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Abstract— One of the main principles in a design

of experiment is to use blocking factors whenever it

is possible. On the other hand, if the blocking infor-

mation is not precisely defined and subjective in na-

ture, it is usually discarded. This paper introduces a

new design that utilizes available subjective informa-

tion on experimental units to create artificial blocking

factors and develops a rank-sum test to test the dif-

ference between two population medians.
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1 Introduction

In many experimental settings, experimental units (EU)
based on inherent variation may provide two types of in-
formation, formal measurements or informal and subjec-
tive observations. While the formal measurements are
successfully used in traditional analysis as covariates, in-
formal observations are usually ignored. A new design ,
order restricted randomized design (ORRD), exploits the
use of this informal and subjective information to design
an experiment. Sets of experimental units, each of size
H are recruited from a potential population along with
subjective information that they may have. This sub-
jective information is used to judgement rank the EUs
from smallest to largest in each set to create artificial co-
variates. Ranking process induces a positive correlation
among within-set experimental units. The ORRD then
uses a restricted randomization of the treatment regimes
to the ordered units in each set to facilitate negative cor-
relation between the responses coming from two different
treatment group in the same set. This negative correla-
tion acts as a variance reduction technique in the estima-
tion of the contrast parameter.

Section 2 describes the ORR designs for a two-treatment
setting. Section 3 introduces a rank-sum test based on
ORR design to draw inference for the equality of the pop-
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ulation medians. The Pittman efficacy of the test is com-
puted and compared with its competitors. Section 4 de-
velops asymptotic null distribution of the test statistics
under a consistent judgment ranking scheme and pro-
vides empirical evidence that the new test outperforms
Mann-Whitney-Wilcoxon rank-sum test based on simple
random sampling design.

2 The order restricted randomized de-

signs

We assume that the EUs enter study either sequentially
or H at a time. In either case, we need to have H units
to form a set. One replication of the basic ORR design
requires two sets, each of size H and can be constructed
in a three step procedure.

Step I. We first identify the design parameters H , α and
β, where H is the set size, α and β are two disjoint sets
that partition the integers 1, · · · , H .

Step II. In each of the two sets, we pre-experimentally
judgment rank the EUs from smallest to largest based on
available subjective information on within-set EUs, and
obtain the ranks R1, · · · , RH .

Step III. In one of the sets, we perform a randomization
to assign the treatment level T1 to EUs whose ranks are
in the α-set and the treatment level T2 to the EUs whose
ranks are in the β-set. We perform an opposite allocation
in the other set without a randomization so that each
treatment level is applied to all the ranks R1, · · · , RH .

This basic design is repeated n times to increase the sam-
ple size. We use X[h]j and Y[h]j to denote the response
measurements from the h-th ranked unit, j-th repetition,
and the treatments T1 and T2, respectively. We assume
that response measurements can be modeled as follows

X[h]j = μ1 + γ[h]j, h = 1, · · · , H, j = 1, · · · , n,

Y[h]j = μ2 + γ[h]j , h = 1, · · · , H, j = 1, · · · , n, (1)

where μ1, μ2 are the medians of the treatment groups T1,
T2, respectively, and γ[h]j is the random error associated
with the experimental unit in replicate j and judgment
rank h.

To illustrate the construction of the design we consider an
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example. Assume that we wish to conduct an experiment
to compare the efficacy of two drugs, drug T1 and drug
T2. We set H = 3 and α = {2} and β = {1, 3}. For
just one repetition of the basic design we need two sets,
each of which has three patients. We rank the patients
in each set separately based on general quality of health
measure, pre-medical history, etc. In one of the set, we
randomly assign T1 to a patient whose rank is 2 (in α-set)
and T2 to patients whose ranks are 1 and 3 ( in set β). In
the second set, we do the opposite allocation so that T1

and T2 are applied to patients whose ranks are 1, 3, and
2, respectively. It is clear from this example that each
treatment group is applied to all the ranks. Thus, it is a
balanced design. The basic ORR design for this example
is illustrated in Table 1.

