
 
 

 

  
Abstract—The aim of this paper is two-fold: to propose and 
construct a Bayesian meta-analysis model and to apply it to 
re-analyse the results of a recently-published meta-analysis 
concerning the efficacy of bone marrow-derived cells (BMC) 
transplantation in patients with heart diseases.  The results based 
on the conventional and the Bayesian frameworks are compared 
and discussed.   The outcome of interest is the combined weighted 
mean difference (WMD) in left ventricular ejection fraction 
(LVEF) between patients treated with BMC and their controls.  
Unlike the conventional approach, the proposed Bayesian model 
allows researchers to integrate quantifiable prior evidence (e.g., 
expert opinions) with published data.  The conventional model 
showed that BMC could bring modest but statistically significant 
effect to adult patients with heart diseases.  The Bayesian models 
based on concentrated and diffuse priors provided similar 
conclusion, although the results were heavily influenced by the 
selected priors.  This suggests that the likelihood for the 
meta-analyses was rather “weak”, thus one must interpret the 
published results and conclusion with extra care. More studies 
need to be conducted before a foregone conclusion can be made.  
The Bayesian models provided more insights to the problem and 
the nature of data selected for meta-analysis.    

 
Index Terms—Bayesian meta-analysis, Bone marrow derived 
cells transplantation, Gibbs sampler, Markov chain Monte Carlo. 

.  
 

I. INTRODUCTION 
Replication of experimental results has long been a central 

feature of scientific inquiry, and it raises questions 
concerning how to combine the results obtained.  
Meta-analysis is often defined as the statistical analysis of a 
collection of results obtained from individual studies for the 
purpose of integrating the findings.  It involves the 
combination of quantitative evidence from studies that have 
investigated a common question.  In a nutshell, the objective 
of meta-analysis is to integrate individual study-effects to 

 
Manuscript received March 24, 2009.  
Dr. S-P Chan is Acting Head of Programme and Lecturer in Business 

Analytics at the School of Business, SIM University, 535A Clementi Road, 
Singapore 599490, Republic of Singapore. (phone: 65-62489271; fax: 
65-64624377; e-mail: spchan@unisim.edu.sg).  

Miss R Lee is Clinical Research Coordinator at the Clinical Research 
Unit, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, 
Republic of Singapore (e-mail: Rosalind_Lee@ttsh.com.sg). 

Dr. K-L Poh is Associate Professor at the Department of Industrial and 
Systems Engineering, Faculty of Engineering, National University of 
Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of 
Singapore (e-mail: isepohkl@nus.edu.sg). 

generate the combined effect, while taking into consideration 
the precision of individual study-effects.  

The theoretical details of the conventional model for 
meta-analysis are well known [1-2].  Following the rationale 
of conventional statistical theory, the combined effect of 
interest is considered as an unknown but fixed quantity that 
can be estimated from data obtained from a proper literature 
search and systematic review.  However, a good quantitative 
model should reflect the nature of data under study and the 
mechanism through which the data are collected.  In 
evidenced-based medical (EBM) research, expert opinions 
and published results form a rich source of information.  If 
such information could be built into the analysis, the final 
result of meta-analysis is promised to be more complete and 
meaningful.  According to the Bayesian framework, which is 
often perceived as the rival school of thought to conventional 
statistics, these evidence are termed as “prior” as they are 
known before an analysis is conducted.  Hence, the burning 
question is to facilitate the incorporation of such prior 
evidence into meta-analysis. 

The purpose of this paper is two-fold.  First, a 
meta-analysis model based on the Bayesian framework is 
proposed and constructed.  It is then applied to review a 
recently-published result on the efficacy of bone 
marrow-derived cells (BMC) transplantation in adult patients 
with heart problems, such as acute myocardial infarction 
(AMI) and chronic ischaemic heart disease (IHD) [3].  The 
issue is of great interest to cardiologists in recent years, as 
bone marrow transplantation is a relatively new procedure for 
treating diseases once thought to be incurable.  The 
re-assessment of the cited meta-analysis [3], which is widely 
circulated in the medical community, could help to further 
evaluate the potential therapeutic benefits of BMC for 
cardiac repair. 

