
 
 

 

  
Abstract— The treatment of incomplete data is an important 

step in pre-processing data prior to later analysis. We propose a 
novel non-parametric multiple imputation algorithm for 
estimating missing value. The proposed algorithm is based on 
Generalized Regression Neural Networks. We compare the 
proposed algorithm against existing algorithms on forty-five 
real and synthetic datasets. The effectiveness of imputation 
algorithms is evaluated in classification problems. The 
performance of proposed algorithm appears to be superior to 
that of other algorithms. 
 

Index Terms—Missing values, imputation, single imputation, 
multiple imputation. 

I. INTRODUCTION 
Missing data is a common feature of real world datasets. 

By an incomplete or missing dataset we mean a dataset 
where, for some cases, the values of one or more explanatory 
variables are missing. Most data mining algorithms cannot 
work directly with incomplete datasets. Hence, missing value 
imputation is widely used for the treatment of missing values. 
A major focus of research today is to develop an imputation 
algorithm that preserves the multivariate joint distribution of 
input and output variables. Much of the information in these 
joint distributions can be described in terms of means, 
variances and covariances. If the joint distributions of the 
variables are multivariate normal, then the first and second 
moments completely determine the distributions. 

The practice of filling in a missing value with a single 
replacement is called single imputation (SI) method. A major 
problem with SI is that this approach cannot reflect sampling 
and imputation uncertainty about the actual value. Rubin 
(1978) proposed multiple-imputation (MI) to solve this 
problem [1]. MI replaces each missing value in a dataset with 
m >1 (where m is typically small, e.g. 3-10) statistically 
plausible values. A detailed summary of MI is given in Rubin 
[1], Rubin and Schenker [3], and Schafer [4]. 

Little and Rubin [2] and Schafer [4] classify missing data 
into three categories: Missing Completely at Random 
(MCAR), Missing at Random (MAR), and Missing Not At 
Random (MNAR). MCAR and MAR data are recoverable, 
where MNAR is not. Various methods are available for 
handling MCAR and MAR missing data.  The most common 
imputation procedure is mean substitution (MS), replacing 
missing values with the mean of the variable. The major 
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advantage of the method is its simplicity. However, this 
method yields biased estimates of variances and covariances. 

The most sophisticated techniques for the treatment of 
missing values are model based. A key advantage of these 
methods is that they consider interrelations among variables. 
Model-based methods can be classified into two categories: 
explicit model based algorithms and implicit model based 
algorithms. Explicit model based algorithms (such as least 
squares imputation, expectation maximization and Markov 
Chain Monte Carlo) are based on a number of assumptions 
[6-8]. The weakness of these techniques is that if the 
assumptions are violated, the validity of the imputed values 
derived from applying these techniques may be in question. 

Implicit model based algorithms are usually 
semi-parametric or non-parametric in nature. These methods 
make few or no distributional assumptions about the 
underlying phenomenon that produced data. The most 
popular implicit model based algorithm is hot deck 
imputation. Hot deck procedure replaces missing values on 
incomplete records using values from similar, but complete 
records of the dataset. Past studies suggest that this is 
promising [7]. A limitation of this method is the difficulty in 
defining what is ‘similar’ [8]. Recently, a number of studies 
applied multilayer perceptron (MLP) and radial basis 
function (RBF) neural networks to impute missing values [9]. 
However, creation of an MLP and a RBF is complex and has 
many parameters. In this paper, we present a novel algorithm 
for the imputation of missing values. The remainder of this 
paper is organized as follows: the new algorithm in section 2 
(with an overview of GRNN in section 2.1 and details of the 
proposed algorithm in section 2.2), research methodology in 
section 3, results and discussions in section 4, followed by 
summary and conclusions in section 5. 

 
 

II. DEVELOPING A NEW ALGORITHM 
We propose a simple imputation algorithm (GMI), based 

on modified Generalized Regression Neural networks 
(GRNN) (described below), to reconstruct probabilistic 
distributions of multivariate random functions from the 
incomplete dataset.  GMI is a multiple imputation algorithm. 
Like other multiple imputation algorithms, it has the 
advantage of taking into account the variability due to 
sampling and due to non-response and imputation. Three 
aspects of our approach are novel. 