Table 1: Basic ORR design when H = 3, α = {2}, and
β = {1, 3}.
Set 1 β1, T2, Y[β1]1 α1, T1,X[α1]1 β2, T2,Y[β2]1

Set 2 β1, T1,X[β1]1 α2, T2,Y[α1]1 β2, T1,X[β2]1

The main features of this design can be summarized as
follows:

• In each treatment group, there are n observations
that has judgment rank h for h = 1, · · · , H . Thus,
each rank is equally represented within each treat-
ment group. This property is useful to have an un-
biased estimator for the treatment mean.

• Within set measurements, due to judgment ranking
of experimental units, are not independent. Under
some mild assumptions (for example under the ad-
ditive model (1)), they are positively correlated.

• This design puts emphasis on the contrast parameter
Δ = μ1 − μ2. Within-set judgment ranking process
creates an error structure with positive covariances
between within set responses. The restricted ran-
domization turns this positive covariances into nega-
tive one in the estimation of the contrast parameter
Δ.

• This design is unique for H = 2. The number of
designs increases with set size H . In this case, an
efficient design can be found by selecting optimal
design parameters α and β.

The previous works in ORR design demonstrated that use
of subjective information along with restricted random-
ization yields highly efficient inference for control versus
treatment comparison [1] and two-sample inference [2].
Close inspection of ORRD shows that judgment rank-
ing process creates a kind of stratified sample. In this
regard, each judgement class can be considered as a stra-
tum. Borrowing the idea of post-stratification from the

theory of sampling survey, judgment ranking can be done
post-experimentally. This judgment post stratified ORR
design also yields inference with high efficiency [3]. Two-
sample inference based on ORR design is also considered
in the context of median confidence intervals [4]. The de-
tailed development of the theory in this paper is provided
in a PhD dissertation at the Ohio State University. The
proofs of the theorems can be found in [5].

3 Rank-sum Test

Let F (x) and G(y − Δ) be the cumulative distribution
function of the treatment populations T1 and T2, respec-
tively. The parameter Δ = μ2 − μ1 denotes the loca-
tion shift between these two distributions, where μ1 and
μ2 are the medians of F and G. Let X[h]j and Y[h]j ,
h = 1, · · · , H , j = 1, · · · , n be the samples from treat-
ment populations T1 and T2 generated by ORR design
in Section 2 . Let F[h] and G[h] be the cdf of the judg-
ment order statistics X[h]j and Y[h]j, respectively. In this
notation, square brackets indicate the quality of ranking
information. If there is no ranking error, we replace the
square brackets with the round one and judgment ranked
order statistics then become usual order statistics from a
set of size H .

We now wish to develop a nonparametric test for the
hypothesis

H0 : Δ = 0 HA : Δ �= 0.

Even though we use two-sided alternatives here test can
be applied to one sided alternatives with minor modifica-
tion. Let

T =

H∑
i=1

n∑
j=1

H∑
k=1

n∑
t=1

I(X[i]j ≤ Y[k]t). (2)

We reject the null hypothesis for extreme values of T .
For an arbitrary judgment ranking scheme, the exact null
distribution of T is not possible. We then look at the null
distribution of T as n goes to infinity.

Theorem 1 Let T̄ = T/(n2H2). For an arbitrary, but

consistent ranking scheme, ET̄ = 1/2.

Theorem 2 Under a consistent ranking scheme, as

n goes to infinity, the asymptotic null distribution of√
2nH(T̄ − 1/2) converges to a normal distribution with

mean zero and variance σ2 = 2
H (σ2

1 + σ2
2), where

σ2
1 = V ar

[
u∑

i=1

(1− F (X[αi]1)− τ̄αi·)

+
H−u∑
k=1

(F (Y[βk]1)− τ̄·βk
)

]
,
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σ2
2 = V ar

[
H−u∑
i=1

(1− F (X[βi]1)− τ̄βi·)

+

u∑
k=1

(F (Y[αk]1)− τ̄·αk
)

]
,

τik = EI(X[i]j ≤ Y[k]t), τ̄.k =
∑H

i=1 τik/H, τ̄i. =∑H
k=1 τik/H, and u is the number of elements in set α.