The efficacy of BMC is measured by the mean difference 
(WMD) in left ventricular ejection fraction (LVEF) between 
patients treated with BMC and their controls.  Despite their 
difference in designs, it is justifiable to combine the 
published results from clinical trials and cohort studies 
because the study qualities were similar [3]. 

Determined either by echocardiograph or radionuclide 
ventriculography, LVEF is a common clinical indicator of 
left ventricular systolic function. In cardiovascular 
physiology, ejection fraction is the fraction of blood pumped 
out of a ventricle with each heart beat. In the healthy 
population the normal ejection fraction is 70/120, or about 
58%. 
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II. METHOD 
As opposed to the familiar classical approach [1-2], the 

proposed Bayesian meta-analysis model allows prior 
information—in the form of expert opinion or evidence 
reported/published previously—to be incorporated into 
analysis.  To facilitate discussion, let the combined effect 
(e.g., mean difference), the study-specific effect, the 
between-study precision and within-study precision be 
denoted as θ, ϕi, τ and φi, respectively.  The first 3 quantities 
are unknown and unobserved.  Based on the celebrated 
Bayes’ Theorem [4], the proposed model may be expressed 
as: 

p[θ, ϕi, τ, φi | y] ∝ L[y; φi | ϕi] × L[ϕi | θ] × g[θ] × g[τ] 

                               (1) 

where y=(y1, y2, …, yk)′ is the vector of observed effects 
(data),. L[y; φi | ϕi] and L[ϕi | θ] the likelihood functions, g[θ] 
the prior distribution for θ, g[τ] the prior distribution for τ 
and p[θ, ϕi, τ, φi | y] the joint posterior distribution where 
analysis is made. This is effectively a random-effect model as 
it allows observed effects (data) to vary around their 
individual study-specific effect sizes ϕi, which in turn belong 
to a distribution characterised by the overall effect θ.  The 
priors, as opposed to the likelihood, quantify the analyst’s 
prior opinion about θ and τ.  It is essential to perform 
random-effect modelling for meta-analysis because it is 
expected that the studies to be combined exhibit large amount 
of differences in designs and conditions.   

The remaining task is to derive the joint posterior based on 
suitably-chosen likelihoods and priors. The form of the 
likelihood depends on the nature of data, while the choice of 
priors is usually restricted to the conjugate family of 
distributions.  The concept of conjugacy ensures that the 
posterior distribution is mathematically tractable.  Once the 
distributional form of the posterior is deduced, it may be 
generated and the combined effect θ can be easily 
determined. 
 In most meta-analyses, normal distribution is appropriate 
for the observed effects (y).  If normal distribution is not 
immediately appropriate, one may perform logarithmic 
transform on y.  The prior distributions are chosen within the 
related conjugate family such that θ belongs to a normal 
distribution with parameters μ (location) and ν (scale), while 
τ belongs to a gamma distribution characterised by quantities 
λ (shape) and η (scale).  By fixing 4 parameters in the set-up, 
the generic posterior based on (1) becomes: 
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where there are k studies or observed effects to be combined, 
and Γ(•)  is a gamma function.  Theoretically, inferences 
about θ should be made from the joint posterior (3).  
Unfortunately, the complicated form of the posterior makes 
computation extremely difficult and one may resort to 
simulation techniques such as the Markov chain Monte Carlo 
(MCMC) for generating the posterior values [5-7].  Via the 
Gibbs sampler algorithm [8], the technique works directly 
with the conditional posterior distributions instead of the 
joint posterior (3): 
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where ϕ-i represents the vector of all other study-specific 
effects in studies other than i.  The conditional posterior of ϕi 
is a product of two normal distributions.  Similarly, the 
conditional posterior of major concern (θ) is again a normal 
distribution.  On the other hand, the conditional posterior of τ 
(between-studies precision) is a gamma distribution.  The 
advantage of performing computation on the conditional 
posteriors is that they have simpler structures as they are 
derived from the full posterior (3) by treating other 
parameters as fixed.  By drawing a large number of values 
from these conditional posterior distributions, one obtains the 
full posterior of combined effect (θ).   

