

= τ −
∫ DL

g(N)

(∫ τ

0 Fy(s)ds
)
fknτ (y)dy,

(20)

where fknτ (y) is as in (10).

3.2 Expression for AA

Let pi be the probability for the state of the system not
reaching DF between the ith maintenance action and the
next action which may either be a maintenance action or
a replacement. Let Pn be the probability for a cycle that
consists of exactly n maintenance actions. It is easy to
see that Pn is given by

Pn =

⎧⎨
⎩

1− pn, n = 0∏n−1
i=0 pi(1− pn), n = 1, · · · , N − 1.∏N−1
i=0 pi, n = N

(21)

It follows from the definition of AA in (3) that

AA =
∑

N
n=0 Pn(

∑n+1
i=1 E(Ti))∑

N
n=0 Pn(

∑n+1
i=1 E(Ti)+

∑
n
i=1 E(Mi)+E(T w

n )+ξ)
, (22)

Denote by Fτ (x) the CDF of Ga(ατ, β). If pi|x represents
the probability for X(Ri+1) < DF given the value of
x = X(R+

i + kiτ) < DL, we have pi|x = Fτ (DF − x).

Furthermore, similar to (10), the pdf fkiτ of X(R+
i +kiτ)

is given by

fkiτ (x) =
Ga(x−g(i)|kiτα,β)∫ DL

g(i)
Ga(u−g(i)|kiτα,β)du

, g(i) < x < DL.

(23)
Therefore,

pi =
∫ DL

g(i)
pi|xfkiτ (x)dx =

∫ DL

g(i)
Fτ (DF − x)fkiτ (x)dx.

(24)
Moreover, from the expression of E(Ti+1) in (7) and T L

n +
T W

n = τ , we have,

AA =
∑N

n=0 Pn(
∑n

i=0 E(ki)τ+nτ+E(T L
n+1))∑

N
n=0 Pn(

∑
n
i=0 E(ki)τ+

∑
n
i=1 E(Mi)+(n+1)τ+ξ)

,

(25)
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where E(Mi) is given by (2), E(ki) is given by (8) exactly
and given by (9) approximately, and E(T L

n+1) is given by
(17) if n = 0, 1, · · · , N − 1 and given by (20) if n = N .

4 System with sensor error

In the presence of observation error in inspection of the
system, we let Y (t) be the observed value of X(t) and
relate to X(t) by

Y (t) = X(t) + ε,

where ε is the Gaussian white noise that follows normal
distribution with mean 0 and variance σ2. In what fol-
lows, we shall denote by Φ(x,σ2)(u) the CDF of a normal
random variable with mean x and variance σ2. The sys-
tem model is similar to the model in the previous sections
expect the system uptime is need to redefine.

4.1 System uptime

The following symbols are needed.

Mi i maintenance actions carried out
Re system replacement
Rej the system is replaced after Mj

(= Re ∩ (∩j
i=0Mi)))

(Mi, Oj) i maintenance actions carried out and
X(t) has been observed for j times

P C
ij the probability for the system to continue

to operate (that is, Y (t) ≤ DL),
given (Mi, Oj)

PM
ij the probability that the (i+ 1)th

maintenance action will be performed,
given (Mi, Oj)

PR
ij the probability for the system not to fail

but an observed value of X(t) indicates that
replacement is needed, given (Mi, Oj)

PF
ij the probability for the system to fail,

given (Mi, Oj)
PM

i the probability that after Mi, the (i+ 1)th
maintenance action will be performed
(= Pr(Mi+1|Mi))

PR
i the probability that after Mi, the system

will be replaced (= Pr(Re|Mi))
Pn the probability that after Mn, the system

will be replaced (= Pr(Ren))

We now obtain the system uptime. Since 0 ≤ n ≤ N , the
total expected uptime per cycle is given by

E[System Uptime per Cycle]

=
∑N

n=0 Pn E[Uptime|Rn]

=
∑N

n=0 Pn

(∑n−1
i=0 E

[
Ti

∣∣∣(Mi+1|Mi)
]

+E
[
Tn

∣∣∣(R|Mn)
])

.

(26)

It follows from the definitions of P M
i and PR

i that Pn is
given by

Pn =

⎧⎨
⎩

PR
0 , n = 0;∏n−1
i=0 PM

i PR
n , n = 1, . . . , N − 1;∏N−1

i=0 PM
i , n = N.

(27)

From the definition of PC
ij and conditioning PC

ij on X(t),
we have

P C
ij =

∫ DF

g(i) (Φ(x,σ2)(DL)) Ga(x − g(i)|jτα, β) dx.

(28)

PM
ij =

∫ DF

g(i)
(Φ(x,σ2)(DF )− Φ(x,σ2)(DL))

Ga(x− g(i)|jτα, β) dx,
(29)

PR
ij =

∫ DF

g(i) (1− Φ(x,σ2)(DF )) Ga(x− g(i)|jτα, β) dx,

(30)

P F
ij =

∫∞
DF

Ga(x− g(i)|jτα, β) dx = 1− P C
ij − PM

ij − PR
ij .