The results of Theorem 2 hold for an arbitrary ranking
scheme as long as it is consistent in each set. The consis-
tency here is used to denote that the same ranking mech-
anism is used in each set. We note that the asymptotic
null distribution of T̄ is not distribution free. It depends
on the judgment ranking scheme. Under perfect ranking,
considerable simplification is possible in Theorem 2.

Corollary 3 Under perfect ranking , the asymptotic null

distribution of
√

2nH(T̄ − 1/2) converges to a normal

distribution with mean zero and variance σ2
P , where

σ2
p =

4

H

{
u∑

i=1

αi(H + 1− αi)

(H + 1)2(H + 2)

+2

u∑
i=1

u∑
j=1

I(αi < αj)
αi(H + 1− αj)

(H + 1)2 (H + 2)

+
H−u∑
k=1

βk(H + 1− βk)

(H + 1)2(H + 2)

+2

H−u∑
k=1

H−u∑
t=1

I(βk < βt)
βk(H + 1− βt)

(H + 1)2 (H + 2)

−2

u∑
i=1

H−u∑
k=1

I(αi < βk)
αi(H + 1− βk)

(H + 1)2 (H + 2)

−2

u∑
i=1

H−u∑
k=1

I(βk < αi)
βk(H + 1− αi)

(H + 1)2 (H + 2)

}
.

It is now clear that the asymptotic null distribution of T̄
is distribution free under perfect ranking.

When H > 2 the number of designs that we can select
for ORRD is not unique. In this case, we select a design
so that the Pittman efficiency of the test is larger than
any other design in its class. Let GΔn

(t) = F (t − ΔN ),
where Δn = a/

√
n, a > 0. Under this local alternative,

the Pittman efficacy of the test based on the design pa-
rameters α and β is given by

c2(α, β) =
μ′(0)

σ2
P

, μ′(0) =
d

dΔ
EΔT̄ |Δ=0.

For a general α and β, the Pittman efficacy of the ORR
design is then given by

c2(α, β) =
(
∫

f2(y)dy)2

σ2
P

.

In order to find the optimal design, we need to maxi-
mize this equation with respect to sets α and β. This is
equivalent to minimizing the asymptotic null variance of
T̄ .

Theorem 4 Let H > 2 be any fixed integer. Then the

Pittman efficacy of the test T̄ is maximized when set α
contains odd integers only and set β contains even inte-

gers only, or vice versa.

The theorem 4 indicates that the optimal design is the
one that distributes integers to set α and β as evenly as
possible. This can be achieved by putting odd integers in
set α and even integers in set β.

The asymptotic variance of the test statistics T̄ reduces
to a simple form for the optimal design.

Corollary 5 Assume that set α and β contains odd and

even integers. Under perfect ranking assumption, the

asymptotic null variance of T̄ based on optimal design,

σ2
Opt reduces to

σ2
Opt =

{
1

(H+1)2 if H is even
1

H(H+2) if H is odd.

The Pittman efficacy of the Mann-Whitney-Wilcoxon
(MWW) test based on simple random sampling can be
found in [6]. For equal sample sizes, it reduces to

c2(MWW ) = 3{
∫

f2(x)dx}2.

We now compare the asymptotic Pittman relative effi-
ciency of the rank-sum test based on optimal ORRD with
respect to MWW test based on simple random sample

eff(Opt, MWW ) =
c2(Opt)

c2(MWW )
=

1

3σ2
opt

.

For H = 2, 3, and 4, relative efficiencies are 3, 5, and
25/3, respectively.