The central idea of MCMC is to cycle through the three 
conditional posteriors (4) for generating the parameter values 
randomly.  The following procedure is based on the concept 
of Gibbs sampling [8]: 
 
With randomly-generated starting values )0(

iϕ = yi, θ(0) 

= k/
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i. draw each ϕi randomly using its conditional posterior 
and the current values of θ and τ 

ii. draw θ randomly using its conditional posterior and the 
current values of ϕ and τ 

iii. draw τ randomly using its conditional posterior and the 
current values of ϕ and θ 
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iv. record the current values of ϕ, θ and τ 
v. repeat steps ii. to v. for a sufficiently large number of 

times, say 1,000 
vi. the parameters generated represent a sample from the 

full joint posterior (3) 
vii. summarise θ from the generated sample of posteriors by 

computing its mean, variance and credible interval 
 
If the procedure is run sufficiently long, one may eventually 
reach the true posterior distribution of interest [9]. Since the 
above-mentioned procedure is iterative in nature, the 
parameters generated depend on the initialising values.  As 
such, the number of burn-ins must be decided before 
analysis.  This is the beginning set of runs that are discarded 
under the assumption that they are not representative of the 
joint posterior.  The eventual analysis is based on the updated 
set of values after burn-ins. 

The posterior distribution of θ could be summarised by 
means of a 95% credible interval.  In classical statistics, the 
random variables in a confidence interval (C.I.) are the limits 
and not the effect θ.  With a 95% C.I. constructed, one may 
claim that the unknown θ is contained in 95% of all possible 
intervals obtained with the same sampling method.  In the 
case of Bayesian analysis, the C.I. provides a more natural 
interpretation as θ may be stated to have a 0.95 probability of 
being within the interval.   

A user-friendly Stata 10.0 (Stata Corporation, Texas, 
U.S.A.) programme was written for facilitating the 
computation with Gibbs sampling.  The programme allows 
users to specify the prior parameters and the number of 
burn-ins and updates, with options for a graphical display of 
the iterative history. The iterative history plot provides a 
quick but reliable visual inspection on the convergence of the 
generated Markov chain.  The collected data were also 
entered into Stata 10.0 and all statistical tests were based on 
95% C.I. 

The above formulation (3-4) illustrates several important 
differences between the Bayesian and the conventional 
models.  First, no prior distribution of θ is allowed in the 
conventional approach and the analysis is solely based on the 
likelihood function(s).   Second, the combined effect θ is 
considered as a random quantity in Bayesian analysis.  As 
readily seen, all information required for Bayesian analysis is 
described by the posterior.  In practice, one may not have 
prior information before analysis and the advice is to specify 
a flat (non-informative) distribution for the priors so that they 
have little influence on the posterior.  Not surprisingly, the 
posterior is then dominated by the likelihood and the result 
will be identical to the conventional analysis.   However, the 
interpretation is philosophically different. 

 

III. RESULTS 
The required data for meta-analysis are reported in 

reference [3] (see Table 1).  Altogether, 20 studies (14 
randomised controlled trials and 6 cohort studies) involving 
976 patients (with 499 treated with BMCs and 477 served as 
controls) fulfilled the criteria set by the authors and were 
selected for analysis.  Detailed information on their search 
strategy, eligibility criteria, quality assessment and data 
abstraction were carefully reported [3].  The cited 

meta-analysis was based on published evidence reported in 
MEDLINE, Cochrane Central Register of Controlled Trials, 
EMBASE, Cumulative Index to Nursing & Allied Health, US 
Food & Drug Administration (FDA) and BIOSIS Previews, 
etc [3].  

The majority of the studies showed that BMC might bring 
beneficial effects to patients suffering from AMI and chronic 
IHD (WMD>0).  Only two studies that involved a smaller 
number of subjects showed a different result (WMD≤0; 
Table 1).   