The first novelty is that GMI is based on a clustering 
algorithm and thus avoids distributional assumptions. This is 
important if the distribution of the data is skewed. The new 
algorithm can handle data from different distributions 
appropriately. 
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The second novelty is that only one parameter (named 
‘smoothing factor’) needs to be adjusted for the proposed 
algorithm. However our empirical observations indicate that 
the performance of the algorithm is not very sensitive to the 
exact setting of the parameter value and that the default value 
of the parameter is almost always a good choice. The inherent 
model-free characteristics avoid the problem of model 
misspecification and parameter estimation errors. 

The proposed imputation algorithm closely resembles 
implicit model based imputation algorithms wherein the 
donor is selected from a neighbourhood comprised of similar 
records. A major limitation of these algorithms is the 
difficulty of defining what similar means. The third novelty 
of our proposed algorithm lies in the fact that our algorithm is 
free of this limitation because in this algorithm all 
observations participate according to their Mahalanobis 
weight in the estimation of missing value.  
 

A. Modified GRNN (Generalized Regression Neural 
Networks) Algorithm 

In GRNN (Specht, 1991) each observation in the training 
set forms its own cluster [10]. When a new input pattern x is 
presented to the GRNN for the prediction of the output value, 
each training pattern yi assigns a membership value hi  to 
x-based on the Mahalanobis distance d = d x,yi( )  as in 
equation 1. Use of the Mahalanobis distance is the only 
difference between the modified GRNN and the standard 
GRNN. The Euclidean distance function is used in the 
standard GRNN,  
 

hi =
1

2πσ 2
exp −

d2

2σ 2

⎛ 

⎝ 
⎜ 
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⎠ 
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where, σ is a smoothing function parameter (we specify a 
default value, σ = 0.5). 

Finally, GRNN calculates the output value z of the 
pattern x as in equation (2).  

z =
hi ×  output of yi( )

i
∑

hi
i

∑
(2)  

If the output variable is binary, the GRNN calculates the 
probability of event of interest. If the output variable is 
continuous, then it estimates the value of the variable.   
 

B. Proposed Algorithm 
Our proposed algorithm (GMI) estimates the conditional 

mean and conditional variance of each missing value. Each 
case is replicated a number of times (here, 100). The 
estimates of missing values are generated based on the 
currently estimated conditional means and overall 
conditional variances (including both sampling and 
imputation variance) of the missing items. The variance will 
result in slightly different imputed values for each replica of a 
record. Hence, the replicas of a record will differ in imputed 
values but not in observed values.    

The pseudo code of the proposed algorithm is as follows: 
 
(‘//’ introduces comments) 

• Do = Dataset;  
• Normalize each variable of the dataset Do  so that the 

values range from 0 to 1. We call the normalized dataset 
D. 

• Code missing values with a unique numeric code such as 
‘999’; 

• Set ijd as j’th element of i’th pattern, for rNi ,,1 "= and 

cNj ,,1 "= , where Nr is the number of rows 

(subjects) and cN is the number of columns (variables). 

• Suppose ijd is the missing data which is to be imputed. 

Therefore, i'th pattern of the dataset D is the test 
pattern: ( ):,iD  = test input pattern = values of all 
variables (except for the variable j) in the i'th pattern. 

• Create a new dataset newD from D where the j’th variable 
is the output variable and all other variables are input 
variables, and deleting cases with the missing values on 
the output variable. 

• Let M be the number of imputations, here 100. 
• Construct M GRNN networks ( )mean

kG  and M GRNN 

networks Gk
var( )for estimating the conditional mean and 

the conditional variance of ijd respectively (where i = 1 

… M). 
// compute the conditional mean and conditional variance for 
the missing value ijd . 

• For k = 1 … M 
¾ Create a separate training set ( )mean

pD  by randomly 

drawing out 70% of the data from newD . 

¾ Train the k-th GRNN net ( )mean
kG on the training set 

Dp
mean( ). 

¾ Evaluate the performance of the trained network 
( )mean
kG on the k-the training set ( )mean

pD  and 

estimates squared residual series ( )kr . 

¾ Create a training set ( )var
pD for the network ( )var

kG  

by using input patterns of Dp
mean( ) as inputs and kr  

(squared residuals) as outputs. 
¾ Train the network ( )var

kG  on ( )var
pD . 

¾ Present the test pattern ( ):,iD  to the trained 

network ( )mean
kG  for predicting the conditional 

mean ( )iQ
�

. 