The point and interval estimate of the shift parameter Δ
can be constructed from pairwise differences of X- and
Y -sample observations,

Δ̂ = median{Y[k]t −X[i]j}.

The estimator has the same form of Hodges-Lehman es-
timator as in a simple random sample. On the other, its
distributional properties are different due to within-set
correlation structure.

Distribution-free confidence interval of Δ follows directly
from the inversion of the null distribution of T . We first
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note that the null distribution of T is symmetric around
(nH)2/2. Let D(1) ≤ · · · ≤ D(n2H2) be the ordered differ-
ences of Y[k]t−X[i]j, for k, i = 1, · · · , H and t, j = 1, · · · , n.
If we select a k∗ such that P0(T ≤ k∗) = η/2, from the
symmetry of T we have that

[D(k∗+1), D(n2H2−k∗)]

is an 100(1− η)% confidence interval for Δ. For large n,
k∗ can be approximated form the asymptotic null distri-
bution of T ,

k∗ = (nH)2/2− 0.5− zη/2σT ,

where σ2
T = (nH)3σ2

P /2 is an estimate of the variance
of T and za is the a-th upper quantile of the standard
normal distribution.

In order to investigate the convergence rate of the asymp-
totic distribution of T̄ we performed a simulation study.
Simulation setting consists of different set (H), repli-
cation (n) sizes, varying degree of ranking information,
and some common underlying distribution (F). Judgment
ranking information is modeled through Dell and Clutter
[7] model. This model uses an additive perceptual error
model

ui = γi + wi,

where the residual γi assumed to have a distribution F
with mean zero and variance 1. The random components
wi is generated from a normal distribution with mean
zero and variance θ2, and γi and wi are independent.
In order to generate judgment order statistics from this
model, we generate two sets of random variate γ and w ,
each of size H . We add these vectors to obtain u = γ+w.
This vector is sorted and corresponding γ values are taken
as judgment order statistics. In this model, the quality
of judgment ranking information is controlled by the cor-
relation coefficient ρ = corr(u, γ). The correlation ρ = 1
and ρ = 0 correspond to perfect and random ranking,
respectively. Intermediate value of judgment ranking in-
formation can be considered by selecting 0 < ρ < 1.

Table 2: Estimated Type I error rates when n = 5 and
underlying distribution is standard normal.

H ρ = 1 ρ = 0.9 ρ = 0.75 ρ = 0.5
2 0.042 0.112 0.178 0.240
3 0.038 0.161 0.259 0.339
4 0.043 0.242 0.371 0.469
5 0.044 0.283 0.447 0.523

Table 2 presents the estimated Type I error rates for dif-
ferent values of ρ. It is clear that simulated type I error
rates are close to nominal Type I error rate of 0.05 if there
is no ranking error. On the other hand even a small rank-
ing error inflates the Type I error rates considerably.

4 Asymptotic Null Distribution under

Imperfect Ranking

Simulation study in Section 3 indicates that even a slight
departure from perfect ranking inflates the Type I er-
ror rates. Hence, test looses its distribution free prop-
erty. Under imperfect ranking, the quantity σ2

P under
estimates the variance of the test statistics. In order
to correct this problem, It is important to have a con-
sistent estimator for σ2. Let Zi, i = 1, · · · , 2n be the
H-dimentional within set correlated observations in each
replication

Zi = (X[α1]i, · · · , X[αu]i, Y[β1]i, · · · , X[βH−u]i).