 
 
Table 1: Reported Observed Study-Effects 

Study WMD 95% C.I. 
Clinical Trials:   

Assmus 2006 (BMC) * 4.10 2.18—6.02 
Assmus 2006 (CPC) 0.80 -0.82—2.42 
Chen 2004 * 12.00 8.54—15.46 
Erbs 2005 7.20 -1.40—15.80 
Ge 2006 6.70 -0.25—13.65 
Hendrikx 2006 2.50 -5.26—10.26 
Janssens 2006 1.20 -2.20—4.60 
Kang 2006 (AMI) 5.20 -0.89—11.29 
Kang 2006 (OMI)  -0.20 -8.35—7.95 
Lunde 2006 * -3.10 -5.96— -0.24 
Meyer 2006 2.80 -1.88—7.48 
Ruan 2005 * 9.17 0.77—17.57 
Schächinger 2006 * 2.50 0.52—4.48 
Li 2006 * 5.50 1.98—9.02 

Cohort Studies:   
Bartunek 2005 2.80 -6.08—11.88 
Katritsis 2005 0.33 -5.57—6.23 
Mocini 2006 4.00 -1.29—9.29 
Perin 2004 * 8.10 0.46—15.74 
Strauer 2002 1.00 -6.10—8.10 
Strauer 2005 * 
 

7.00 1.07—12.93 

* Statistically significant 
 
 
Combining all 14 clinical trials and 6 cohort studies, the 

conventional random-effect meta-analysis suggests that 
BMC transplantation improved LVEF by about 4% (95% C.I.: 
2.49—5.53).  The results are reported in Table 2a.  Thus, 
there seems to be sufficient evidence suggesting that patients 
on BMC showed modest improvement in LVEF when 
compared with the controls.  The choice of a random-effect 
model is justified with the test for heterogeneity (p<0.001). 

The Bayesian models with different priors were built next.  
Different prior values for θ reflect the different beliefs of the 
effects of BMC when compared with the controlled group.  
The prior for τ, however, was standardised as Gamma[λ: 
0.01, η: 0.01] in all Bayesian analyses.  The choice of this 
distribution reflected the lack of prior evidence regarding 
between-study precision.  Also, the number of burn-ins was 
set a priori at 500 and the Markov chain would thereafter be 
run another 1,000 times before the final analyses (posterior) 
were reported.  

In the first attempt, the “optimistic” prior for θ was chosen 
as Normal[μ: 1.00, ν: 10].  This is a highly-concentrated 
normal distribution with modest beneficial effect, i.e., 
patients on BMC showed slight improvement in LVEF when 
compared with the controls.  The combined effect turned out 
to be 1.29 (Table 2b).  Since the 95% C.I. of 0.70—1.87 does 
not contain zero, BMC is declared to be beneficial, albeit a 
marginal one. 
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In the second attempt, an optimistic prior was applied 
again.  However, it is an “non-informative” prior with low 
precision, i.e., Normal[μ: 1.00, ν: 0.00001].  Resembling a 
flat or heavy-tailed distribution, this diffuse prior is 
effectively a uniform distribution which suggests that there 
was little prior information regarding θ at the time when the 
analysis was conducted.  It is expected that such diffuse prior 
could cause little impact on the posterior.  The combined 
effect turned out to be 3.96 (95% C.I.: 2.31—5.61; Table 2c).  
As readily seen, the combined posterior effect is very similar 
to that reported in the conventional analysis (Table 2a).  The 
fairly wide interval estimate was a result of the inclusion of 
two non-informative priors. 

In the next exploratory Bayesian analysis, a prior 
suggesting that there was no beneficial BMC effect was fitted.  
In this case, the “indifferent” prior for θ was chosen as 
Normal[μ: 0, ν: 10].  As shown in Table 3d, the combined 
effect turned out to be 0.30 and the associated 95% C.I. was 
-0.29—0.89.  As a result, one may interpret that BMC did not 
bring significant benefits to the patients as the 95% C.I. 
contains zero.   

To further illustrate the properties of the proposed 
Bayesian model, an “non-informative indifferent” prior with 
low precision was fixed next, i.e, Normal[μ: 0, ν: 0.00001].  
The result was identical to the previous analyses based on 
“optimistic but weak” prior (Tables 2c-d), which in turn 
similar to the conventional analysis (Table 2a). 

In passing, note that the resultant posteriors based on the 4 
different sets of priors were fairly normal and the Markov 
chains exhibited no obvious pattern of divergence after the 
burn-in values had been discarded (Figure 1).   