¾ Present the test pattern ( ):,iD to the trained 

network ( )var
kG  for predicting conditional variance 

( )iU
�

. 
 

End for // k 
 
•  The conditional mean of the missing value ijd is simply 

the average of the single estimates 

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 
 

 

( )∑
=

=
M

i

iQ
M

Q
1

1 �
,  

•  Estimate the within-imputation variance: 
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• Estimate the between-imputation variance 
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• The estimate of the total variance T of the missing value 

ijd  is  
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// We now have the mean and variance of the missing 
value ijd . Perform exactly the same procedure for estimation 

of conditional means and variance of other missing values. 
� Replicate each record of the dataset ‘D’ 5 times. 
� Impute the missing values using following equation: 

Missing Value = Q + T × R  

where, Q = Conditional mean; T = total variance of the 
missing value; R = a random number between -1 and +1. 

III. RESEARCH METHODOLOGY 
 

We compare our proposed algorithm GMI against MCMC 
MI (Markov Chain Monte Carlo Multiple Imputation), 
MCMC SI (Markov Chain Monte Carlo Single Imputation) 
and MS (Mean Substitution) over different percentages of 
missing values. MCMC MI is a standard statistical method 
for imputing missing values, while MS is the most widely 
used imputation method. We tested all the algorithms on 45 
datasets using 100-fold cross-validation. We artificially 
remove data using MCAR and MAR mechanisms at different 
rates of missing values into the training set. Then the 
imputation algorithms were used for imputation. Missing 
data inevitably affect a classifier’s performance. Hence, a 
GRNN classifier was trained with the imputed training 
dataset and tested with the testing set. We assess the relative 
merits of imputation algorithms by evaluating the 
performance of the GRNN classifier. The Friedman test is 
used to test the null hypothesis that the performance is the 
same for all algorithms. After applying the Friedman test and 
noting it is significant, multiple comparison tests (details are 
available in [11]) were performed in order to test the (null) 
hypothesis that there is no significant difference between any 
pair of the four algorithms. 

The experiments were done on 30 synthetic datasets, and 
15 real-world datasets from UCI machine learning repository 
[12]. The public real-world datasets on which we tested the 
algorithms are –(1) Abalone, (2)Adult, (3)Annealing, (4) 
Arrhythmia, (5) Breast Cancer Wisconsin, (6) Congressional 
Voting Records, (7) Dermatology, (8) Heart disease, (9) 
Hepatitis, (10) Mushroom, (11) Parkinson, (12) Pima Indians 
Diabetes, (13) Post Operative Patient, (14) Soybean (large), 
and (15) Thyroid disease.  

The synthetic datasets are generated as follows: 
Step1: Specify different mean vectors and different 
covariance matrices for the thirty different datasets. Since 
mean vectors and covariance matrices of no two datasets are 
the same, the joint distribution of variables is different in 
each dataset. Generate 1,000 combinations of predictor 
values for each dataset from its unique mean vector and 
covariance matrix. 
Step 2: The probability of the event of interest for each 
instance was estimated by the following model (we specified 
different sets of model parameters for different datasets): 

( )( )zYP −+= exp11)( , with 

  z = β0 + β1x1 +"+ β5x5 + β6x1x2x3 + β7x3x4 x5  
Where, )(YP = probability of the event of interest; 

( )51 ,, xx "  represent explanatory variables; 

( )710 ,,, βββ "  are the model parameters. 
The differences between the different datasets are mainly due 
to different combination of attribute values and different 
values of model parameters. 
Step 3: Generate a uniformly distributed random number in 
the range (0,1) for each observation. If the random number is 
greater than the probability of the event of interest, the value 
of the response variable is 1, otherwise 0. 

A. Simulating Missing data:  
We deleted values from the complete training data to 

simulate MCAR and MAR missing mechanisms.  
MCAR missing data pattern:  We generate uniformly 
distributed random number in the interval (0, 1) for each 
observation and specify a range of values within the interval 
(0, 1) depending on the percentage of data to be removed. We 
then remove the observation if the corresponding random 
number lies within the range. 
MAR missing data pattern: For MAR mechanism, we have 
to remove data in such a way that removed values of variable 

kx depends on the variable mx  and nx . To simulate MAR 
data, we defined a model for the non-responsiveness: 

 p xki( )=
1

1+ e− β 0 +β mxmi −β nxni( )  

where, ( )kixp = probability of removal of kx in the i'th 
observation. 