Theorem 6 For a fixed set size H, under a consistent

ranking scheme, unbiased and consistent estimator of σ2

is given by σ̂2 = 4
H (H/3 + A−B − C), where

A = −
H∑

i=1

μ̂[i] + 2
H∑

i=1

H∑
j=1

I(i < j)(ν̂[i,j] − μ̂[i]μ̂[j]),

B = 4

u∑
i=1

H−u∑
k=1

I(αi < βk)(ν̂[αi,βk] − μ̂[αi]μ̂[βk])

C = 4

u∑
i=1

H−u∑
k=1

I(αi > βk)(ν̂[αi,βk] − μ̂[αi]μ̂[βk])

μ̂[i] =
1

2n(2n− 1)H

2n∑
j=1

2n∑
k �=j

H∑
s=1

I(Z[s]k ≤ Z[i]j)

ν̂[i,j] =

∑2n
l=1

∑2n
k �=l

∑2n
t�=l,k Ti,j,k,t,l

4n(2n− 1)(n− 1)H2

Ti,j,k,t,l =

H∑
s=1

I(Z[s]k ≤ Z[i]l)

H∑
s=1

I(Z[s]t ≤ Z[j]l).

By using the consistent estimator of σ2 we can easily
establish from the Slutsky’s theorem that

√
2nH(T̄ −

1/2)/σ̂ converges to a standard normal distribution as the
repetition number n goes to infinity. Even though, this
result holds for large n, it may not provide a satisfactory
solution for small n. Since we estimate σ2 consistently
from the data, Student’s t-distribution with 2n − 2 de-
grees of freedom provides better approximation for small
n.

Table 3 presents the Type I error rate estimates based
on Student’s t-approximation under different judgment
quality information. Underlying distributions are taken
as standard normal (N), Student’s t-distribution with 3-
degrees of freedom (t3) and lognormal distribution (LN).

It is now clear from Table 3 that estimates of the Type I
error rates are relatively close to the nominal values for
all ρ values and distributions in Table 4. Based on this
result, for all practical purposes we may claim that the
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Table 3: Estimated Type I error rates based on Student’s
t- approximation. Simulation size is 5,000 and n = 5.

Dist H ρ = 1 ρ = 0.9 ρ = 0.75 ρ = 0.5
N 2 0.041 0.051 0.053 0.053

3 0.053 0.062 0.058 0.060
4 0.045 0.059 0.056 0.055

t3 2 0.040 0.056 0.056 0.059
3 0.050 0.061 0.058 0.059
4 0.039 0.061 0.056 0.054
5 0.049 0.053 0.058 0.055

LN 2 0.038 0.056 0.058 0.057
3 0.051 0.064 0.063 0.064
4 0.040 0.049 0.051 0.052
5 0.040 0.051 0.056 0.049

proposed test is asymptotically distribution free irrespec-
tive of the quality of judgment ranking information.

We next investigate the empirical power of the test. Sim-
ulation study considered set size H = 3, the number of
replication n = 5 and varying degree of judgment rank-
ing information. Residual for the ORRD are again gen-
erated from Dell and Clutter model for ρ = 1, 0.9, 0.75,
and 0.50. For the alternative hypothesis we considered
location shift of Δ = 0(0.1)1. The empirical powers of
the rank-sum test of ORRD along with classical Mann-
Whitney-Wilcoxon test is given in Figure 1.
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Figure 1: Empirical power curves of the rank-sum test
based on ORRD for selected ρ(rho). Set size H = 3,
replication size n = 5 and simulation size is 5, 000.

Figure 1 illustrates that the new test has substantially
higher power than the the power of the Mann-Whitney-
Wilcoxon test as long as there is some information to
judgment rank the units prior to experimentation. If
judgment ranking information is week, the correlation
coefficient is less than 0.5, the ORR design is as good
as simple random sampling design. This indicates that
the proposed test does not loose its power if our ranking
information leads to a random ranking.

5 Conclusion

This papers develops distribution-free inference based on
ORR design for the location shift between two distribu-
tions. New design exploits the use of subjective infor-
mation to rank the experimental units to produce more
accurate inference for the contrast parameter. The ap-
proach that we have taken in this paper extends to more
complex treatment structure with k-treatments. A test,
similar to Kruskal-Wallis test, can be constructed. In this
case, interesting design issues appear. In current work,
the authors are pursuing the extension of ORR design to
this k-treatment structure.
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