 
 

Table 2: Results of Conventional and Bayesian Models 
Models Combined 

Effect  
(Posterior 

WMD) 

 
95% C.I. 

a. Conventional Random Model 4.01 2.49—5.53 
b. Bayesian Meta-Analysis: 
Optimistic but Strong Prior  
(in favour of BMC) 
Prior Effect: 1.00 
Prior Precision of Effect: 10 

 
1.29 

 
0.70—1.87 

c. Optimistic but Weak Prior  
(in favour of BMC) 
Prior Effect: 1.00 
Prior Precision of Effect: 0.00001 

3.96 2.31—5.61 

d. Indifferent but Strong Prior  
Prior Effect: 0 
Prior Precision of Effect: 10 

0.30 -0.29—0.89 

e. Indifferent but Weak Prior  
Prior Effect: 0  
Prior Precision of Effect: 0.00001 

3.96 2.31—5.61 

 

Figure 1: Iterative History of Bayesian Models 
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IV. DISCUSSION/CONCLUSION 
The Bayesian meta-analysis model developed in this paper 

differs from the conventional approach in two aspects.  First, 
it allows prior information—in the form of expert opinion 
and published evidence—to be incorporated into analysis.  
From the methodological point of view, it is costly to ignore 
such information if available. Second, the analysis is 
conducted on the posterior distribution which summarises all 
the information, both prior- and data-based, that the analysts 
have about the unknown parameters.   

The proposed Bayesian model allows observed effects 
(data) to vary around their individual study-specific effects, 
which in turn belong to a distribution characterised by the 
combined effect θ.  This is essentially a random-effect model 
designed for situations where there is substantial 
heterogeneity among studies. It is preferred over a 
fixed-effect model for the abovementioned analyses because 
there are usually inherent differences in studies (e.g., designs, 
types of patients, end-point evaluation criteria, etc.).  
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Consequently, it is naïve to assume that study heterogeneity 
does not exist even with the support of formal statistical tests.  
Moreover, such statistical tests may lack power in detecting 
the underlying differences among studies.   It is very rare for 
biomedical studies of the same objective/nature to be exactly 
comparable. 

The proposed Bayesian model may also be called a 
hierarchical model because, loosely speaking, more than one 
level of prior and likelihood is specified. In this case, a 
particular observed quantity depends on an unknown 
parameter, which in turn follows a second-stage prior.  This 
sequence of priors and parameters constitute a model with an 
extended or hierarchical data structure. 

The above review based on Bayesian models share a very 
important common feature.  The posteriors were dominated 
by their respective priors.  This was the result of a “weak” 
likelihood.  The majority of the selected studies showed that 
while there could be beneficial effects associated with BMC, 
the results were not statistically significant as the 95% C.I.s 
contained zero (Table 1).  With a relatively “weak” 
likelihood, the posterior result would be strongly influenced 
by the prior, i.e., the combined posterior were largely similar 
to the priors.  However, this point was not explicitly 
highlighted by the conventional meta-analysis model.  In this 
case, the Bayesian analyses revealed more details of the 
collected data under study.   

As a result, while the paper agrees with the current 
meta-analysis that “BMC transplantation in patients with 
acute MI and chronic IHD is associated with modest 
improvements in LVEF” [3], it is crucial to emphasise that 
the effect could turn out to be statistically non-significant as 
the posterior result was heavily influenced by the selected 
priors.  More studies must be conducted before the final 
chapter is written. 

Finally, it is worthwhile to make some suggestions 
regarding the elicitation of prior distributions for future 
research.  In practice, one may form a “community” of prior 
distributions with inputs from a number of experts.  
Inferences may then be based on a consensus of the posterior 
results or a “final” prior may be formed by averaging the 
prior distributions elicited from the experts. Alternatively, 
one may also consider constructing a primary prior 
distribution and a number of similar priors that belong to the 
same class.  
  By offering an alternative perspective in meta-analysis, 
the proposed Bayesian model is expected to provide more 
insights and relevant solutions to existing biomedical 
problems.  In fact, one may view the conventional model as a 
special case within the broader framework of Bayesian 
methodology.     
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