We arrange the instances in the order of the probability 
that this element of data should be missing of variable xk . 
The ordered dataset is then divided into equal sized parts. If 
the total percentage of missing values is p, remove different 
percentages of data from different subsets. For example, the 
percentages of missing values in each one of the two subsets 
will be 0.2p and 0.8p. We generate uniformly distributed 
random numbers for each observation of the variable kx in 

the interval (0, 1). In subset 1, we remove the value of kx if 
the corresponding random number is less than or equal to 0.2. 
In subset 2, we remove the value of kx  if the corresponding 
random number is less than or equal to 0.8. 

IV. RESULTS AND DISCUSSIONS 
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We compare our proposed imputation algorithm (GMI) 
against the conventional imputation algorithms –MCMC MI, 
MCMC SI and MS –based on the accuracy of a GRNN 
classifier on the imputed dataset. Table 1 summarizes the 
results. Appendix tables A1- A3 give an overview of the 
statistical test results. 
Key finding: For studies with roughly 20-60% missing 
values, the performance of our proposed imputation 
algorithm GMI is significantly better than the other 
algorithms (p-value<0.05, for all pair wise comparisons). 
Our results lead to valuable insights about the imputation 
algorithms. 
� The performance of MCMC MI is better than that of GSI 

and the performance of MCMC MI is better than that of 
SI. The results illustrates that the multiple imputation 
approach is an improvement over the single value 
imputation approach. 

� The rates of missing values affect the performance of the 
imputation algorithms. All algorithms perform similarly 
when the percentage of missing values is either very low 
(not more than 10%) or very high (above 60%). The 
differences become obvious when the percentage of 
missing is not too high or too low. 

 
 

V. SUMMARY AND CONCLUSION 
 

We present a non-parametric multiple imputation 
algorithm –GMI—for imputing missing data. The idea of the 
algorithm is based on the concept of GRNN. We tested our 
algorithms on fifteen real world datasets and thirty synthetic 
datasets. We compare our algorithm with the Markov Chain 
Monte Carlo (MCMC) imputation procedure and the Mean 
Substitution (MS). The performance of the algorithms was 
assessed in terms of accuracy of a GRNN classifier on the 
imputed data at different percentage of missing values. GMI 
algorithm appears to be superior to other algorithms. 
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Table 1: Summary Results: New algorithm (GMI) compared with Markov Chain Monte Carlo Multiple and Single 
Imputation (MCMC MI and MCMC SI), and Mean Substitution (MS). 
 
  Accuracy (%)  
 GMI MCMC MI MCMC SI MS 
5% missing 
data 

Mean= 95    STD=3    
Max=100     Min=87 

Mean= 95    STD=3       
Max=99     Min=85 

Mean= 93    STD=4       
Max=100     Min=83 

Mean= 95    STD=4       
Max=100     Min=80 

10% missing 
data 

Mean= 91    STD=5    
Max=99     Min=80 

Mean=89    STD=6        
Max=99     Min=72 

Mean=88    STD=8        
Max=99     Min=71 

Mean= 87    STD=8       
Max=99    Min=68 

20% missing 
data 

Mean= 89    STD=4    
Max=98     Min=79 

Mean= 82    STD=7      
Max=94     Min=69 

Mean= 74    STD=6     
Max=87     Min=61 

Mean= 71    STD=9      
Max=92     Min=55 

30% missing 
data 

Mean= 86    STD=6    
Max=96     Min=73 

Mean= 75    STD=9     
Max=96     Min=53 

Mean= 70    STD=10     
Max=90     Min=50 

Mean= 63    STD=10     
Max=86     Min=40 

40% missing 
data 

Mean= 80    STD=8    
Max=97     Min=69 

Mean= 70  STD=7      
Max=87    Min=54 

Mean= 61   STD=9      
Max=83     Min=46 

Mean= 56    STD=8     
Max=76     Min=40 

50% missing 
data 

Mean= 69    STD=9    
Max=90     Min=52 

Mean= 62    STD=8      
Max=77     Min=46 

Mean= 54    STD=9      
Max=73     Min=31 

Mean= 49    STD=5      
Max=59     Min=39 

60% missing 
data 

Mean= 56    STD=8    
Max=73     Min=38 

Mean= 52   STD=8      
Max=69  Min=37 

Mean= 49    STD=8      
Max=66     Min=32 

Mean= 48    STD=9      
Max=64     Min=27 

70% missing 
data 

Mean=53    STD= 9   
Max= 71   Min= 35 

Mean= 52  STD= 9   
Max=  74   Min= 35 

Mean= 53   STD= 11     
Max=  72   Min= 29 

Mean= 52  STD= 8     
Max=  75   Min= 31 

 