(31)

Then according to the definition of P M
i , for i = 0, . . . , N−

1 we have

PM
i = PM

i,1 + PC
i,1P

M
i,2 + · · ·+ PC

i,1 · · ·P
C
i,mi−1P

M
i,mi

=
∑mi

j=1

(∏j−1
s=1 PC

is

)
PM

ij .

(32)

Note that when i = N , P M
i = 0 as the system is replaced

since it reaches the maximum number of maintenance.
We also have

PR
i =

{
1− PM

i , i = 0, . . . , N − 1;
1, i = N.

(33)

Thus Pn can be obtained from (27), (28), (29), (32) and
(33). The expected uptime of the system depends on the
number of time Y (t) is observed before the next mainte-
nance actions, and is given by

E
[
Ti

∣∣∣(Mi+1|Mi)
]

= 1
P M

i

[
PM

i,1τ + PC
i,1P

M
i,2 (2τ) + · · ·

+PC
i,1 · · ·P

C
i,ki−1

PM
i,ki

(kiτ)
]

= 1
P M

i

∑ki

j=1

(∏j−1
s=1 PC

is

)
PM

ij (jτ).

(34)

To find the expected uptime of the system after the nth
maintenance action, we let T F

nj (n = 1, 2, . . . , N, j =
1, 2, . . .) be the uptime of the system between the last
observation Y (t) (i.e. the (j − 1)th observation) after
the nth maintenance action and system replacement. We
consider the following two cases.

(1) n < N. In this case, after the nth maintenance action,
an observed value Y (t) indicates that system replacement
is needed. After n maintenance actions, the expected
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uptime of the system before replacement is

E
[
Tn

∣∣∣(R|Mn)
]
= 1

P R
n

[
PR

n,1τ + PF
n,1E[T

F
n,1]

+PC
n,1

(
PR

n,2(2τ) + PF
n,2(τ + E[T F

n,2])
)

+ · · ·
+PC

n,1 · · ·P
C
n,kn−1

(
PR

n,kn
(knτ)

+PF
n,kn

((kn − 1)τ + E[T F
n,kn

])
)]

= 1
P R

n

∑kn

j=1

(∏j−1
s=1 PC

ns

) (
PR

nj(jτ)

+PF
nj((j − 1)τ + E[T F

nj ])
)
,

(35)
To evaluate (35), we need to find E[T F

nj ]. Denote by fj(x)

the pdf of X(R+
n + (j − 1)τ). Since X(R+

n+1) = g(n), for
j = 2, 3, . . . and g(n) ≤ x ≤ DF we have

fj(x) =
Ga(x−g(n)|(j−1)τα,β)∫ DF

g(n)
Ga(u−g(n)|(j−1)τα,β)du

. (36)

By using the similar arguments in obtaining (17) the ex-
pectation E[T F

nj](j = 2, 3, . . .) can be obtained as

E[T F
nj ] = τ −

∫ DF

g(n)
1

Fy(τ)

(∫ τ

0
Fy(s)ds

)
fj(y)dy. (37)

For the special case when j = 1, as the system fails before
the first observation, the expectation E[T F

n,1] is simply
given by

E[T F
n,1] = τ −

∫
τ

0
Fg(n)(s)ds

Fg(n)(τ)
, (38)

where Fg(n)(t) =
Γ
(

DF−g(n)

β
,αt

)
Γ(αt) .

(2) n = N. In this case, the system is replaced after the
N -th maintenance action, when either (i) an observed
Y (t) indicates that system replacement is needed, or (ii)
an observed Y (t) indicates that maintenance is needed.
After N maintenance actions, the expected uptime of the
system before replacement is

E
[
TN

∣∣∣(R|MN)
]

= (P R
N,1 + PM

N,1)τ + PF
N,1E[T

F
N,1]

+PC
N,1

(
(PR

N,2 + PM
N,2)(2τ) + PF

N,2(τ + E[T F
N,2])

)
+ · · ·
+PC

N,1 · · ·P
C
N,k

N
−1

(
(PR

N,k
N
+ PM

N,k
N
)(k

N
τ)

+PF
N,k

N
((k

N
− 1)τ + E[T F

N,k
N
])
)

=
∑k

N

j=1

(∏j−1
s=1 PC

Ns

) (
(PR

Nj + PM
Nj)(jτ)

+PF
Nj((j − 1)τ + E[T F

N,j])
)
,

(39)

5 Conclusion

Assuming that degradation of the system is a Gamma
process and maintenance is imperfect, the authors devel-
oped a maintenance model for maximizing the availability
of the system. Heuristic method (such as an efficient dis-
crete algorithm defined based on uniform design [3]) can
be used to obtain the optimal solution.
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