APPENDIX 
Table A1: Friedman two-way analysis of variance by rank 

 
Hypothesis Test Statistic Test Result 
Ho: There is no difference in rank totals of 
the 4 algorithms when 5% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when 5% data are missing 

N=45 
Chi-square=5.231 
df=3 
Asymp. Sig.=0.156 
  

Accept the null hypothesis and 
conclude that there is no difference 
in the performance of  4 algorithms 
with p<0.05 

Ho: There is no difference in rank totals of 
the 4 when 10% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when data are missing. 

N=45 
Chi-square=3.838 
df=3 
Asymp. Sig.=0.279 
 

Accept the null hypothesis and 
conclude that there is no difference 
in the performance of  4 algorithms 
with p<0.05 

Ho: There is no difference in rank totals of 
the 4 algorithms when 20% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when 20% data are missing. 

N= 45 
Chi-square=67.206 
df = 3 
Asymp. Sig = 0.000 

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of  4 algorithms 
with p<0.05 

Ho: There is no difference in rank totals of 
the 4 algorithms when 30% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when 30% data are missing. 

N= 45 
Chi-square=112.690 
df = 3 
Asymp. Sig = 0.000 

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of  4 algorithms 
with p<0.05 

Ho: There is no difference in rank totals of 
the 4 algorithms when 40% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when 40% data are missing. 

N= 45 
Chi-square=124.936 
df = 3 
Asymp. Sig = 0.000 

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of  4 algorithms 
with p<0.05 

Ho: There is no difference in rank totals of 
the 4 algorithms when 50% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when 50% data are missing. 

N= 45 
Chi-square=111.555 
df = 3 
Asymp. Sig = 0.000 

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of  4 algorithms 
with p<0.05 

Ho: There is no difference in rank totals of 
the 4 algorithms when 60% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when 60% data are missing. 

N= 45 
Chi-square=107.675 
df = 3 
Asymp. Sig = 0.000 

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of  4 algorithms 
with p<0.05 

Ho: There is no difference in rank totals of 
the 4 algorithms when 70% data are missing 
Ha: A difference exists in rank totals of the 4 
algorithms when 70% data are missing. 

N= 30 
Chi-square=2.413 
df = 4 
Asymp. Sig = 0.491 

Accept the null hypothesis and 
conclude that there is no difference 
in the performance of  4 algorithms 
with p<0.05 
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Table A2: Multiple Pairwise Comparisons among the imputation algorithms 
 

Comparison of algorithms when 20% data are missing 
 GMI MCMC MI MCMC SI MS 
GMI - Yes - Yes 
MCMC MI Yes - No Yes 
MCMC SI Yes No - Yes 
MS Yes Yes Yes - 

Comparison of algorithms when 30% data are missing 
 GMI MCMC MI MCMC SI MS 
GMI - Yes - Yes 
MCMC MI Yes - Yes Yes 
MCMC SI Yes Yes - Yes 
MS Yes Yes Yes - 

Comparison of algorithms when 40% data are missing 
 GMI MCMC MI MCMC SI MS 
GMI - Yes - Yes 
MCMC MI Yes - Yes Yes 
MCMC SI Yes Yes - Yes 
MS Yes Yes Yes - 

Comparison of algorithms when 50% data are missing 
 GMI MCMC MI MCMC SI MS 
GMI - Yes - Yes 
MCMC MI Yes - Yes Yes 
MCMC SI Yes Yes - Yes 
MS Yes Yes Yes - 

Comparison of algorithms when 60% data are missing 
 

 GMI MCMC MI MCMC SI MS 
GMI - Yes - Yes 
MCMC MI Yes - Yes Yes 
MCMC SI Yes Yes - No 
MS Yes Yes No - 
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